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Existing mechanism of simulating soil movement at tunnel face is generally based on the translational or
rotational velocity field, which is, to some extent, different from the real soil movement in the arching
zone. Numerical simulations are carried out first to investigate the characteristics of the velocity dis-
tribution at tunnel face and above tunnel vault. Then a new kinematically admissible velocity field is
proposed to improve the description of the soil movement according to the results of the numerical
simulation. Based on the proposed velocity field, an improved failure mechanism is constructed adopting
the spatial discretization technique, which takes into account soil arching effect and plastic deformation
within soil mass. Finally, the critical face pressure and the proposed mechanism are compared with the
results of the numerical simulation, existing analytical studies and experimental tests to verify the ac-
curacy and improvement of the presented method. The proposed mechanism can serve as an alternative
approach for the face stability analysis.

© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Tunnel face stability problems have been receiving increasing
attention. For engineering safety, it is crucial to control the face
support pressure during the tunneling process for preventing
tunnel face collapse and the subsidence of ground surface. To avoid
face collapse and maintain face stability, the required minimal
support pressure should be determined. It is thus desirable to
establish a practical face failure mechanism and obtain a precise
solution to the critical face pressure.

The stability of tunnel face has been investigated by many re-
searchers. The existing approaches include the analytical method,
experimental tests and numerical simulation. Both the numerical
simulations (Augarde et al., 2003; De Buhan et al., 1999; Vermeer
et al., 2002; Chen et al., 2011; Ukritchon and Keawsawasvong,
2017; Ukritchon et al., 2017a, b; Keawsawasvong and Ukritchon,
2019; Du et al., 2020; Shiau and Al-Asadi, 2020) and experi-
mental tests (Broms and Bennermark, 1967; Mair, 1969; Schofield,
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1980; Atkinson and Potts, 1977; Chambon and Corte, 1994;
Takano et al., 2006; Kirsch, 2010; Idinger et al., 2011; Chen et al.,
2013) have been extensively performed to visualize the failure
pattern of a tunnel face. The advantage of the numerical simulation
lies in its good repeatability (Huang et al., 2018a; Ukritchon and
Keawsawasvong, 2019a, b, c), while the experimental tests are
good at capturing the characteristic of the face failure. As shown in
Fig. 1, when the tunnel face collapses, a soil arching and a shear
band are formed above the tunnel face and ahead of the tunnel face,
respectively, which could be adequately simulated with logarithmic
spirals.

The limit analysis and limit equilibrium are two effective
analytical methods to examine the face stability. The limit equi-
librium method usually assumes the calculation model to deduce
critical face pressures and consider different influence factors
(Anagnostou and Kovari, 1996; Anagnostou, 2012; Anagnostou and
Perazzelli, 2013, 2015; Perazzelli et al., 2014). The limit analysis
consists of the upper and lower bound theorems, which result in
the upper and lower bound solutions of critical loads by con-
structing kinematic and static mechanisms, respectively. A simple
and intuitive kinematic mechanism was the rigid block failure
mechanism based on the translational velocity field, which was
first introduced by Davis et al. (1980) and Leca and Dormieux
(1990), as shown in Fig. 2a. Then, the failure mechanisms of the
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Fig. 1. Three-dimensional (3D) failure zone (Takano et al., 2006).

translational multi-block (Mollon et al., 2009) and the rotational
rigid block (Subrin and Wong, 2002) were proposed to improve the
velocity field and allow freer development of the shear failure
plane, as shown in Fig. 2b and c. However, the failure mechanisms
mentioned above suffered from the fact that only a portion of the
tunnel face collapses but the remaining region was undisturbed. To
overcome this shortcoming, an innovative spatial discretization
technique was proposed by Mollon et al. (2010, 2011) to enhance
the knowledge about the failure mechanism. Based on these failure
mechanisms, researches on face stability influence factors and
improvement methods were widely conducted (Zhang et al., 2015;
Han et al., 20164, b; Pan and Dias, 2016a, b, 2017; Zou and Qian,
2018; Ding et al., 2018, 2019; Li et al., 2018, 20193, b; Zou et al,,
20193, b; Li and Zhang, 2020). Moreover, a continuous velocity
field was proposed by Mollon et al. (2013) for purely cohesive soils,
which significantly improved the existing upper solutions. The
proposed velocity field closely simulates the movement of the
purely cohesive soils and provided better results for the related
geotechnical problems (Osman et al., 2006; Klar et al., 2007; Klar
and Klein, 2014; Huang et al., 2018b; Zhang et al., 2018a, b; Li
et al., 2019c; Zhang et al., 2020).

It can be found from the extensive literature review that the
accuracy of the upper bound solution is closely related to the
adopted kinematically admissible mechanism. The accuracy of the
obtained critical face pressure and the correspondence of the fail-
ure mechanism to the real situation can be improved with
increasing sensibility and credibility of the velocity field. However,
most reported studies neglected or simplified the soil movement in
the arching zone. Fig. 2 shows that the simplified translational or

rotational rigid movement used in the analytical method leads to a
cone or ‘horn’ shape of the failure mechanism. Therefore, this paper
intends to mitigate this problem by proposing a new kinematically
admissible velocity field for the soil archinging zone.

Inspired by the advantages of a more promising and reasonable
kinematically admissible velocity field, this paper aims at exploring
a more realistic velocity field for the tunnel face in frictional soils.
Numerical simulations will be carried out first to investigate the
characteristics of the velocity distribution at the tunnel face and
above the tunnel vault. Then, a kinematically admissible velocity
field will be defined and deduced in detail to better correspond to
the real soil movement. Finally, comparisons among the presented
study, the numerical simulation and other existing studies will be
performed to verify the accuracy and improvement of the proposed
mechanism.

2. Numerical simulations
2.1. Numerical model

To investigate the face stability of shield tunnels, FLAC3D is
adopted to perform the numerical simulation. The failure or un-
stable state of the system is determined by the unbalanced force
ratio, which is defined as the ratio of the average unbalanced me-
chanical force to the average applied mechanical force for all the
grid points at each calculation step. This unbalanced force ratio will
decrease with the calculation step. A steady stable state will be
achieved when the unbalanced force ratio is under a prescribed
tolerance value (107> is usually set as the default value). But when
the unbalanced force ratio tends to attain a quasi-constant value
that is larger than the prescribed tolerance value, it means that an
unstable state or a steady plastic flow of the system is reached. In
this case, the infinitely increasing displacements and failure of the
numerical model will occur.

A 3D numerical model with the diameter to depth ratios C/D
varying from 0.5 to 3 is built. Fig. 3 presents a half model of a shield
tunnel with a diameter of D = 10 m and C/D = 2. The model con-
tains 90,675 zones and the dimensions are 3D x 4D x (2D + C) in
the X, Y and Z directions to counteract the boundary effect. As for
the boundary conditions, the top of the model (representing
ground surface) is set free, the four sides are constrained horizon-
tally and the bottom face is fixed.

