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The stress distribution around a circular borehole has been studied extensively. The existing analytical
poroelastic solutions, however, often neglect the complex interactions between the solid and fluid that
can significantly affect the stress solution. This is important in unconventional gas reservoirs such as
coalbeds and shale formations. In order to address this limitation, this paper presents the development of
a poroelastic solution that takes into account the effect of gas sorption-induced strain. The solution
considers drainage of the reservoir fluid through a vertical wellbore in an isotropic, homogenous,
poroelastic rock with non-hydrostatic in situ stress field. The sorption-induced shrinkage of coal is
modelled using a Langmuir-type curve which relates the volumetric change to the gas pressure. The
redistributed stress field around the wellbore after depletion is found by applying Biot’s definition of
effective stress and Airey’s stress functions, which leads to a solution of the inhomogeneous Biharmonic
equation. Two sets of boundary conditions were considered in order to simulate the unsupported cavity
(open-hole) and supported cavity (lined-hole) cases. The implementation was verified against a nu-
merical solution for both open-hole and lined-hole cases. A comparative study was then conducted to
show the significance of the sorption-induced shrinkage in the stress distribution. Finally, a parametric
study analysed the sensitivity of the solution to different poroelastic parameters. The results demonstrate
that the developed solution is a useful tool that can be employed alongside complex flowmodels in order
to conduct efficient, field-scale coupled hydro-mechanical simulations, especially when the stress-
dependent permeability of the reservoir is of concern.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The problem of stress around a circular cavity in soil and rock
has been the focus of many studies from a range of disciplines such
as geotechnical engineering and petroleum engineering. A number
of analytical solutions based on continuum mechanics have been
developed to provide the response of tunnels in poroelastic me-
dium (Sulem et al., 1987; Detournay and Cheng, 1988; Fahimifar
et al., 2010; Chen and Yu, 2015), or the deformation of wellbores
(Detournay and Cheng, 1988; Zhang et al., 2003; Abousleiman and
Nguyen, 2005). Studies have considered the poroelastic response of
rock and soil through coupling the pressure term with the
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undrained behaviour of the medium (Detournay and Cheng, 1988;
Atefi-Monfared and Rybicki, 2018). However, in some applications,
there exist some complex interactions between solid and fluid, and
overlooking them can lead to significant misinterpretation of the
stress and strain distribution. Taking into account the interactions
between the fluid and the solid is crucial formany applications such
as tunnelling in expansive soils (Bobet, 2001), geothermal reser-
voirs (Rawal and Ghassemi, 2014), and geomechanics of uncon-
ventional gas reservoirs (Cui et al., 2007; Ghassemi et al., 2009;
Masoudian et al., 2019a). Despite this, only a few studies have
considered the more complex solid-fluid interactions in their
analytical solutions and therefore, that is the main motivation of
this paper.

Unconventional gas resources (e.g. coalbed methane and shale
gas) represent approximately 40% of the planet’s remaining tech-
nically recoverable natural gas (McGlade et al., 2013), and they are
increasingly being extracted to meet burgeoning global demands
(Masoudian et al., 2019b). In addition, unconventional gas
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Geometry and boundary conditions of the problem after gas production (not to
scale). The directions of the Cartesian and polar coordinates are also depicted with
black and red arrows, respectively, in the bottom left corner. The direction of the
positive radial and tangential displacements is depicted with blue arrows. Note that
the origin is the centre of the circular hole in the middle for both systems of
coordinates.
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reservoirs are being considered as a host rock for CO2 sequestration,
which may also provide an enhanced gas recovery (EGR) technique
(White et al., 2005; Johansson et al., 2012; Masoudian, 2016). Of
these reservoirs, coalbeds are the main focus of this paper as the
geomechanical aspects of coalbed methane reservoirs are not well
understood despite nearly three decades of commercial exploita-
tion. Coal is an organic sedimentary rock that contains varying
amounts of elements (predominantly carbon), and has a system of
natural orthogonal fractures (with spacing as little as a few milli-
metres) and a wide range of pore sizes (from few nanometre to a
few millimetres) and porosity (Laubach et al., 1998; Masoudian
et al., 2013a). The majority of natural gas is stored in an adsorbed
state on the internal surface area of the micro-pores in the solid
matrix, and some free gas is stored within the fractures. The
adsorption and desorption of gas are associated with a volume
change in the matrix of coal (e.g. Day et al., 2008), i.e. swelling or
shrinkage, respectively. Such sorption-induced volume change can
have significant implications for the mechanical behaviour of
coalbeds during gas production or injection (Liu et al., 2011;
Masoudian et al., 2016). On the other hand, due to thewide range of
pore sizes existing in coal, a range of complex mechanisms simul-
taneously governs the flowof gas within coalbeds (e.g. viscous flow,
continuum diffusion, Knudsen diffusion). Other chemo-mechanical
interactions have also been reported in the literature such as
adsorption-induced softening (Masoudian et al., 2013b, 2014).
While numerous numerical models have been used to consider
these complex coal-gas interactions, their use is very limited when
simulating at the field-scale and coupled with advanced numerical
flow models. This is mainly because conducting field-scale, fully-
coupled hydro-mechanical simulations can be computationally
expensive in unconventional gas reservoirs unless only simplified
mechanical (e.g. uniaxial displacement) models are used (e.g.
Connell and Detournay, 2009; Liu et al., 2010; Zhang et al., 2015).
Therefore, revisiting the existing poroelastic models and devel-
oping new analytical solutions are desirable to enable more effi-
cient and more accurate simulations of wellbore behaviour.

