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a b s t r a c t

The bearing capacity factors for a rough strip footing placed on rock media, which is subjected to pseudo-
static horizontal earthquake body forces, have been determined using the lower bound finite element
limit analysis in conjunction with the power cone programming (PCP). The rock mass is assumed to
follow the generalized Hoek-Brown (GHB) yield criterion. No assumption needs to be made to smoothen
the GHB yield criterion and the convergence is found to achieve quite rapidly while performing the
optimization with the usage of the PCP. While incorporating the variation in horizontal earthquake ac-
celeration coefficient (kh), the effect of changes in unit weight of rock mass (g), ground surcharge
pressure (q0) and the associated GHB material shear strength parameters (geological strength index
(GSI), yield parameter (mi), uniaxial compressive strength (sci)) on the bearing capacity factors has been
thoroughly assessed. Non-dimensional charts have been developed for design purpose. The accuracy of
the present analysis has been duly checked by comparing the obtained results with the different solu-
tions reported in the literature. The failure patterns have also been examined in detail.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

A number of studies have been performed in the literature to
determine the bearing capacity for different types of foundations
resting over rock media (Serrano and Olalla, 1994, 1996; Serrano
et al., 2000; Yang et al., 2003; Yang and Yin, 2005; Saada et al.,
2008, 2011; Merifield et al., 2006; Yang, 2009; Keshavarz et al.,
2016; Kumar and Mohapatra, 2017; Keshavarz and Kumar, 2021).
Using the stress characteristics method, Serrano and Olalla (1994)
computed the bearing capacity of a strip footing placed over
weightless rockmedia, with horizontal ground surface, on the basis
of the original Hoek-Brown failure criterion (Hoek and Brown,
1980). The same methodology was later employed by Serrano
and Olalla (1996) to compute the bearing capacity of a strip
footing placed over weightless rock media but with sloping ground
surface. Serrano et al. (2000) obtained the bearing capacity of a
strip footing over rock media to consider the modified version of
the Hoek-Brown failure criterion (Hoek et al., 1992). Using the
lower bound (LB) limit analysis but with an assumption of the
failure mechanism and using the modified Hoek-Brown criterion,
Yang et al. (2003) computed the bearing capacity of a strip footing
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
resting over weightless rock media. The upper bound (UB) solution
for computing the bearing capacity based on the generalized Hoek-
Brown (GHB) yield criterion (Hoek et al., 2002) was obtained by
Yang and Yin (2005), using a generalized tangential technique and
with an assumption of the multi-wedge translation failure mech-
anism. In this method, instead of using the actual GHB failure cri-
terion, a linearized Mohr-Coulomb failure criterion, which remains
always tangential to the GHB failure envelope, was used. This
procedure was, however, found to overestimate the actual ultimate
bearing capacity as demonstrated by Saada et al. (2008). Merifield
et al. (2006) employed the lower and UB finite element limit
analysis (FELA) technique and bracketed the ultimate bearing ca-
pacity of a strip footing on rock masses approximately within 2%.
The effects of the inclination of a rock slope, ranging from 0� to 30�,
and the horizontal seismic coefficient kh, ranging from 0 to 0.2, on
the bearing capacity factor of a strip footing placed on the edge of a
rock slope, have been examined by Yang (2009), using the UB
theorem of the limit analysis, based on the methodology proposed
by Yang and Yin (2005). Saada et al. (2011) implemented the ki-
nematic approach of the limit analysis to determine the reduction
in the bearing capacity of a spread footing placed on rock slopes
with an inclusion of the seismic forces. The ultimate bearing ca-
pacity of a strip footing placed on weightless rock media in the
presence of seismic forces has also been assessed by Keshavarz et al.
(2016) using the stress characteristic method and with the usage of
the earlier version of the Hoek-Brown yield criterion (Hoek and
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Brown, 1980). Keshavarz and Kumar (2021) also computed the
bearing capacity of a ring foundation using the stress characteristics
method and the obtained solution was also compared with that
computed on the basis of the FELA.

Amongst the numerous methods for solving different geo-
mechanics stability problems, the FELA (Lysmer, 1970; Sloan, 1988)
is the most rigorous one in terms of accuracy and computational
efficiency. It inherits a number of advantages over the other con-
ventional stability methods (Sloan, 2013). Unlike the limit equi-
librium method, this method does not require any kind of
assumption associated with the failure mechanism. Rather, this
method generates the actual collapsemechanism from the analysis.
Like the displacements based elasto-plastic finite element method,
it can handle irregular geometry, complicated boundary condition,
complex loading condition, material anisotropy and in-
homogeneity. In the elasto-plastic finite element method, the
definition of the complete material constitutive relationship is
necessary. On the other hand, the FELA considers the problem only
on the verge of failure/collapse. Therefore, in the FELA, it requires
only the shear strength parameters for performing the stability
analysis. Unlike the conventional elasto-plastic finite element
method, the need of any step-by-step incremental analysis is
completely avoided in the FELA which eventually results in saving
of the computational cost.