Four types of soils are adopted and shown in Table 1. Soils are
assigned with the Mohr-Coulomb failure criterion, which corre-
sponds to a shear failure condition of a frictional soil. The Young’s

(b)

Fig. 2. Existing failure mechanisms: (a) Two-block, (b) Multi-block, and (c) ‘Horn’ shape. v and ¢ represent the velocity vector and internal friction angle, respectively.
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Fig. 3. Numerical model of a circular shield tunnel.

modulus E = 20 MPa is used (Mollon et al., 2013; Ukritchon et al.,
2017b; Huang et al., 2018b). The empirical equation K = 1 — sing
for the earth pressure coefficient at rest is adopted to calculate the
value of K, where ¢ is the internal friction angle of the soil. The
value of the Poisson’s ratio v is determined according to the relation
v = K/(1 + K) between the earth pressure coefficient and the
Poisson’s ratio. Moreover, the shell structural element with a
thickness of 0.35 m is adopted to model the tunnel lining, which is
assigned with the Young’s modulus E = 35 GPa and the Poisson’s
ratio » = 0.25. During the simulation process, a length of 10 m of the
tunnel is excavated. After the excavation, the zone behind tunnel
face is installed with lining, simulated by shell elements, instantly.

Without a priori assumption on the critical state of the tunnel
face, the determination of the critical collapse pressure is pro-
ceeded by the stress-controlled method. First, the tunnel face is
applied with a uniformly distributed face pressure to maintain its
force balance. Second, the displacement of tunnel face is monitored
with the decrease of the support pressure in each calculation cycle.
Finally, when the tunnel face collapses or the plastic flow occurs
after a tiny decrement of the support pressure, the face pressure at
this moment is noted and considered as the critical face pressure.

2.2. Results of the numerical simulations

2.2.1. Critical face pressure

Fig. 4 shows the face pressure ratio n versus the horizontal
displacement of tunnel face with different relative buried depth
ratios C/D and different types of soils. The face pressure ratio is
defined as follows:

g2PPlied _ nKy(C+D/2) 1)

where n defines the ratio of the face pressure to the horizontal

earth stress, 3PP is the face pressure, and y is the unit weight of
soils.

It is shown that the horizontal face displacement increases
rapidly with the decrease of the face pressure ratio. The critical
value of n is determined when the slope of the curve approximates
0. The dotted lines in Fig. 4 represent the critical value of n. It is

found that a higher critical support pressure ratio is obtained for a

Table 1
Soil conditions of the tunnel face.

Cc/D v (kN/m3) K v c(kPa) ¢ (°) Soil type

05,1,15,2,25,3 18 0.658 0397 0 20 Loose sands
0.357 0263 0 40 Dense sands
0.708 0414 7 17 Soft clays
0.577 0366 10 26 Stiff clays

Note: ¢ represents the cohesion of the soil.

smaller C/D. Besides, differences between Fig. 4a and b shows that a
smaller critical face pressure ratio is needed for soils with a higher
shear strength. It is correspondingly expected that when the shear
strength of soils is higher, a smaller face pressure is required.

2.2.2. Velocity distribution at the tunnel face

As aforementioned, the translational and rotational velocity
fields are two commonly used mechanisms for tunnel face prob-
lem. In order to make further investigation on failure mechanism of
tunnel face, this section will perform several numerical simulations
to study the velocity distribution at the tunnel face. The velocity
field of the numerical simulations will be compared with the
translational and rotational velocity fields usually adopted in the
existing analytical approaches. The obtained velocity inclination at
the tunnel face is defined in Fig. 5. The velocity vectors of moni-
toring points distributed on the whole tunnel face are collected and
recorded in the numerical simulation. The velocity inclination «
represents the angle between the velocity vector of the monitoring
point and the opposite excavation direction (negative Y-coordi-
nate), which can be calculated by the equation « = arccos[—vy/
(VE+vE+v2)03].

The velocity inclinations at the tunnel face in clays and sands for
different depth to diameter ratios C/D are provided in Figs. 6 and 7.
The velocity inclinations at the tunnel face are similar in clays and
sands, both increase with the Z-coordinate. The rotational velocity
field is basically consistent with the velocity inclination obtained
from the numerical simulations. It is shown that the rotational
velocity field well estimates the velocity distribution at the tunnel
face. But the velocity inclination of the translational velocity field
keeps constant with the Z-coordinate, which oversimplifies the soil
movement at the tunnel face. Besides, it is found that the points of
the numerical simulations on both ends of curves and the points far
away from the vertical symmetric plane of the tunnel face
(X > 0.4D) deviate from the curves estimated by the rotational
velocity field. This is because the velocity direction near the tunnel
face edge will be inevitably affected by the face boundary in the
numerical simulation, but the rotational velocity field assumes that
the soils at the tunnel face move together as a rigid block. It is
considered that the rotational velocity field still accurately simu-
lates the soil movement of most parts of the tunnel face and the
rotational velocity field is sufficiently reliable to represent the ve-
locity at the tunnel face.

2.2.3. Velocity distribution at the tunnel vault

This section will present the velocity distribution at the tunnel
vault obtained from the numerical simulation. The comparisons of
the velocity inclination provided by the numerical simulations, the
translational and rotational velocity fields are performed. The ve-
locity inclination at the tunnel vault is defined in Fig. 8. As shown in
Fig. 8, the velocity vectors of the monitoring points distributed on
the whole horizontal plane Z; are collected and recorded in the
numerical simulation. The plane Z; has a length of D and a width of
D, which is located at the tunnel vault. Similarly, the velocity
inclination of the monitoring point of the tunnel vault is also
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Fig. 5. Schematic diagram of the velocity inclination at the tunnel face in the nu-
merical simulation.

defined as the angle between the velocity vector and the opposite
excavation direction.

Figs. 9 and 10 show the velocity inclination at the tunnel vault
obtained from the numerical simulations for clays and sands. It is

shown that the velocity inclinations at the tunnel vault in the nu-
merical simulation generally decrease with the Y-coordinate, which
is almost the same in both clays and sands. However, the velocity
inclination estimated by the rotational velocity field increases with
the Y-coordinate, which is totally different from the results of the
numerical simulation. This difference reveals that the rotational
velocity field fails to represent the soil movement with arching
effect. The constant velocity inclination of the translational velocity
field also falls short of representing the variation characteristic of
the velocity at the tunnel vault. Besides, it is shown that the velocity
inclinations of the grid points far away from the vertical symmetric
plane (X > 0.5D) have a different variation trend compared with
those of the other points. This situation is caused by the soil arching
effect. When X/D > 0.5, the grid points are beyond the soil arching
and located at the region of the undisturbed soils, and thus the
velocity inclinations of these undisturbed points are different from
others.

2.3. Comparisons between the numerical simulations and the
experimental tests

To verify the obtained numerical results, the failure patterns of
three typical experimental tests (Chambon and Corte, 1994;
Kirsch, 2010; Idinger et al., 2011) are adopted to compare with
the failure zone obtained from FLAC3D. It is shown in Fig. 11 that
the failure patterns of the experimental tests are basically
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Fig. 6. Velocity inclination at the tunnel face in sands: (a) C/D = 0.5, (b) C/D = 1, (c) C/D = 2, and (d) C/D = 3.

consistent with that of the numerical simulation, especially for
the shear failure band obtained from the experimental test by
Idinger et al. (2011). Compared with the failure patterns obtained
from the experimental tests, the numerical simulation provides a
more conservative estimate of the failure range of the tunnel
face. Thus, although the finite difference code FLAC cannot pre-
dict the soil behavior perfectly, the numerical simulation of
FLAC3D is still a reliable tool to study the stability problem of
tunnel faces.