There exists a class of equations with fully-coupled approach
where the pressure and stress equations are solved simultaneously
(Detournay and Cheng, 1988; Wong et al., 2008). However, when
dealing with swelling media (e.g. coalbeds), the use of such fully-
coupled poroelastic solutions, where the flow equation is solved
with constant permeability, is not justified because of the spatial
and temporal changes of permeability. Therefore, a partially-
coupled approach needs to be considered. Thus, the mechanical
model can be coupled semi-analytically to a numerical flow model
where the complex flow characteristics of the reservoirs and
therefore their time-dependent analyses are considered. Subse-
quently, the coupling terms can be passed between the flow and
the mechanical models in every time-step of the analysis, which
increases the accuracy of the model. In this case, the ‘quasi-static’
mechanical model developed for a stationary pressure distribution
is appropriate in each time-step. Developing such a mechanical
solution is the objective of this paper, which will result in a less
expensive computation of field-scale models as well as providing
tools for verification of high-fidelity numerical simulations. In
addition, the solution can be further used to develop analytical
stress-dependent permeability models (Shi and Durucan, 2004;
Pan and Connell, 2012; Sedaghat et al., 2017; Agheshlui et al., 2018),
which is of significant importance in unconventional gas reservoirs.

Cui et al. (2007) considered the sorption-induced swelling un-
der an axisymmetric plane-strain conditionwith hydrostatic in situ
stress for elastic solution of stress and displacement in coalbeds.
Masoudian et al. (2016) extended this model by considering the gas
adsorption-induced softening effect under the same field condi-
tions. Elastoplastic solutions have also been developed for swelling
gas reservoirs (Masoudian and Hashemi, 2016; Masoudian et al.,
2018) and tunnels in swelling rocks (Zareifard and Fahimifar,
2015). These poroelastic solutions for swelling rocks are limited
to isotropic stress field conditions, and the poroelastic solutions
developed for non-hydrostatic stress conditions have not consid-
ered the fluid sorption-induced swelling or shrinkage. More
recently, Zare Reisabadi et al. (2020) modified a set of equations for
the stress around a borehole to include the Shi and Durucan (2004)
formulation of net effective stress change in coalbeds. This paper
adds to this body of work and fills a gap by extending the existing
poroelastic solutions, in this instance that by Cui et al. (2007), to
non-hydrostatic in situ stress conditions. While this paper pri-
marily focuses on the application of this model to wellbores in
coalbeds, the developed analytical solutions can be applied for
wellbores in other swelling reservoirs (e.g. gas shales) and tunnels
in expansive soils and rocks. An important aspect of the novel
model developed in this paper is that unlike most other poroelastic
solutions (e.g. Detournay and Cheng, 1988; Wong et al., 2008; Bai
and Li, 2009), Laplace transform is not employed and thus no nu-
merical Laplace transform inversion is required. Instead, this study
employs the Airey’s stress function and gives a solution to the
Biharmonic equation, a fourth order partial differential equation,
which leads to a relatively simplified final solution.
2. Problem definition and governing equations

Consider a two-dimensional plane-strain problem for a ho-
mogenous, isotropic, elastic continuumwhich occupies the space of
�R0 � x � R0 and � R0 � y � R0, and contains a circular hole of
radius Rw at the centre, as depicted in Fig. 1. Prior to drilling the
wellbore and gas production, the reservoir is under in situ stress
condition of s0xx and s0yy, in x and y directions, respectively, and the
initial in situ pore pressure is P0. The different x and y components
of stress indicate the non-hydrostatic in situ stress condition. After
gas production, the initial stresses and pore pressure are conserved
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on the outer boundaries of the model, while the pore pressure on
the wellbore wall is Pw. The latter means that the effective stress on
the wellbore wall is zero (the total stress is equal to Pw). In order to
develop the analytical solution, the following basic assumptions are
made in this study:

(1) Reservoir is an isotropic, homogeneous, elastic medium;
(2) Reservoir is saturated by methane;
(3) After gas production, pore pressure distribution reaches a

steady state condition;
(4) Matrix swelling can be described by Langmuir-type function;
(5) Swelling/shrinkage is isotropic and occurs instantaneously

after pressure increase/decrease in the fractures;
(6) Direction of x and y axes are taken to be the same as the

minor and major principal in situ stresses, respectively.

Due to the circular geometry of the hole, it is more convenient to
develop the solution in polar coordinates with the origin at the
centre of the hole, where compressive stresses are positive, radial
displacement towards the wellbore is positive, counter-clockwise
tangential displacement is positive, and the sorption-induced
swelling is positive (shrinkage is negative), herein. The sorption-
induced volumetric change in coal is usually explained with a
Langmuir type relationship that relates the swelling strain to pore
pressure. Similar to thermal strain where a reference temperature
is considered, the swelling strain (εsv) is defined by Langmuir’s
equation for pore pressure with reference to that under in situ
conditions:

ε
s
v ¼ ε

s
LbLP

1þ bLP
� ε

s
LbLP0

1þ bLP0
(1)

where εsL is themaximum swelling coefficient, bL is the reciprocal of
Langmuir pressure, and P is the pore pressure.

The fundamental equations required here are the elastic
constitutive equation, the strain compatibility equation, and the
equilibrium equation. Considering the plane-strain condition, the
Biot definition of effective stress (s0 ¼ s� aP), and assuming the
similarity of swelling strain to thermal strain, the strain-stress
equations can be presented as below (Connell, 2009):

εrr ¼ 1
E
½srr � nðsqq þszzÞ� ð1�2nÞaP� � ε

s
v
3

(2a)

εqq ¼ 1
E
½sqq � nðszz þ srrÞ� ð1�2nÞaP� � ε

s
v
3

(2b)

εzz ¼ 1
E
½szz � nðsrr þ sqqÞ� ð1� 2nÞaP� � ε

s
v
3

¼ 0 (2c)

εrq ¼ srq
2G

(2d)

where ε represents the strain; s represents the normal stress; s
represents the shear stress; the subscripts r, q and z indicate the
radial, tangential and in-plane directions, respectively; a is the Biot
coefficient; E is the elastic modulus; n is the Poisson’s ratio; and G is
the shear modulus defined as

G ¼ E
2ð1þ nÞ (3)

Solving Eq. (2c) for szz and substituting it into Eqs. (2a) and (2b),
the stress-strain equations can be written as
εrr ¼ 1
E
½srr � nsqq �ð1� nÞaP� � ε

s
v
3

(4a)

