JRMGE / Vol 14 / Issue 2

Article

Comparison of dominant frequency attenuation of blasting vibration for different charge structures

Pengchang Sun, Wenbo Lu, Junru Zhou, Xincheng Huang, Ming Chen, Qi Li

Show More

a State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
b School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
c Changjiang Institute of Survey, Planning, Design and Research, Wuhan, 430010, China


2022, 14(2): 448-459. doi:10.1016/j.jrmge.2021.07.002


Received: 2021-01-16 / Revised: 2021-05-24 / Accepted: 2021-07-17 / Available online: 2021-08-20

2022, 14(2): 448-459.

doi:10.1016/j.jrmge.2021.07.002


Received: 2021-01-16

Revised: 2021-05-24

Accepted: 2021-07-17

Available online: 2021-08-20


Abstract:

Dominant frequency attenuation is a significant concern for frequency-based criteria of blasting vibration control. It is necessary to develop a concise and practical prediction equation describing dominant frequency attenuation. In this paper, a prediction equation of dominant frequency that accounts for primary parameters influencing the dominant frequency was proposed based on theoretical and dimensional analyses. Three blasting experiments were carried out in the Chiwan parking lot for collecting blasting vibration data used to conduct regression analysis of the proposed prediction equation. The fitting equations were further adopted to compare the reliability of three different types of dominant frequencies in the proposed equation and to explore the effects of different charge structures on the dominant frequency attenuation. The apparent frequency proved to be more reliable to express the attenuation law of the dominant frequency. The reliability and superiority of the proposed equation employing the apparent frequency were verified by comparison with the other five prediction equations. The smaller blasthole diameter or decoupling ratio leads to the higher initial value and corresponding faster attenuation of the dominant frequency. The blasthole diameter has a greater influence on the dominant frequency attenuation than the decoupling ratio does. Among the charge structures applied in the experiments, the charge structure with decoupling ratio of 1.5 and blasthole diameter of 48 mm results in the greatest initial value and corresponding fastest attenuation of the dominant frequency.

Download PDF:


Keywords: Dominant frequency, Blasting vibration, Attenuation law, Prediction equation, Charge structures

Show Figure(s)


Share and Cite

Pengchang Sun, Wenbo Lu, Junru Zhou, Xincheng Huang, Ming Chen, Qi Li, 2022. Comparison of dominant frequency attenuation of blasting vibration for different charge structures. J. Rock Mech. Geotech. Eng. 14 (2), 448-459.

Author(s) Information

Pengchang Sun

Pengchang Sun obtained his BSc degree in Hydropower Engineering from Wuhan University, China, in 2016, and is currently a PhD candidate in hydraulic engineering at the same university. His research interests include geotechnical engineering and scientific problems related to engineering blasting. He focuses on investigating the dynamic response of high rock slope under blasting vibration.