Furthermore, Table 2 presents the comparisons of the
normalized critical face pressure provided by the numerical
simulation in this paper and other experimental tests. The nu-
merical method and experimental test are inherently different in
the determination of the critical state of the tunnel face failure.
But it is shown that the normalized critical face pressures ob-
tained from this study approximate the existing experimental
results. Only some numerical results are slightly of larger values
than the experimental results. This comparison also implies that
the numerical simulation can be used to investigate the tunnel
face stability problem and the numerical results are relatively
effective and reasonable.

3. Construction of the improved failure mechanism

As mentioned above, the rotational and translational velocity
fields are two commonly used kinematically admissible velocity
fields for the face stability analysis in frictional soils. Compared
with the translational velocity field, the rotational velocity field
can simulate the soil movement at the tunnel face well. However,
for the region above the tunnel vault, both the rotational and

translational velocity fields are different from that of the nu-
merical simulation, which fail to reflect the characteristic of the
velocity distribution. Thus, this section aims at describing a new
kinematically admissible velocity field for the soil arching zone
based on the results of the numerical simulations to improve the
representation of the soil movement with arching effect. An
improved failure mechanism is newly constructed based on this
proposed velocity field using the spatial discretization technique.
In the proposed failure mechanism, a perfectly plastic soil ma-
terial is assumed. The Mohr-Coulomb failure criterion and the
associated flow rule are adopted. Finally, based on the upper
bound method of the limit analysis theorem, the critical face
pressure is derived by equating the rate of external work to the
rate of energy dissipation.

This paper adopts two different methods to construct the upper
and lower failure mechanisms, respectively. The whole failure
mechanism includes two parts, as shown in Fig. 12. Zone I repre-
sents the area ahead of the tunnel face (lower part) and the Zone II
represents the region above the tunnel vault (upper part). Both
zones are constructed by the spatial discretization technique. The
lower part of the failure mechanism is constructed based on the
rotational velocity field, while the upper part adopts a new kine-
matically admissible velocity field to generate the 3D failure
surface.

3.1. Generation of the failure mechanism in Zone |

3.1.1. Principle of the point generation in Section 1 of Zone |
As shown in Fig. 13, there are 2n discretized points on the cir-
cular tunnel face in Section 1, denoted by Aj and A]’. (1 <j<n).The
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Fig. 7. Velocity inclination at the tunnel face in clays: (a) C/D = 0.5, (b) C/D = 1, (¢) C/D = 2, and (d) C/D = 3.
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Fig. 8. Schematic diagram of the velocity inclination at the tunnel vault in the nu-
merical simulation.

rotation center O of the rotational velocity field is located in the
vertical symmetric plane. Each radial plane passing through the
point O is named as IIj, where 1 < j < n. Ay and A are the two first
points to generate the mechanism of Section 1. These two points
and point O constitute the radial plane II;, and the points A1 and A}
are renamed as P;1 and P;, 13, respectively. A new point P; in the
radial plane I, is generated from the points P;; and Piq1 of II.
More generally, a new point P;j;1 in the radial plane Il is
generated from the points P;j and P; 1 of II;, as shown in Fig. 14. The

facet F;j consists of the points P;j,1, P;j and P;.1j, and all the trian-
gular facets constitute the 3D failure surface. The point generation
process should obey the normality condition and the quasi-
uniformly distribution. The normality condition means that the

angle between the outside normal vector ﬁi j and the velocity
vector is 7/2 + ¢. The quasi-uniformly distribution requires that all
the new generated points P;j,1 are uniformly distributed in the
plane ITj 4, i.e. 01 = (0; + 0i11,)/2, where Pij 1 = (G, Tija1, Oiji1)-
In Section 1, there are j—1 new generated points and two existing
points. This process of point generation continues until the last
plane I, of Section 1.

3.1.2. Principle of the point generation in Section 2 of Zone I

After finishing the point generation in Section 1 of Zone |, a total
of n + 1 points will be generated in the last radial plane IT,. These
n + 1 points will generate n + 1 new points in the radial plane T,
of Section 2 of Zone I. Following the same normality condition and
the quasi-uniformly distribution, the point generation will be suc-
cessively conducted until the final point F, which represents the
closure of the failure mechanism.

The spatial discretization technique is to overcome the short-
coming that only a portion of the circular tunnel face collapses,
while the remaining area is at rest. Thus the 3D failure surface
generated by the spatial discretization technique could not be
described by a simple geometrical shape but a discretized surface.
The accuracy of the discretized failure mechanism will highly
depend on the fineness of the discretization parameters. More
details on the mathematical formulation for the point generation of
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Fig. 9. Velocity inclination at the tunnel vault in sands:

Sections 1 and 2 of Zone I can be referred to in Mollon et al. (2010,
2011).

3.2. Generation of the failure mechanism in Zone II

The generation of the 3D failure surface of Zone Il begins with
the intersection plane between Zones I and II. This section will
propose a new kinematically admissible velocity field for the soil
arching zone. The spatial discretization technique will also be
adopted to generate the failure mechanism based on the proposed
velocity field.

3.2.1. Proposed velocity field for Zone II

This section will present the new proposed velocity field above
the tunnel vault. Zone Il is divided into infinite vertical rigid blocks,
each two adjacent rigid blocks are separated by a vertical X-Z plane.
The velocity field of every rigid block is assumed as shown in Fig. 15.
The velocity is assumed to be independent of both the X- and Z-
coordinates but vary with the Y-coordinate. The formula of the
velocity in Zone II is defined as follows:

sin ¢

USine + o) )

() =v

where vy(y) represents the velocity of Zones II; vy is the velocity at
the point Cg;, which is assumed to be vertically downward; and
0.(y) is the angle between the velocity vector and the negative
direction of the Z-coordinate. In addition, when 6,(y) rotates
counterclockwise, 6,(y) is defined as positive, otherwise negative.

() C/D = 0.5, (b) C/D = 1, (c) C/D = 2, and (d) C/D = 3.

The verification of normality condition satisfaction of the proposed
velocity field is provided in Appendix A.

According to the assumption on vy, the condition of 6,(y) at the
point Cs; can be obtained:
Ov(yc) =0 (3)
where y. is the Y-coordinate of the point Cg;.

As shown in Fig. 16, the velocity field should not only obey the
normality condition in Zone II, but also be kinematically compatible
with the rotational velocity field in Zone I. Thus the following
conditions are required:

n(y) = /25 + (v ~Yo0)?

aly) = arccos {(y —yo)/\/m} (4)
vy (y) 149 (y) VLU (y)

sinfa(y) — ¢]  coslp — 0y(y)]  cosfa(y) — Ov()]

where v(y) is the velocity in Zone I along the intersection plane of
Zones I and II; w represents the angular velocity in Zone [; viy(y) is
the relative velocity between vi(y) in Zone I and vy(y) in Zone II; yo
and zgp are the coordinates of the rotational center in the vertical
symmetric plane; and «(y) is the angle between the velocity vector
vi(y) and the direction of Y-coordinate.