εqq ¼ 1
E
½sqq � nsrr �ð1� nÞaP� � ε

s
v
3

(4b)

εrq ¼ srq
2G

(4c)

where E and n are the plane-strain elastic modulus and Poisson’s
ratio, respectively, which can be defined as

E ¼ E
1� n2

(5a)

n ¼ n

1� n
(5b)

The strain-displacement relationships are (Timoshenko and
Goodier, 1951):

εrr ¼ vur
vr

(6a)

εqq ¼ 1
r
vuq
vq

þ ur
r

(6b)

εrq ¼ 1
2

�
1
r
vur
vq

þ vuq
vr

�uq
r

�
(6c)

The strain compatibility equation can be written as

1
r2

v2εrr

vq2
þ v2εqq

vr2
� 2

v2εrq
vrvq

� 1
r
vεrr
vr

þ 2
r
vεqq
vr

� 2
r
vεrq
vq

¼ 0 (7)

The equilibrium equation can be presented as

vsrr
vr

þsrr � sqq
r

þ 1
r
vsrq
vr

¼ 0 (8a)

vsrq
vr

þ 2srq
r

þ 1
r
vsqq
vq

¼ 0 (8b)

The constitutive equation and compatibility equations can be
combined to give the new compatibility equation. Substituting the
stress-strain relationships into the strain compatibility equation
gives the new compatibility equation as

1
r2

 
v2srr

vq2
� n

v2sqq

vq2

!
þ v2sqq

vr2
� n

v2srr
vr2

�1
r

�
vsrr
vr

� n
vsqq
vr

�

þ2
r

�
vsqq
vr

� nvsrr
vr

�
�2ð1þ nÞ

 
1
r2

vsrq
vq

þ1
r
v2srq
vrvq

!

¼ ð1� nÞa
 
v2P
vr2

þ1
r
vP
vr

!
þ E
3

0
@v2εsv

vr2
þ1

r
vεsv
vr

1
A (9)

An effective way of dealing with mechanical problems is the use
of Airey’s stress function, which significantly simplifies the solution
procedure compared to working with Navier’s equation. The
stresses can be defined in terms of Airey’s stress function (F) as

srr ¼ 1
r
vF

vr
þ 1
r2

v2F

vq2
(10a)
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sqq ¼ v2F

vr2
(10b)

srq ¼ � v

vr

�
1
r
vF

vq

�
(10c)

Note that this equation automatically satisfies the equilibrium
equation (Eqs. (8a) and (8b)). Substituting these into the new
compatibility equation (Eq. (9)) and using the polar definition of the
Laplacian operator (V2) gives

V4F ¼ V2V2F ¼ ð1� nÞaV2P þ E
3
V2
�
ε
s
v

�
(11)

This is the Biharmonic equation which is a fundamental equa-
tion in the theory of elasticity. Note that this equation remains valid
for plane-stress but the E and n are replaced with E and n, respec-
tively. The Laplacian and Biharmonic operators are defined as

V2V2F¼V4F¼
 
v2

vr2
þ1
r
v

vr
þ 1
r2

v2

vq2

! 
v2

vr2
þ1
r
v

vr
þ 1
r2

v2

vq2

!
F

(12a)

V2P ¼
 
v2P
vr2

þ1
r
vP
vr

þ 1
r2

v2P

vq2

!
¼ v2P

vr2
þ1
r
vP
vr

¼ 1
r
v

vr

�
r
vP
vr

�
(12b)

V2
ε
s
v¼
 
v2εsv
vr2

þ1
r
vεsv
vr

þ 1
r2

v2εsv

vq2

!
¼v2εsv

vr2
þ1
r
vεsv
vr

¼1
r
v

vr

 
r
vεsv
vr

!
(12c)

Note that pore pressure and swelling strain are taken as radial
functions, which means that their values are independent of the
tangential direction (q), hence the derivatives with respect to q in
the Laplacian operator vanish.
3. Solution of stress and displacement

If Eq. (11) is solved for F, the stress solution can be found using
Eqs. (10a)e(10c). While direct solution of this non-homogeneous
Biharmonic equation is complicated, a simplified assumption can
assist the process. The assumption is that the stress function after
drilling the wellbore and production has the same form as the
initial stresses, as suggested by Jussila (1997). Since the x and y
directions are chosen the same as the directions of the principal
stresses, the initial in situ stresses can be written in polar co-
ordinates as below (Jussila, 1997):

s0rr ¼
1
2

�
s00xx þ s00yy

�
þ 1
2

�
s00xx � s00yy

�
cosð2qÞ þ aP0 (13a)

s0qq ¼ 1
2

�
s00xx þ s00yy

�
�1
2

�
s00xx � s00yy

�
cosð2qÞ þ aP0 (13b)

s0rq ¼ � 1
2

�
s00xx � s00yy

�
sinð2qÞ (13c)

Note that in Eqs. (13a)e(13c), the in situ stresses have been
decomposed into its effective stress and pressure components ac-
cording to the Biot’s definition. Assuming that the stress function
after drilling the wellbore and production has the same form as the
initial stresses, the stress function can then be chosen as
F ¼ f1ðrÞþ f2ðrÞ cosð2qÞþ ð1� nÞa fp½PðrÞ� þ E
3
fs
h
ε
s
vðrÞ

i
(14)

where f1, f2, fp and fs are some unknown functions describing the
effects of the first stress invariant (hydrostatic), the second stress
invariant (deviatoric), pore pressure, and sorption-induced
swelling, respectively. Hereon, the problem is reduced to finding
each of these four unknown functions. Substituting the stress
function of Eq. (14) into Eq. (11) gives four fourth order differential
equations as below (see Appendix A for derivation):

v4f1ðrÞ
vr4

þ2
r
v3f1ðrÞ
vr3

� 1
r2

v2f1ðrÞ
vr2

þ 1
r3

vf1ðrÞ
vr

¼ 0 (15a)

