JRMGE / Vol 16 / Issue 4

Review

A review of in situ carbon mineralization in basalt

Xiaomin Cao, Qi Li, Liang Xu, Yongsheng Tan

Show More

a State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
b University of Chinese Academy of Sciences, Beijing 100049, China


2024, 16(4): 1467-1485. doi:10.1016/j.jrmge.2023.11.010


Received: 2023-08-09 / Revised: 2023-10-21 / Accepted: 2023-11-20 / Available online: 2023-12-25

2024, 16(4): 1467-1485.

doi:10.1016/j.jrmge.2023.11.010


Received: 2023-08-09

Revised: 2023-10-21

Accepted: 2023-11-20

Available online: 2023-12-25


Abstract:

Global warming has greatly threatened the human living environment and carbon capture and storage (CCS) technology is recognized as a promising way to reduce carbon emissions. Mineral storage is considered a reliable option for long-term carbon storage. Basalt rich in alkaline earth elements facilitates rapid and permanent CO2 fixation as carbonates. However, the complex CO2-fluid-basalt interaction poses challenges for assessing carbon storage potential. Under different reaction conditions, the carbonation products and carbonation rates vary. Carbon mineralization reactions also induce petrophysical and mechanical responses, which have potential risks for the long-term injectivity and the carbon storage safety in basalt reservoirs. In this paper, recent advances in carbon mineralization storage in basalt based on laboratory research are comprehensively reviewed. The assessment methods for carbon storage potential are introduced and the carbon trapping mechanisms are investigated with the identification of the controlling factors. Changes in pore structure, permeability and mechanical properties in both static reactions and reactive percolation experiments are also discussed. This study could provide insight into challenges as well as perspectives for future research.

Download PDF:


Keywords: Carbon mineralization, Basalt, CO2-fluid-basalt interaction, Petrophysical evolution, Mechanical response, Carbon capture and storage (CCS)

Show Figure(s)


Share and Cite

Xiaomin Cao, Qi Li, Liang Xu, Yongsheng Tan, 2024. A review of in situ carbon mineralization in basalt. J. Rock Mech. Geotech. Eng. 16 (4), 1467-1485.

Author(s) Information

Xiaomin Cao

Xiaomin Cao is a doctoral candidate from Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China. She obtained her BSc degree in Civil Engineering from Sichuan University, China. Her current interest is to understand the hydro-mechanical-chemical coupling mechanism of carbon mineralization in basalt.