Combining Egs. (2)—(4) can yield two relations between the
rotational velocity field of Zone I and the proposed velocity field of
Zone II. The first relation of vy(y) is built based on any point in the
intersection plane of Zones I and II. Any point in the intersection
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plane of Zones I and Il must follow the triangular relationship as
shown in Fig. 16. Particularly, when y = y., the second relation in Eq.

(5) can be established.
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Fig. 10. Velocity inclination at the tunnel vault in clays: (a) C/D = 0.5, (b) C/D = 1, (c) C/D = 2, and (d) C/D = 3.

v sin(ac — o)
F - 7t n - 5
W) =) sine) — o "¢ T y+B o
A = (Yc —Yo — Zp tan ¢)tan ¢
B = —-yp—2zptan ¢

By substituting Eqgs. (5)—(7) into Eq. (2), and with some

simplification, the expression of vy is represented as follows:

where v is the velocity of Zone II at the point Cs;, and «c is the
corresponding angle between the direction of Y-coordinate and the
velocity vi(y) at the point Cs;. The formulae of v and «c are
expressed as follows:

ve = (Vo) = wm 6)
0c = arccos |:(Y<: —}/o)/\/m}

According to Eq. (5), the expression of f,(y) can be given by

F(y) - tan g

fuly) = arctan| = s

(7a)

where

vye = W(Ye —Yo — 2o tan ¢) (8)
Thus Eq. (2) can be rewritten as follows:
sin
w(y) = ©(ye — Yo —Zo tan ¢) i 9)

sinfp + 0y (y)]

Egs. (2)—(9) above can ensure that the normality condition is
considered in both Zones I and II.

As shown in Fig. 17, the cross-section of the failure mechanism in
Zone II is bounded by two curves emerging from points A and C,
respectively (the tunnel vault and the right end of the intersection
plane between Zones I and II). The two curves are defined as
z = fi(y) and z = f5(y), respectively, and they will intersect at the
final point Cspp. According to the normality condition, the following
geometric conditions of the failure surface can be easily obtained:

fv) = an[5 -0+ 0,0)]

L)

(10)
tan g +o+ Hv(y)]
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Fig. 11. Comparisons of the failure pattern between the numerical simulation and the experimental tests: (a) Comparison with the test by Chambon and Corte (1994), (b) Com-
parison with the test by Kirsch (2010), and (c) Comparison with the test by Idinger et al. (2011).

where f] (v) and f; (y) represent the angle between the direction of where C; and C; are two integration constants, which can be ob-

Y-coordinate and the velocity discontinuity surface. tained by substituting two boundary conditions into Eq. (11). The
By the integration of Eq. (10), the two curves of z = f(y) and ~ boundary conditions are as follows:

z = fo(y) can be obtained as follows:

2 2
1—tan? A(l+tan” ¢ 2 tan A(l1+tan? ¢
A) = ¢ ) : <y+B>—7Z) +G
2tan¢ 2tan ¢ 1—tan?g¢ 1-tan?g¢
zZ= , (11)
1+tan2¢ 5 2tan ¢ B(1+ tan (/’)
L) = 5 5—— S|V + G
2A(1 - tan (p) T-tan“¢ A(1-tan (p)
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Table 2
Comparisons of the normalized critical face pressure.

Source Soil conditions and tunnel geometry

Normalized critical face pressure, g,/ Numerical results (a¢/('yD)) obtained from this
(yD) study

Chambon and Corte
(1994)
Chen et al. (2013)

c=0KkPa, 9 =38°-42°,D=10m, C/D =1 and 2

c=0kPa, ¢ =37°,D=1m, C/D=0.5,1and 2
Kirsch (2010) ¢=0KkPa, ¢ =30°-34°,D =0.1m, C/D=0.5,1and 1.5

Idinger et al. (2011)
1.5

c=0kPa, 9 =34°,D=2.5m,5mand 7.5m, C/D=0.5,1and 0.08 for C/D = 0.5

0.046 for C/D = 1 0.052 for C/D = 1
0.05 for C/D =2 0.057 for C/D = 2
0.065 for C/D = 0.5 0.07 for C/D = 0.5
0.076 for C/D = 1 0.078 for C/D = 1
0.072 for C/D =2 0.08 for C/D =2
0.07—0.18 for C/D = 0.5 0.109 for C/D = 0.5
0.08—0.15 for C/D = 1 0.114 for C/D = 1
0.09—-0.16 for C/D = 1.5 0.113 for C/D = 1.5
0.088 for C/D = 0.5
0.103 for C/D = 1
0.097 for C/D = 1.5

0.08 for C/D =1
0.12 for C/D = 1.5

Note: Some experimental results varied in the same tests.

fl(yA) = O} (12)

fHalye) =0

where y4 and yc represent the Y-coordinates of the points A and C,
respectively.

By equating fi(y) to f>(y), the coordinates of the point Cspp, are
obtained:

Xc, = 0
five,) = Le)=ye, = ye
zc, = filve,) = £L(ve,)

(13)

where (0, ycs, Zcs) are the coordinates of the point Csyp. Similarly, the
coordinates of the point Cs; are (0, ycs, 0). Zone II is uniformly
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Fig. 12. Proposed 3D failure mechanism for a circular shield tunnel.

divided into ny, parts in the vertical direction by several horizontal
planes, in which ny = (z¢s/0y) and 6y is the distance between each
two adjacent horizontal planes.

Both the velocity fields in Zones I and II are defined by the co-
ordinates of the point O (yo and zp). The shape of the proposed
failure mechanism varies with yp and zp, and the critical failure
pattern can be obtained by the optimization of yp and zo.

3.2.2. Principle of the point generation in Zone Il

As shown in Fig. 18, all the points Pgj; discretize the contour of
the intersection plane between Zones I and II. The determination on
Psj1 is performed by testing all the facets F;j. When both P; J. and

Pjj.1 are beyond the tunnel vault, then the point P;j,q will be
deleted. When both P; g and P;j;1 are below the tunnel vault, then

the point P;j, 1 will be preserved. But when P; j is below the tunnel

vault while P;j,q is beyond it, the intersection point between the
line Plf_jP,»JH and the plane at the level of the tunnel vault will
replace Pjj,1 using a linear interpolation.

The obtained discretized points P;; in the intersection plane
between Zones I and II are all renamed as Ps;;, where 1 <i < ngand
ns is the number of the obtained discretized points. The serial
number i of the point Pg;1 is ranked counterclockwise as shown in
Fig. 18. The angular parameter f;; in the plane IIs; is calculated as
follows:

‘ H‘ Surcharge g,

AV

4

Section 2

\‘\-4»/

A’ 7
A A

1,

Section 1

Fig. 13. Spatial discretization technique for the generation of the mechanism in Zone I.
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]7j+]

Py

Fig. 14. Details of the point generation in Zone L.

Fig. 15. Proposed velocity field in Zone II.

—_—
CarPsiz-CaA ) (14)

e

01 = arccos<
Cslpsi,l

Each two points Psj1 and Ps;, 11 of plane Il can generate a new
point Ps;> of plane IIs;. More generally, Ps;j and Psi,1; of plane Il
can generate Pg;j, 1 of plane Il . Similarly, the point generation in
Zone II should also respect the following three conditions:

(1) The angle between the normal vector ﬁs,- ; and the velocity
vector of facet Fs;j is equal to 7t/2 + ¢.