v4f2ðrÞ
vr4

þ2
r
v3f2ðrÞ
vr3

� 9
r2

v2f2ðrÞ
vr2

þ 9
r3

vf2ðrÞ
vr

¼ 0 (15b)

v4fpðrÞ
vr4

þ2
r
v3fpðrÞ
vr3

� 1
r2

v2fpðrÞ
vr2

þ 1
r3

vfpðrÞ
vr

¼ v2P
vr2

þ 1
r
vP
vr

(15c)

v4fsðrÞ
vr4

þ2
r
v3fsðrÞ
vr3

� 1
r2

v2fsðrÞ
vr2

þ 1
r3

vfsðrÞ
vr

¼ v2εsv
vr2

þ1
r
vεsv
vr

(15d)
The general solution of the first two expressions can be found by
expansion of the Laplace operator and integration:

f1ðrÞ ¼ A1 ln r þ B1r
2 ln r þ C1r

2 þ D1 (16a)

f2ðrÞ ¼ A2r
2 þ B2 þ

C2
r2

(16b)

where A1, A2, B1, B2, C1, C2 and D1 are the integration constants.
These two are in fact special cases of the general solution of the
Biharmonic equation by Malvern (1969).

For fpðrÞ and fsðrÞ, the problem reduces to solving the following
equations, noting the substitution of the Laplace operator
definition:

V4fpðrÞ ¼ 1
r

v

vr

�
r
v

vr

h
V2fpðrÞ

i�
¼ 1

r
v

vr

�
r
vP
vr

�
(17a)

V4fsðrÞ ¼ 1
r

v

vr

�
r
v

vr

h
V2fsðrÞ

i�
¼ 1

r
v

vr

 
r
vεsv
vr

!
(17b)

The general solution for these two equations can be found by
successive integration of both sides (see Appendix B for details):

fpðrÞ ¼
Z

1
r
FpðrÞdrþAp

r2

4
ðln r�1ÞþBp

r2

4
þCp ln r þ Dp

(18a)

fsðrÞ ¼
Z

1
r
FεðrÞdrþAs

r2

4
ðln r�1ÞþBs

r2

4
þCs ln r þ Ds

(18b)

where

FpðrÞ ¼
Zr
Rw

Prdr (19a)
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FεðrÞ ¼
Zr
Rw

ε
s
vrdr (19b)

where Ap, As, Bp, Bs, Cp, Cs, Dp and Ds are the integration con-
stants, with subscripts p and s representing the relevance to pore
pressure and swelling terms, respectively. Substituting these four
solutions (Eqs. (16a), (16b), (18a) and (18b)) into Airey’s represen-
tation of stresses (Eqs. (10a)e(10c)) gives (see Appendix C for
details):

srr¼A1

r2
þB1ð1þ2lnrÞþ2C1�

�
2A2þ

4B2
r2

þ6C2
r4

�
cosð2qÞ

þð1�nÞa
r

vfpðrÞ
vr

þ E
3r

vfsðrÞ
vr

(20a)

sqq ¼ �A1

r2
þB1ð3þ2 ln rÞþ2C1þ

�
2A2þ

6C2
r4

�
cosð2qÞ

þð1�nÞav
2fpðrÞ
vr2

þE
3
v2fsðrÞ
vr2

(20b)

srq ¼
�
2A2 �

2B2
r2

�6C2
r4

�
sinð2qÞ (20c)

It can be further shown that

srr¼A1

r2
þB1ð1þ2lnrÞþ2C1�

�
2A2þ

4B2
r2

þ6C2
r4

�
cosð2qÞ

þð1�nÞa
r2

�
FpðrÞþAp

r2

4
ð2lnr�1ÞþBp

r2

2
þCp

	

þ E
3r2

�
FεðrÞþAs

r2

4
ð2lnr�1ÞþBs

r2

2
þCs

	
(21a)

sqq ¼ �A1

r2
þB1ð3þ2 ln rÞþ2C1þ

�
2A2þ

6C2
r4

�
cosð2qÞ

þð1� nÞa
r2

�
r2P�FpðrÞþAp

r2

4
ð2 ln rþ1ÞþBp

r2

2
�Cp

	

þ E
3r2

�
r2εsv�FεðrÞþAs

r2

4
ð2 ln rþ1ÞþBs

r2

2
�Cs

	
(21b)

srq ¼
�
2A2 �

2B2
r2

�6C2
r4

�
sinð2qÞ (21c)

Since the stresses should be finite at r >> Rw (i.e. r ¼ R0), all
the coefficients of the logarithmic terms should be zero, i.e. B1 ¼
Ap ¼ As ¼ 0. Knowing that the in situ stress state is conserved at
the far field, r ¼ R0, the expression for srr from Eqs. (21a) and (13a)
can be equated term by term to give the following (the swelling
term is equated to zero to account for the constant pore pressure
condition on the outer boundary):

C1 ¼ 1
4

�
s00xx þ s00yy

�
(22a)

A2 ¼ � 1
4

�
s00xx �s00yy

�
(22b)

Furthermore, a number of parameters can be defined to simplify
the presentation of equations:
A ¼ 2A1

s00xx þ s00yy
(23a)

B ¼ 2B2
s00xx � s00yy

(23b)

C ¼ 2C2
s00xx � s00yy

(23c)

S1 ¼ 1
2

�
s00xx þ s00yy

�
(23d)

S2 ¼ 1
2

�
s00xx � s00yy

�
(23e)

Substituting Eqs. (23a)e(23e) into Eqs. (21a)e(21c), the final
form of the stress solution can be written as below:

srr¼S1

�
1þ A

r2

�
þS2

�
1�4B

r2
�6C
r4

�
cosð2qÞ

þð1�nÞa
r2

�
FpðrÞþBp

r2

2
þCp

	
þ E
3r2

�
FεðrÞþBs

r2

2
þCs

	
(24a)

sqq ¼ S1

�
1� A

r2

�
� S2

�
1�6C

r4

�
cosð2qÞ

þ ð1� nÞa
r2

�
r2P� FpðrÞþBp

r2

2
�Cp

	

þ E
3r2

�
r2εsv � FεðrÞþBs

r2

2
�Cs

	
(24b)

srq ¼ � S2

�
1þ2B

r2
þ6C

r4

�
sinð2qÞ (24c)

Combining Eqs. (4a)e(4c) and (6a)e(6c) and using the final
solution of stress as above (Eqs. (24a)e(24c)), the displacement
solution can be found as

ur¼r

E

(
S1

�
ð1�nÞ�ð1þnÞA

r2

	
þS2

�
ð1þnÞ

�
1þ2C

r4

�
þ4B
r2

	

$cosð2qÞþð1�nÞa
r2

�
�ð1þnÞFpðrÞþð1�nÞBpr

2

2
þð1þnÞCp

	

þ E
3r2

�
�ð1þnÞFεðrÞþð1�nÞBsr

2

2
þð1þnÞCs

	)

(25a)

uq ¼ rS2
E

�
ð1þ nÞ

�
1�2C

r4

�
�ð1� nÞ2B

r2

	
sinð2qÞ (25b)

Eqs. (24a)e(24c), (25a) and (25b) are the final form of the
general solution to the stress and displacement around a circular
hole. Evaluation of the integration constants is dependent on the
chosen boundary conditions. One boundary condition here pre-
scribes that the original in situ stress state is conserved at the far
field (r ¼ R0). For the boundary condition on the wall of the
wellbore (r ¼ Rw), the radial stress at the wellbore wall is equal to
the wellbore pressure, i.e. zero effective stress (for open-hole case)
and the shear stress is assumed to vanish at the wellbore wall, i.e.
srqjr¼Rw

¼ 0 (for both cases). These boundary conditions can be
written as



Table 1
Input parameters for the illustrative example.

Parameter Symbol Value Unit

Young’s modulus E 3 GPa
Poisson’s ratio n 0.3
Biot’s coefficient a 1
Wellbore radius Rw 0.1 m
Outer radius R0 10 m
Langmuir’s isotherm constant bL 0.33 MPa-1

Maximum sorption-induced swelling ε
s
L 1 %

In situ stress in x direction s0x 25 MPa
In situ stress in y direction s0y 20 MPa
Initial reservoir pressure P0 10 MPa
Wellbore pressure Pw 0.1 MPa

Note: Parameters are chosen within the range of those in Masoudian and Hashemi
(2016). Wellbore pressure is 6 MPa in verification stage to assist the convergence of
the numerical model.
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srrjr¼R0
¼ s0rr (26a)

sqqjr¼R0
¼ s0qq (26b)

srqjr¼R0
¼ s0rq (26c)

srqjr¼Rw
¼ 0 (26d)

srrjr¼Rw
¼ Pw



open-hole

�
(26e)

urjr¼Rw
¼ 0



lined-hole

�
(26f)

When solving these equations for the integration constants, it
should be noted that the pore pressure and swelling terms in the
radial stress expression need to be equated to the value of pore
pressure at the boundaries and zero, respectively. This means that
the integration constants within the pore pressure term (Bp and Cp)
and the swelling term (Bs and Cs) remain the same for both open-
hole and lined-hole cases, while the integration constants within
the effective stress term (A, B and C) are different. Solving these
equations leads to the following expressions for the integration
constants for pressure and swelling terms:

Bp ¼ 2
R20

"
R20P0
1� n

� FpðR0Þ�Cp

#
(27a)

Cp ¼ R20R
2
w

R20 � R2w

"
� P0 � Pw

1� n
þ FpðR0Þ

R20
� FpðRwÞ

R2w

#
(27b)

Bs ¼ 2
R20

�� FpðR0Þ� Cs



(27c)

Cs ¼
R20R

2
w

R20 � R2w

"
FpðR0Þ
R20

� FpðRwÞ
R2w

#
(27d)

The remaining integration constants for the open-hole case are

A ¼ � R2w (28a)

B ¼ R2w (28b)

C ¼ � R4w
6

 
1þ 2B

R2w

!
(28c)
4. Results and discussion

In order to quantitatively analyse the developed solution, values
given in Table 1 were assigned to model parameters. These values
are predominantly typical of Australian black coal (bituminous or
sub-bituminous). These values are first used for verification of the
analytical solution by comparing its results with the results of a
numerical model. Then, the results of an illustrative example are
presented followed by a parametric study which is conducted by
independently changing the values to better understand their
contribution to the analytical solution of stress distribution around
the circular hole. Note that the wellbore pressure is selected to be
6 MPa in the verification phase to ease the convergence of the
numerical model, while for the illustrative example, the wellbore
pressure is 0.1 MPa. Choosing a low wellbore pressure in the nu-
merical model will require a much finer mesh around the wellbore
which requires a large memory and applying larger mesh nega-
tively affects the accuracy and convergence of the mechanical
analysis scheme in COMSOL. It should be noted that the main
objective of this paper is to present the development of the
poroelastic solution, for which a simplified steady-state radial pore
pressure solution is used with constant pressures at the wellbore
and the outer boundary (Pw and P0, respectively). The pressure
profile takes a logarithmic form as (Cui et al., 2007):

P ¼ P0 þ
P0 � Pw

lnðR0=RwÞ
ln
�

r
R0

�
(29)