(2) Psjj;1 belongs to the plane Il 1.

(3) The quasi-uniform distribution
(Osij + Osi1)/2.

requires  fsij;1 =

In the plane I (the intersection plane between Zones I and IL.
These ng discretized points will generate ng new points in the next
plane Ilsy. This generation process will continue until the end of
Zone II (the point Csyp).

3.2.3. Mathematical formulation for the point generation in Zone Il

This section will illustrate the mathematical formulation for the
point generation in detail, as shown in Fig. 19. Ps;j, Ps; 1 and Ps;j 1
are given by

P = (Xsijvysijazsij)
= (Xsi+1jzysi+1jvzsi+1j) (15)

Pij 1 = (xsiJ'+1 +Ysij+1) Zsij+1 )

Pgi 1

Using Eq. (15), the vector Pg;;Pg;, 1 and the midpoint P;ij be-
tween the points P;;j and Ps;1; are given by

_
PgiiPsii1j = (Qxsij» Qysijs Azsif)

(16a)
Plszlj = (X,Si.jvy/SiJ7Z/Sij
where
Qxsij = Xsi+1j — Xsijj
Qysij = Ysit1j — Ysij (16b)
Qzsij = Zsi+1j — Zsij
Xsij = (Xsij +Xsir1)/2
V'sij = Usij +Ysiv1j)/2 (16¢)

Zsij = (Zsij + Zsis1j) /2

Moreover, the normal vector to the facet Fs;j and the velocity
vector of the facet F;; are defined as follows:

N
Nsij = <xnsij7YHsijvznsiJ>
- (17)
Vsij = (szijvvysijvvzsij)

According to the velocity field in Zone II, the expressions of the
unit velocity vector are as follows:

Uxsij = 0
Vysij = Sin {0\, (ylsi.j)] (18)
Uzij = —COS {Hv (}’,su)]

In order to obey the normality condition, the following condi-
tions must be satisfied:

=

sij*PsijPsiz1j = 0 (19)
Nsij‘ =1

Nsi.j'vsij = cos(T/2 + ®)
N

By substituting Eqs. (16)-(18) into Eq. (19), the following con-
ditions are obtained:

XnsijVxsij T YnsijVysij + ZnsijVzsij = cos(T/2 + ¢)

Xnsi jOxsij + YnsijQysij + Znsijlzsij = 0 (20)
2 2 2 _

xnsiJ +ynsi,j + Znsij =1

By solving Eq. (20), the unit normal vector ﬁs,-j is obtained as
follows:

Zysij = ( —Fyj % Asij) / (2Esij)
Ynsij = AsijZnsij + Bsij (21)

Xnsij = GCsijZnsij + Dsij

where the negative or positive sign of zps;; is to ensure N ; pointing

outside. This condition can be satisfied by ﬁsij'(PsiszHlj X
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Fig. 17. Derivation of the failure mechanism in Zone II

Vsij) > 0. The intermediate parameters in Eq. (21) are given as
follows:

BN

sij — _Uzsi,j/vysij
Bsi,}' = COS(TC/Z + (p)/vysij
Gsij = (—Asijaysij — Azsij) /Azsij

Dyij = —BSiJaySiJ/aXSiJ (22)
Egj = AGj+ G+ 1

Fsij = 2AsijBsij 4 2Cs;jDgij
Gsij = B?Lj + D?u -1

Agij = F&j — 4Esi;Gsij

The vector from the point Csj,1 to the point Ps;j1 is given by

—_— —
Csi1Psij1 = Tsij1 O sijet (23)

. T .
where rg;j,1 is the norm of the vector Cg; 1 Ps; j,1. The coordinates of

=
the point Cgj1 are (xcs, Ycs, (Zcs/Mn)j)- 0 i1 is the unit vector from
the point Csj,1 to the point Ps;j1 and can be expressed as follows:

6xsij+1 = Sin<0sij+1>
5ysi.j+1 = _COS(Hsij+l) (24)
zsij+1 — 0

The vector P’ jPg; .1 in the facet Fs;j must satisfy the following
condition:

P'5ijPsiji1 - Nsij = (P’si.jcsjﬂ +Csj+1psij+1> * Niij
— — — (25)
= | PsijCois1 +Tsiji1 0sijir )+ Noij =0

By substituting Eq. (24) into Eq. (25), 7sij+1 is expressed as
follows:

Tsij1 =
Xnsij (XC5 - X,si,j) + Ynsij (yCS - y,sij> + Zpsi j (5h] - Z,sij)

anij‘sxsij+l =+ ynsijéysi,jﬂ + Znsi.j(szsij+1

Thus the coordinates of the point Ps;j.1 is obtained:

Xsij+1 = X¢, + rsi.j+15xsi,j+1
Ysij+1 = Y, T Tsijv Oysij1 (27)
Zsiji1 = Onj + Tsijiy10zsij1

The point generation will successively proceed until the Z-
coordinate of the newly generated point is greater than zcs. Be-
sides, when the point Cs;n is beyond the ground surface, the
proposed mechanism outcrops. The intersection plane between
the ground surface and Zone Il needs to be determined. To
determine this intersection plane, all the facets Fs;j should be
tested. When both P; j and Ps;j;1 are beyond the ground surface,

Psij;1 will be deleted. When both Py; j and Psij;1 are below the
ground surface, Psij 1 will be preserved. When Pj; j

ground surface while Pgj,q1 is beyond it, the intersection point
between the line Py Psija and the ground surface will replace

Ps;j.1 using a linear interpolation.

is below the

3.3. Work equation

The computation of the proposed model includes the calcula-
tions on the rate of the energy dissipation and the total work rates
of all the external forces of the failure mechanism. To illustrate the
procedure of the computation of the proposed model, a flowchart is
provided in Fig. 20. First, the conditions of the soil property and the
tunnel size should be given. Second, based on the associated flow
rule, the failure mechanism of the tunnel face should be con-
structed to approximate the reality. Then, both the rate of the en-
ergy dissipation and the total work rates of all the external forces of
the failure mechanism need to be calculated. Subsequently, the
critical face pressure can be determined according to the limit
analysis theorem. Thereafter, the obtained face pressure and failure
pattern of the tunnel face should be verified by comparing with the
existing studies, the numerical simulation, the model test and the
field monitoring. At last, the constructed failure mechanism can be
proven to be valid and reasonable if the obtained results are close to
that of other studies.

According to Chen (1975), the following condition is required in
the limit analysis method:

Wp = Wy + Ws > Wg = Wat+Wns+W7 (28)
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Fig. 18. Spatial discretization technique for the generation of the mechanism in Zone II.
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Fig. 19. Details of the point generation in Zone II.

where Wy, represents the rate of energy dissipation; Ws and W are
the rates of energy dissipation within the soil mass and along the
failure surface, respectively; and Wg represents the total rate of
work done by external forces, which includes the face pressure o,
the surcharge o5 and the soil unit weight 7.

The rate of work is computed by the summation of the rate of
work of each elementary area or volume. The calculation method of
the elementary area and volume can be referred to Mollon et al.
(2010, 2011).