4.1. Verification of the analytical solution

The developed analytical solution can be verified against the re-
sults of a numerical model. The numerical model was built with
COMSOL Multiphysics (a finite element analysis code) using the
values presented in Table 1. Two cases of open-hole and lined-hole
were constructed to enable the cross-comparison of the results
with the analytical solution and the two sets of boundary conditions.
The model was constructed as a two-dimensional problem with a
square domain representing the reservoir with a circle in the middle
representing the wellbore. The length of the rock domain was
selected to be 100 times larger than the wellbore diameter. The solid
mechanics and Darcy’s law physics modules were selected for the
model. For the Darcy’s law module, a steady-state solution with
incompressible fluid was selected, and hence the flow properties
(e.g. permeability, porosity, and fluid compressibility) do not affect
the pressure solution (though some typical values for flow properties
were selected) but the boundary conditions were selected as con-
stant pressure at the wellbore wall and the outer boundary as
depicted in Fig. 1. For the solid mechanics module, a linear elastic
material was selected with pore pressure as the body load (the
gradient of pore pressure calculated from Darcy’s law is used as the
force per unit volume). The boundary conditions were specified as
constant boundary load equivalent to the effective stress (i.e. the
solid mechanics module would solve for effective stress); that is
boundary load of s00xx on the side boundaries and s00yy on the top and
the bottom of the model. For open-hole model, zero effective stress
onwellborewall (since srrjr¼Rw

¼ Pw) is applied as a boundary load,
while fixed boundary condition is applied on the wellbore wall
(urjr¼Rw

¼ 0). To simulate the effect of swelling strain, a thermal
expansion domain is introduced in the solid mechanics module,
where the reference temperature is defined as ε

s
LbLP0=ð1 þ bLP0Þ,

representing the in situ conditions, and the temperature function
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defined as ε
s
LbLP=ð1 þ bLPÞ, representing the depleted reservoir

conditions, with a coefficient of thermal expansion; that is εsv= 3 as
the thermal strain. With these conditions, we can replicate the exact
same constraints as in the analytical solution. The model was dis-
cretised by the second order free triangular mesh. The model is a
variation of the model used by Masoudian and Hashemi (2016) and
Masoudian et al. (2018) (without the plasticity component).

Figs. 2 and 3 illustrate the cross-comparison of stress and
displacement from the numerical and analytical solutions for the
open-hole case, respectively. The radial profiles of stress and
displacement were extracted at four different tangential
Fig. 2. Verification of the stress solutions for the open-hole case.

Fig. 3. Verification of the displacement solutions for the open-hole case.
coordinates (q ¼ 0�, 30�, 45� and 90�, measured counter-clockwise
from the positive x direction), all of which exhibit a good match.
The same comparison is conducted for the lined-hole case as shown
in Figs. 4 and 5, where a good match is also evident.
4.2. Results of the analysis for the illustrative example

Using the values in Table 1, the contours of stress and
displacement were generated for a case where the reservoir fluid is
Fig. 4. Verification of the stress solutions for the lined-hole case.

Fig. 5. Verification of the displacement solutions for the lined-hole case.
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withdrawn from a reservoir through a wellbore. Figs. 6 and 7 plot
the stress and displacement distributions for the open-hole case,
respectively. As can be seen in Fig. 6, the radial stress is the mini-
mum around the wellbore while the tangential stress is the
maximum around the wellbore. On the wellbore wall, the
maximum radial stress is found on the crown (q ¼ 90�) and invert
(q ¼ 270�) of thewellbore, while themaximum tangential stress is
found on the sides of the wellbore (q ¼ 0� and 180�). Note that the
maximum and minimum tangential stresses have the same
magnitude but opposite signs, with the maximum occurring at q ¼
45� and 225�, and the minimum occurring at q ¼ 135� and 315�.
The shear stress is zero at 90� intervals (i.e. at q ¼ 0�; 90�; 180�;
270�) where the transition between the positive and negative
shear stress occurs. It can also be seen that both radial and
tangential stress contours have both horizontal symmetry (y-axis is
the line of symmetry) and vertical symmetry (x-axis is the line of
symmetry), and the shear stress contours have two lines of sym-
metry at q ¼ 45� and 135�. As evident from Fig. 7a and b, the
tangential displacement is almost an order of magnitude smaller
Fig. 6. Contours of stress in the open-hole case: (a) Radial stress, (b) Tangential stress,
and (c) Shear stress.

Fig. 7. Contours of displacement in the open-hole case: (a) Radial displacement, (b)
Tangential displacement, (c) Magnitude of displacement vector field, and (d) Direction
of the displacement vector field.
than its radial counterpart. It can also be seen that the displacement
is larger in the y direction (Fig. 7c) corresponding to the larger in
situ stress in the y direction, resulting in the convergence of the
wellbore (Fig. 7d) into an elliptical shape.

The contours of stress and displacement for the lined-hole case
are presented in Figs. 8 and 9, respectively. These figures are similar
to those of the open-hole case with some general trends being
identical (e.g. lines of symmetry), while there are some obvious
differences discussed as follows. Similar to the open-hole case, the
radial stress is the maximum at the crown and the invert, while the
tangential stress is the maximum on the sides of the wellbore, but
the magnitudes of stress are very different between the two cases.
It should be noted, however, that in the lined-hole case, the major
principal stress is the radial stress, while it is the tangential stress in
open-hole case. The tangential stress distribution in lined-case hole
is also very similar to that in open-hole case, but the magnitude of
shear stress is slightly larger in the open-hole case. Fig. 9 also shows
that, as imposed by the boundary condition, the wellbore wall
shows no radial displacement, but the general displacement of the
Fig. 8. Contours of stress in the lined-hole case: (a) Radial stress, (b) Tangential stress,
and (c) Shear stress.

Fig. 9. Contours of displacement in the lined-hole case: (a) Radial displacement, (b)
Tangential displacement, (c) Magnitude of displacement vector field, and (d) Direction
of the displacement vector field.
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rock is towards the wellbore, which is the result of smaller pore
pressure (greater effective stress) near the wellbore.

The results presented in Figs. 6e9 are caused by the interaction
of three different mechanisms, i.e. the effects of wellbore, fluid
drainage, and desorption-induced shrinkage. Excavating or drilling
a wellbore removes the support of effective in situ stress that
formerly existed and tends to cause a displacement towards the
centre of the wellbore. This also leads to changes in the stress
concentration around the wellbore. This effect corresponds to
Kirsch’s problem of a hole in an infinite plate. Then, if the fluid is
withdrawn through the wellbore, the non-uniform (radial)
decrease of pore pressure causes an increase in the level of effective
stress within the rock. If the pore pressure reduction is associated
with swelling/shrinkage (sorption-induced in this study), the
effective stress distribution can further change. In order to better
understand these mechanisms and the role they play in the stress
distribution around the wellbore, the example (both open-hole and
lined-hole cases) was further investigated. First, the wellbore
pressure was taken equal to the initial pore pressure (Pw ¼ P0)
and the swelling factor was taken as zero (εsL ¼ 0), so that the
illustrative example only represents the effect of wellbore. Then, by
changing the value of Pw to that given in Table 1 and keeping ε

s
L ¼

0, the results include the effect of non-uniform pore pressure dis-
tribution. The original results, with the values of Pw and ε

s
L equal to

those given in Table 1, represent the original example that includes
all three effects. Using this approach, the role of these three effects
in the distribution of stress concentration is analysed as illustrated
in Fig. 10 for the open-hole case and in Fig. 11 for the lined-hole
Fig. 10. The role of three different effects in stress concentration in the open-hole case:
(a) Mean effective stress with wellbore effect only, (b) Deviatoric stress with wellbore
effect only, (c) Mean effective stress with the drainage effect, (d) Deviatoric stress with
drainage effect, (e) Mean effective stress with shrinkage effect, and (f) Deviatoric stress
with shrinkage effect.

Fig. 11. The role of three different effects in stress concentration in the lined-hole case:
(a) Mean effective stress with wellbore effect only, (b) Deviatoric stress with wellbore
effect only, (c) Mean effective stress with drainage effect, (d) Deviatoric stress with
drainage effect, (e) Mean effective stress with shrinkage effect, and (f) Deviatoric stress
with shrinkage effect.
case. To simplify the comparison process, dimensionless isotropic
(mean) effective and deviatoric stress components ( ~p0 and ~q,
respectively) are defined as

~p0 ¼ s01 þ s02
s001 þ s002

¼ s0xx þ s0yy
s00xx þ s00yy

(30a)

~q ¼ s01 � s02
s001 � s002

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0xx � s0yy

�2.4þ s2xy

r
�
s00xx � s00yy

�.
2

(30b)

Note that the stress tensor conversion from polar coordinates to
Cartesian coordinates, and vice versa, is given as (Bower, 2009):

�
sxx sxy
sxy syy

	
¼
�
cos q �sin q
sin q cos q

	
�
�
srr srq
srq sqq

	

�
�
cos q sin q
�sin q cos q

	
(31a)

�
srr srq
srq sqq

	
¼
�
cos q sin q
�sin q cos q

	
�
�
sxx sxy
sxy syy

	

�
�
cos q �sin q
sin q cos q

	
(31b)

For the open-hole case, Fig. 10a and b shows that, compared to
the in situ stress state, the mean effective stress around the



Fig. 13. Sensitivity of the open-hole solution to swelling coefficient at q ¼ 45�: (a)
Mean effective stress, (b) Deviatoric stress, (c) Radial displacement, and (d) Tangential
displacement.

Fig. 12. Sensitivity of the open-hole solution to elastic modulus at q ¼ 45�: (a) Mean
effective stress, (b) Deviatoric stress, (c) Radial displacement, and (d) Tangential
displacement.
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wellbore increases on the sides of the wellbore ( ~p0 > 1), while it
decreases around the top and the bottom of the wellbore ( ~p0 < 1).
The deviatoric stress, however, increases significantly compared to
the in situ condition. Comparing Fig. 10c and d with Fig. 10a and b
shows an obvious increase in both mean effective stress and
deviatoric stress when the effect of fluid drainage is considered.
This is because the drainage of fluid, and consequently pore pres-
sure reduction, lead to an increase in the level of effective stress
within the continuum. Fig. 10e and f depicts the results, including
the sorption-induced swelling, which show a reduction in the level
of stresses. This is because the reduction of pore pressure leads to a
negative swelling strain (shrinkage) in accordance with Langmuir’s
curve, which results in a lower stress concentration around the
wellbore. Therefore, it is important to note that the pore pressure
and swelling/shrinkage effects are acting in opposite directions and
therefore compete with each other in the development of stress
concentration around the wellbore. It should also be noted that a
small volumetric shrinkage factor (1%) used in this example
resulted in noticeable change in stresses, which underlines the
significance of sorption-induced swelling/shrinkage in the me-
chanical response of the rock. Analysing Fig. 11 shows that the
conclusions drawn for the open-hole case are still valid for the
lined-hole case and the main difference is the relatively lower
stress levels in the lined-hole case.

4.3. Parametric study: open-hole case

In order to better understand the effect of individual parameter
on the results, a parametric study is conducted for the open-hole
case using the developed analytical solution. The elastic modulus
(E), sorption-induced swelling coefficient (εsL), wellbore pressure
(Pw), and theminor initial principal stress (s0xx) were chosen for this
parametric study, where their values were changed one at a time
and the remainder of the parameters remained constant. Fig. 12
depicts the sensitivity of the solution to the elastic modulus. It
can be seen that larger elastic modulus results in lower stress levels,
although this effect is more pronounced for the mean effective
stress. A larger elastic modulus also leads to smaller displacement
in both radial and tangential directions. This is because when
analysing the stresses, the elastic modulus only impacts the
swelling-related terms and a larger elastic modulus leads to a larger
effect of shrinkage which, as discussed earlier, reduces the stress
concentration. On the other hand, the smaller displacements with
larger elastic modulus are consistent with classical elastic theory.