The rate of work of the face pressure g is calculated as follows:

(29)

Wo't = //S (7( . 7) dSt = Z(th]atSt] Cos 5tj>
. ¢ J

where S; is the tunnel face; Sy is the elementary area of Si; and Ry
and (; are the radius and angular parameters of the barycenter of
the elementary facet Sy, respectively.

The rate of work of the surcharge is calculated as follows:

Data input: soil
property (¢ and ¢) and
tunnel size (C and D)

Construct the failure mechanism close to the
reality based on the associated flow rule

[

Computation of the rate of the energy dissipation
and the total work rates of the external forces

Obtain the critical face pressure according to the balance of the rate
of the energy dissipation and the work rate of the external forces
(limit analysis theorem)

Are the obtained results (face pressure
and failure pattern) close to that of the
existing studies, the numerical simulation,
model tests or the field monitoring?

Obtain the reasonable

failure mechanism and
the critical face pressure

Fig. 20. Flowchart of the computation of the analytical model based on the limit
analysis theorem.

W,, = // (75 ¥)dSe =

where S, is the intersection plane between Zone II and the ground
surface, Ssyj is the elementary area of Ssy, and fy; is the angle

Z (UUjUSSsuj Ccos 0\,]) (30)

J
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between the velocity vy; of Ss,j and the negative direction of the Z-
coordinate.

The rate of work of the soil weight includes two parts: Wﬂ of
Zone I and W,y of Zone II:

Wy = ///v(7-7)dv = ;ZXWRUVU sin ﬂj)
Wy, = / / / () = ;;(vw 71Vsij €S b))

(31)

where Vand Vs are the volumes of Zones I and II, respectively; V;;and
Vsij are the corresponding elementary volumes of Zones I and II,
respectively; R;; and §; represent the polar coordinates of Vj;; vyij is
the velocity of the elementary block Vs;j; and 6y;j is the angle between
the velocity vy;j and the negative direction of the Z-coordinate.

where S and S; are the failure surfaces in Zones I and II, respectively;
Sij and S;; are the corresponding elementary surfaces of S and S;,
respectively; R;; represents the radial coordinate of the elementary
surface Sjj; émax is the maximal principal strain rate; émay; is the
maximal principal strain rate of the elementary block Vs;j; and vyy;
is the relative velocity on the elementary surface Sy of the inter-
section plane Sy between Zones I and II. The formulae for the strain
rate tensor are provided in Appendix A.

By substituting Eqs. (29)-(32) into Eq. (28) and equating the total
rates of external force to the total rates of energy dissipation in Eq. (28),
the critical face pressure can be obtained after some simplifications:

ot = YDNy — cN¢ + 0sN;s (33)

where N,, Nc and N represent the dimensionless parameters of soil
unit weight v, soil cohesion ¢ and surcharge s, respectively. Ny, Nc
and N; are given as follows:

ZZ ((L)RiJViJ' sin ﬁ]) + ZZ (UUi.jVsi.j cos Hvi.j) > (vUjssuj cos ﬁvj)
Ny = L CNe=
)Y (thjStj cos ﬂtj) b (thjStj cos 5tj)
J J

] 1

Nc = {ZZ (vuij COS @S j) + ZZ [2 tan <g +%> gmaxijvsij} n Z
j i -

The rate of energy dissipation also includes three parts: the rate
of energy dissipation Wp; of Zone I, the rate of energy dissipation
Wy of Zone II, and Wy in the intersection plane between Zones [
and II. In Zone I, a rotational velocity field is considered, thus only
the soil plastic deformation Wy; along the failure surface leads to
the energy dissipation. In Zone II, the proposed velocity field is
continuous along the Y-coordinate, thus the energy dissipation
includes Wy occurring along the failure surface and Wy under-
going within the soil mass. Besides, the energy dissipation along
the velocity discontinuity plane between Zones I and II is repre-
sented by Wy The rate of energy dissipation is provided as fol-
lows:

Wp = Wy = //(Cv €os p)dS = ) " (cwRj cos ¢S;)

Wy = //S (cvcos p)dSs = > > (cvyjj cos S )
s J i

Wpp =

Wy = ///v [2c tan(ng%)émax]dVS = ZZ {26 tan(gJF%)émaxijvsij]
JJ v, T

Wpm = Way = //s (cvcos @)dSy; = > (cvpyj os pSyy)
i ]

J

> "(@R;jc0s ¢S;j) + > _ (vyj cOS 9Syy;) } / > <thjStj cos ﬁtj>
l. .

j
(34)

The critical face pressure is determined by maximizing Eq. (33)
with different coordinates (xp, yo). The constrained optimization
procedure is performed with the software MATLAB. The dis-
cretization parameters are selected as follows: n = 200, dg = 0.1°
and 0y = 0.01 m, which are the compromises between accuracy and
time-cost. The maximization formula is given as follows:

maxot
aya) > ¢ (35)
st. ¢ Ov(ya) <o
Ov(yc) > max{a(yc) — 7/2, —¢}
(32)
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Fig. 21. Comparisons of the critical face pressure versus C/D for sands and clays: (a) c = 0 kPa and ¢ = 20°, (b) c = 0 kPa and ¢ = 40°, (c) c = 7 kPa and ¢ = 17°, and (d) ¢ = 10 kPa and
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Fig. 22. Variations of the critical face pressure versus (a) internal friction angle ¢ and (b) cohesion c.

where these constrained conditions are set to ensure the normality

condition in both Zon

esland Il

4. Results and discussion

This section presents and discusses the results of the critical face
pressure and failure pattern obtained from the proposed mecha-
nism. To validate its accuracy, the proposed mechanism is
compared with the numerical simulation and other studies. All the
results are calculated based on the conditions of D = 10 m,
v = 18 kN/m> and o¢ = 0 kPa.

4.1

Comparison of the face pressure

Fig. 21a and b presents the comparisons of the critical face

pressure for sands of ¢ = 20° and 40°, respectively. It is shown that
the critical face pressure increases with C/D when C/D = 0—1 and
then remains constant when C/D > 1. This is because that the whole
failure pattern is below the ground surface when C/D > 1, and the
increase of the depth to diameter ratio will not influence the value
of critical face pressure. In terms of the upper bound solutions, the
proposed mechanism corresponds better with the numerical
simulation and obviously improves the solutions obtained from the
rotational and translational rigid block mechanisms adopting the
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Fig. 23. Variations of the dimensionless parameters (a) N,, (b) N¢, and (c) Ns.

spatial discretization technique (S.D.T.) presented by Mollon et al.
(2010, 2011). The improvements are 6.1% and 5.8% for ¢ = 20°
and 40° compared with Mollon et al. (2011), respectively.

Table 3
Dimensionless parameters N,, N and Nj.