Fig. 13 shows the effect of Langmuir’s swelling coefficient on the
stress levels and displacements. The role of swelling/shrinkage and
its impact on stress were discussed when describing the results in
Fig. 10 and the same effect is observed here, i.e. reducing the stress
level near the wellbore when increasing the swelling coefficient
(Fig. 13a and b). However, further from the wellbore, this effect is
somewhat diminished, and at some radial distance, this effect is
slightly reversed. In order to explain this behaviour, it should be
noted that the radial stress decreases throughout the whole
reservoir domain with increasing swelling coefficient but this
decrease becomes less noticeable at the far field. The tangential
stress decreases with larger swelling coefficient near the wellbore,
where the effects of wellbore and pore pressure change are more
pronounced, but it starts to increase at some radial distance in
response to larger radial compression of the reservoir. Thus, in the
far field, the larger swelling coefficient leads to higher level of mean
effective stress but this behaviour occurs at a much shorter distance
for the deviatoric component of stress. It can also be seen that the
radial displacement increases with larger swelling coefficient,
while the tangential displacement remains unchanged. This is
because the sorption-induced strain is considered to be isotropic,
and therefore, it affects both the radial and the tangential compo-
nents of the strain in the same way, and as such the tangential
displacement remains constant with changing swelling coefficient.

The effect of wellbore pressure on the stress and displacement
solutions is depicted in Fig. 14, and understanding its effect is
somewhat simple. Lowerwell pressure leads to larger change in the
pore pressure within the reservoir and hence higher effective stress
levels (for both mean and deviatoric components). This leads to a
slight increase of the radial displacement, but the tangential
displacement remains unchanged as the gradient of pore pressure
acts similar to a body load. Since flow is only radial, the tangential
component of this body load is zero, and hence the tangential
displacement is not affected by varying wellbore pressure.

The effect of the initial stress field on the solution is illustrated in
Fig.15.Note that inproducing thisfigure, onlys0xx was changedwhile
s0yy remained constant to study the effect of the ratio of initial
principal stresses. While it is obvious that increasing s0xx leads to



Fig. 15. Sensitivity of the open-hole solution to minor initial principal stress at q ¼
45�: (a) Mean effective stress, (b) Deviatoric stress, (c) Radial displacement, and (d)
Tangential displacement.

Fig. 14. Sensitivity of the open-hole solution to wellbore pressure at q ¼ 45�: (a)
Mean effective stress, (b) Deviatoric stress, (c) Radial displacement, and (d) Tangential
displacement.
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larger mean stress level, the ratio of newly distributed stress to the
larger initial mean stress reduces as seen in Fig. 15a. The larger s0xx
also lowers the deviatoric stress level, but this reduction is less than
the reduction in the initial deviatoric stress level, resulting in larger
deviatoric stress with larger s0xx (Fig. 15b). In other words, when the
initial stressfield ismore uniform, the deviation of the redistributed
stressfield compared to the initial stressfield is comparatively larger
(i.e. larger ratio of redistributed stress to initial stresses).
5. Conclusions

This paper presents the development of a poroelastic solution
for a circular wellbore in a swelling rock under non-hydrostatic
initial stress field. This analytical solution is relatively straightfor-
ward, compared to existing solutions in the literature, while
considering the effect of sorption-induced swelling/shrinkage in
the elastic constitutive equations. The analytical solution can be
employed in a range of engineering applications, including
unconventional gas reservoirs, which was used as an illustrative
example. The solution was verified against a numerical model and
the results were analysed for an example in which a gas producing
wellbore was considered in a coalbed methane reservoir. Different
physical phenomena contributing to redistribution of stress are
identified and their individual significance is analysed. The results
showed that a sorption-induced swelling coefficient as little as 1%
can significantly influence the distribution of stresses within the
reservoir and more importantly near the wellbore, which can have
significant implications for the wellbore stability problem. While a
steady-state solution for fluid flow has been used in this paper, the
developed solution can be used with transient flow models by
slight adjustment for incremental analysis. Poroelastoplastic for-
mulations have recently been developed (Fokker et al., 2020), and
thus this will be considered in future works along with shrinkage
and swelling processes. This recommendation is very important for
short-term analysis of wellbore where the drainage zone (R0)
changes with time or long-term analysis in infinite reservoirs. It is
also suggested that the stress field in an unconventional reservoir
can also play an important role in changing the permeability of
these reservoir and the solution can also be used for such purpose.
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List of symbols

Applied mechanics
srr ;sqq;szz; srq Stress components in cylindrical coordinates
s1;s2 Major and minor principal stresses in two dimensions
s0xx In situ stress in x direction under initial reservoir

conditions
s0yy In situ stress in y direction under initial reservoir

conditions
s0 Effective stress
εrr; εqq; εrqStrain components in polar coordinates
ε
s
v The sorption-induced volumetric strain
a Biot’s coefficient
F Airey’s stress function
n Poisson’s ratio
n Plane-strain Poisson’s ratio
E Elastic modulus
E Plane-strain elastic modulus
G Shear modulus
~p0 Normalised mean effective stress
~q Normalised deviatoric stress
ur ; uq Radial displacement in radial and tangential directions
Geometry
r; q; z Directions in cylindrical coordinates (the origin at the

centre of the hole)
R0 Half-length of the model
Rw Radius of the wellbore
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Flow and sorption parameters
P Pore pressure (fracture porosity)
P0 Uniform pore pressure in the reservoir under initial

condition
Pw Wellbore pressure (constant during gas production)
bL Reciprocal of Langmuir pressure
ε
s
L Maximum sorption-induced volumetric swelling strain

Other definitions
V2 Laplacian operator
V2V2 ¼ V4 Biharmonic operator
A;B;C;D Constant coefficients. Subscripts p and s indicate terms

related to pore pressure and swelling effects, respectively.
Subscripts 1 and 2 indicate the terms related to the first
and second invariants

S1 A constant equivalent of the in situ effective mean stress
S2 A constant equivalent to half of the in situ deviatoric

stress
f1ðrÞ; f2ðrÞ; fpðrÞ; fsðrÞ Functions describing the effect of the first

stress invariant, the second stress invariant,
pore pressure and swelling, respectively

FpðrÞ A special integral function for pore pressure
FεðrÞ A special integral function for sorption-induced strain

Appendices A, B, C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jrmge.2021.05.003.
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