C/D  Parameter Internal friction angle ¢ (°)

10 15 20 25 30 35

02 Ny 04495 03387 0.257 0.192 0.1449 0.1059
N 34886 29121 24557 2.0391 1.7104 1.4238
Ns 0.3924 0.2387 0.1279 0.0667 0.0217  0.0011

04 N, 0.5182 03783 0.2749 0.1997 0.1454 0.1059
N 4.0127 33003 2.705 21751 1.7403 14253
Ns 03091 0.1599 0.0553 0.0155 O 0

06 Ny 0.5769 0.4036 0.2806 0.2005 0.1454 0.1059
N 4.505 3.6044 28125 22108 1.7403 1.4253
N 0.2607 0.0946 0.0229 O 0 0

08 Ny 0.6229 04124 0.2824 0.2005 0.1454 0.1059
N 49359 37448 28775 22108 1.7403 1.4253
Ns 0.2012 0.0568 0.0003 O 0 0

1 Ny 0.6494 0.42 0.2824 0.2005 0.1454 0.1059
N 5.1722 3.8932 28799 22108 17403 1.4253
Ns 0.1631 0.0217 0 0 0 0

1.5 Ny 0.7046 04222 0.2824 0.2005 0.1454 0.1059
N 5.8452 3.979 28799 22108 1.7403 1.4253
Ns 0.064 0 0 0 0 0

2 Ny 0.7203  0.4222 0.2824 0.2005 0.1454 0.1059
N, 6.1999 3.979 28799 22108 1.7403 1.4253
N 0.0068 0 0 0 0 0

25 N, 0.7208 0.4222 0.2824 0.2005 0.1454 0.1059
N 6.2384 3.979 28799 22108 1.7403 1.4253
Ns 0 0 0 0 0 0

3 Ny 0.7208 0.4222 0.2824 0.2005 0.1454 0.1059
N 6.2384 3.979 2.8799 22108 1.7403 1.4253
Ng 0 0 0 0 0 0

Compared with Mollon et al. (2010), the improvements can reach
12.4% and 9.7% for ¢ = 20° and 40°, respectively. With respect to
other kinematic approaches of the limit analysis (Leca and
Dormieux, 1990; Subrin and Wong, 2002; Mollon et al., 2009),
over 15% of the improvements are achieved. Besides, it is shown
that the limit equilibrium methods generally provide a solution of
greater value for the critical face pressure especially for Anagnostou
and Kovari (1996) and Anagnostou (2012). Since the kinematic
approach of the limit analysis and the limit equilibrium method are
considered in two different ways, it is suggested that both methods
should be taken into account to avoid over-conservative or critical
estimate of the face stability.

Fig. 21c and d presents the comparisons of the critical face
pressure for clays of c = 7 kPa, ¢ = 17° and ¢ = 10 kPa, ¢ = 25°,
respectively. The results of the proposed mechanism are basically
the same as that of the numerical simulation. The proposed
mechanism improves the solutions obtained from Mollon et al.
(2011) by 7.4% and 5.6% for c = 7 kPa, ¢ = 17° and ¢ = 10 kPa,
@ = 25°, respectively. Compared with the results provided by
Mollon et al. (2010), the improvements can attain 18.6% and 32.5%
for c = 7 kPa, ¢ = 17° and ¢ = 10 kPa, ¢ = 25°, respectively.
Moreover, it is shown that the solutions provided by the limit
equilibrium method (Anagnostou and Kovari, 1996; Anagnostou,
2012; Zhang et al., 2015) generate larger values compared with
the limit analysis (Leca and Dormieux, 1990; Mollon et al., 2009,
2010, 2011) in the case of sands. It is implied that the influence of
cohesion is more pronounced in the kinematic approach of the
limit analysis.

Fig. 22a and b presents the variations of the critical face pressure
versus the internal friction angle ¢ and cohesion c, respectively. On
the one hand, it can be seen that a nonlinear decreasing function
between the critical face pressure g¢ and ¢ is observed. The
improvement of the proposed mechanism with respect to the other
kinematic mechanisms decreases with ¢. This is because that the
proposed mechanism improves the existing studies by providing a
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Fig. 24. Comparisons of the velocity inclination above tunnel vault in Y-Z cross-section: (a) X/D = 0, (b) X/D = 0.08, (c) X/D = 0.24, (d) X/D = 0.39, and (e) X/D = 0.55.

new velocity field above the tunnel vault. But the region of the
failure mechanism above the tunnel vault decreases with ¢, and
thus the improvement decreases accordingly. On the other hand,
the critical face pressure o¢ follows a linear function relationship of
c. But the slopes of the lines provided by the limit equilibrium
method are different from those provided by the limit analysis. It is
suggested that the cohesion ¢ has different effects on the face
pressure in different methods. Compared with the limit analysis
method, the influence of the cohesion c is reduced in the limit
equilibrium method (Anagnostou and Kovari, 1996; Anagnostou,
2012; Zhang et al., 2015).

4.2. Design chart for the critical face pressure

According to Eq. (33), the critical face pressure can be calculated
based on three dimensionless parameters Ny, Nc and Ns. These
parameters are almost independent of cohesion ¢ but dependent on
internal friction angle ¢ and relative depth ratio C/D. Fig. 23 pro-
vides the variations of Ny, Nc and Ns versus C/D with different ¢
values. It is shown that both N, and N, increase with C/D but
decrease with ¢. Ny and N; will remain constant when C/D > 1.
Moreover, Ns decreases with both C/D and ¢. The coefficient N
represents the influence of the surcharge o5 on the tunnel face, thus
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Ns certainly becomes zero when the whole failure mechanism is
below the ground surface and when C/D reaches a certain value.

Considering the use in the practical tunneling engineering, N,
N¢ and N are provided in Table 3. This table can provide a quick
calculation on the critical face pressure for different C/D and ¢
values.

4.3. Comparison of the velocity distribution

To validate the credibility of the proposed velocity field above
the tunnel vault, the comparison of the velocity inclination above
the tunnel vault in Y-Z cross-section obtained from the numerical
simulation and the proposed velocity field for c = 0 kPa and ¢ = 20°
is shown in Fig. 24. The proposed failure mechanism above the
tunnel vault extends to approximately 0.7D height above the tunnel
vault (Z-direction), 0.4D ahead of tunnel face (Y-direction) and 0.5D
in the horizontal direction (X-direction). Five vertical cross-sections
(X/D = 0—0.55) with a range of Z/D = 0—1 and Y/D = 0—0.45 are
selected to calculate the velocity inclination in the numerical
simulation. It is shown that the velocity inclination of the proposed
velocity field is basically consistent with that of the numerical
simulation. The curve of the proposed velocity field is approxi-
mately the average value of the velocity inclination of Z/D = 0—1.
The proposed velocity field can be considered as a reasonable hy-
pothetical velocity field for the region above the tunnel vault in
terms of the theoretical analysis.

Furthermore, the velocity vectors at the level of the tunnel vault
provided by the proposed velocity field, the numerical simulation,
the existing rotational and translational velocity fields are
compared in Fig. 25. It is shown that the distributions of the
existing rotational and translational velocity fields are totally
different from that of the numerical simulation, while the proposed
velocity field corresponds well to that of the numerical simulation.
But it needs to be pointed out that the proposed velocity field
provides a greater velocity magnitude on the far end at the level of
the tunnel vault compared with the numerical simulation. It is
caused by the requirement of the velocity compatibility between
Zones I and II, and the velocity is assumed to keep constant in the
vertical direction. Consequently, the proposed velocity field as-
sumes a more severe situation of soil movement above the tunnel
vault, which will provide a more conservative estimate of the face
stability.

Proposed velocity field
RRRERERN j

Numerical simulation

RN

Rotational velocity field

T

Translational velocity field

YT

Fig. 25. Comparison of the velocity vector at the tunnel vault.

Tunnel face

oy

.

4.4. Comparison of the failure mechanism

Fig. 26a and b presents the 3D failure mechanism for sands and
clays, respectively. Three perspectives are presented to show the
failure pattern. The failure mechanism in sands of ¢ = 0 kPa and
¢ = 20° extends to about 0.7D height above the tunnel vault (Z-
direction), 0.4D ahead of tunnel face (Y-direction) and approxi-
mately 0.5D in the horizontal direction (X-direction). With respect
to the failure mechanism in clays of ¢ = 10 kPa and ¢ = 25°, a
stronger soil condition leads to a smaller failure region. The failure
region is about 0.5D height above the tunnel vault, 0.4D ahead of
tunnel face and approximately 0.5D in the horizontal direction for
clays of ¢ = 10 kPa and ¢ = 25°. The proposed failure mechanism
presents a curved arch shape above the tunnel vault rather than a
cone or horn shape in the existing rotational and translational rigid
block mechanism. Besides, it is clear that the presented failure
mechanisms are similar to the 3D images of the failure zone, as
shown in Fig. 1.

Fig. 27 shows the comparisons among the proposed failure
mechanism, the displacement contours of the numerical simula-
tion and the exiting rotational and translational failure mecha-
nisms. Zhang et al. (2015) defined the failure boundary according to
the displacement contour. Based on this criterion, the proposed
failure mechanism and the existing rotational and translational
failure mechanisms all correspond well to the numerical simulation
for the region ahead of the tunnel face. However, for the region
above the tunnel vault, the shape, position and height of the soil
arching of the rotational and translational failure mechanisms are
different from the displacement contour. It is clear that the soil
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Fig. 26. Layout of the proposed failure mechanism for sands and clays: (a) ¢ = 0 kPa,
¢ = 20°; and (b) ¢ = 10 kPa, ¢ = 25°.
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arching of the proposed failure mechanism closely resembles that
of the numerical simulation.

Fig. 28 shows the comparisons between the proposed mecha-
nism and the incremental displacements obtained from the
experimental test by Kirsch (2010). The incremental displacements
can present both the moving soil body and the undisturbed soil
region. The failure pattern of the tunnel face is thus easily deter-
mined from the visualization of the incremental displacement
fields. It is well known that the failure pattern in the experimental
test is closely related to the moment when the experimenter cap-
tures the failed soils. In this study, two cases of the failure patterns
in the experimental test are compared with the proposed mecha-
nism. Fig. 28a shows the incremental displacement for the piston
simulating the tunnel face that advances from 1 mm to 1.25 mm. In
this case, the proposed mechanism fully describes the failure
pattern provided by the experimental test, which extends to only
0.3D above the tunnel vault and 0.27D ahead of the tunnel face. But
when the piston advances from 2.25 mm to 2.5 mm as shown in
Fig. 28b, the failure pattern provided by the experimental test
propagates to about 0.6D above the tunnel vault and 0.3D ahead of
the tunnel face, which is comparable to the proposed mechanism
with a range of 0.4D high and 0.3D wide. In general, the proposed

Fig. 31. Influences of the parameters of the Mohr-Coulomb yield criterion on the failure pattern of the tunnel face: (a) Influence of Cohesion, and (b) Influence of internal friction

angle.
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failure mechanism agrees well with the incremental displacement
fields.

Fig. 29a and b presents the comparisons between the proposed
mechanism and the contours of shear strain provided by the
experimental test of Idinger et al. (2011) for piston displacements of
1.5 mm and 2.5 mm, respectively. The contours of shear strain can
accurately describe the shear bands of soils. It is shown that the
proposed mechanism complies with the shear bands of the
experimental test in both cases. Both the proposed mechanism and
the experimental failure pattern are approximately 0.3D ahead of
the tunnel face and 0.4D above the tunnel vault. It is implied that
the shear strain contour obtained from the experimental test is
suitable for determining the boundary of the failed soils.

4.5. Influence of the Mohr-Coulomb parameters

Fig. 30 shows the influence of the parameters of the Mohr-
Coulomb yield criterion on the critical face pressure of the tunnel.
It is shown that the dimensionless critical face pressure decreases
linearly with the dimensionless parameter of cohesion, and the
variation gradient decreases with the internal friction angle. It is
suggested that the cohesion of the Mohr-Coulomb yield criterion
has a greater influence on the critical face pressure with a smaller
internal friction angle. Fig. 30 also implies that the critical face
pressure of the tunnel face can be easily obtained from the inter-
polation calculation according to the linear relationship between
the critical face pressure and cohesion, which provides a conve-
nient approach for the practicing engineers to estimate the stability
of the tunnel face with the given conditions.

Fig. 31 shows the influence of the parameters of the Mohr-
Coulomb yield criterion on the failure pattern of the tunnel face.
Compared with the internal friction angle, the cohesion has a subtle
influence on the failure pattern of the tunnel face as the failure zone
decreases slightly with the cohesion. But the internal friction angle
obviously affects both the range and position of the failure pattern of
the tunnel face. With the decrease of the internal friction angle, the
failure pattern of the tunnel face tends to expand in both the lon-
gitudinal and vertical directions. For the tunnel of C/D = 1 in the soils
having y = 18 kN/m? and ¢ = 0 kPa, the collapse of the tunnel face will
influence the ground surface when the internal friction angle de-
creases to 15°. Thus, it is considered that the internal friction angle of
the Mohr-Coulomb yield criterion plays a more vital role in the
performance of the proposed analytical model compared with the
cohesion. Because the internal friction angle is closely related to the
associated flow rule adopted in the limit analysis theorem, which
inherently changes the failure pattern of the tunnel face and in-
fluences the upper solution of the critical face pressure.

5. Conclusions

Both numerical simulation and theoretical analysis were carried
out to assess the face stability in frictional soils. A series of nu-
merical simulations for different C/D and soil conditions was per-
formed to investigate the velocity distribution of the tunnel face.
According to the quantitative results of the numerical simulations,
a kinematically admissible velocity field for the soil arching zone
was proposed to construct a new failure mechanism based on the
spatial discretization technique. Both the critical face pressure and
the failure pattern were compared with the results of the numerical
simulations and the existing studies to verify its accuracy. The main
conclusions are given as follows:

(1) The results of the numerical simulations showed that the
existing rotational velocity field can reasonably simulate the
soil movement at the tunnel face. But both the rotational and

translational velocity fields could not represent the velocity
distribution above the tunnel vault.

(2) The proposed mechanism obviously improved the critical
face pressure estimation of the existing analytical studies.
The critical face pressure provided by the proposed mecha-
nism corresponded well to that of the numerical simulation.

(3) The proposed mechanism presented a curved arch shape for
the soil arching zone rather than a cone or ‘horn’ shape in the
existing analytical methods. The proposed mechanism
adequately reflect the failure patterns obtained from the
numerical simulation and the experimental tests.

(4) The dimensionless parameters Ny, Nc and Ns for different ¢
and C/D values were provided to calculate the critical face
pressure. Ny, Nc and N; all decreased with ¢. C/D would only
impact Ny, Nc and Ns when the failure mechanism out-
cropped at the ground surface.
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