Over the years, the efficiency of this methodology has been
significantly improved especially with an introduction to the conic
programming techniques such as the second order cone program-
ming (SOCP) (Makrodimopoulos and Martin, 2006) and the semi-
definite programming (SDP) (Krabbenhoft et al., 2008). For the rock
mass obeying the Hoek-Brown yield criterion, Kumar and
Mohapatra (2017) applied the SDP technique which is computa-
tionally more efficient than the nonlinear programming (NLP), to
determine the bearing capacity factors for strip and circular footing
based on the LB FELA. The same technique was later implemented
by Ukritchon and Keawsawasvong (2018) for dealing with various
three-dimensional (3D) stability problems. The proposed SDP
formulation, however, overestimates the bearing capacity factors as
it requires a slight modification in the GHB criterion where the
value of the exponential factor needs to be kept equal to 0.5. This
limitation was later overcome by Kumar and Rahaman (2020) by
implementing the power cone programming (PCP) while employ-
ing the LB FELA. This technique was also proved to be computa-
tionally more efficient.

Although a number of studies with different methodologies are
available to estimate the ultimate bearing capacity of a strip footing
under static condition, only a few investigations have been per-
formed to account for the consideration of the seismic forces. Most
of the existing studies related to the seismic bearing capacity fac-
tors are based on the UB analysis (Yang, 2009; Saada et al., 2011) or
the slip line method (Keshavarz et al., 2016); in both the methods a
predefined failure mechanism has been assumed. Moreover, these
studies do not consider the most recent GHB failure criterion (Hoek
and Brown, 2019) in its true form. The present study examines the
effect of the pseudo-static earthquake inertial body forces while
computing the bearing capacity factors for a strip footing resting
over rock media and subjected to surcharge pressure. The current
analysis is based on the application of the LB FELA and the PCP. The
analysis involves the implementation of the GHB yield criterion in
its true form without requiring any kind of assumption associated
with the smoothing of the GHB yield criterion.

2. The yield criterion for rock mass

Among the various failure criteria proposed in the literature, the
GHB failure criterion as proposed by Hoek et al. (2002) was
considered to be the most acceptable basis for modelling the shear
strength of rock mass. This yield criterion was developed through a
series of laboratory tests which covered numerous types of undis-
turbed and disturbed rock specimens over a wide range of
confining stresses. This criterion is used extensively by practi-
tioners for a variety of rock engineering projects (Ulusay, 2014). By
Using this criterion, a number of stability problems have been
solved: for instance, (i) the determination of the bearing capacity of
footings (Merifield et al., 2006; Chakraborty and Kumar, 2015); (ii)
the stability of slopes (Li et al., 2008); and (iii) the stability of
tunnels (Suchowerska et al., 2012; Ukritchon and Keawsawasvong,
2019; Rahaman and Kumar, 2020). The latest GHB criterion (Hoek
et al., 2002; Hoek and Brown, 2019), which is followed in this
study, has been written in the following form:

s1 �s3 �
h
�mbs1ð�sciÞð1�aÞ=a þ sð�sciÞ1=a

ia
� 0 (1)

Note that in the above expression, there is a change in the sign
convention as compared to failure criterion reported by Hoek and
Brown (2019). In this expression, the tensile normal stress is
considered to be positive. The variables s1 and s3 imply the major
and minor principal stresses at failure, respectively; and sci defines
the uniaxial compressive strength of the rock specimen. The
strength parameters mb, s and a are described by the following
equations:

mb ¼ miexp
�
GSI � 100
28� 14D

�
(2a)

s ¼ exp
�
GSI � 100
9� 3D

�
(2b)

a ¼ 1
2
þ 1
6
½expð�GSI =15Þ� expð�20 =3Þ� (2c)

Note that all these parameters are a function of the geological
strength index (GSI), disturbance factor (D) and the yield parameter
(mi). The parameter GSI signifies a measure of the rock mass
strength under different geological conditions. The range of the GSI
typically varies from 10 for an extremely poor rock to 100 for an
intact rock mass. The factor D is a disturbance coefficient that in-
corporates the disturbance of the rock mass which may occur for
instance due to blast damage, impact loading and sudden stress
relaxation. It varies from 0 for an undisturbed rock mass to 1 for
very disturbed rock mass. The parametermi which can be obtained
from triaxial compression test data is analogous to the frictional
strength of the intact rock mass. The approximate values of mi for
different types of rocks are described in detail by Hoek (1990). It has
an approximate range of 5e35.

3. Description of the problem

A strip footing of width B is placed on rock media with hori-
zontal ground surface, as shown in Fig.1a. The footing is assumed to
be perfectly rough. The rock mass has a unit weight g and the
ground surface is subjected to vertical uniform surcharge pressure
of q0. The rock mass is assumed to follow the GHB yield criterion.
This study employs the pseudo-static approach to consider the
influence of seismic inertial forces in the system. The rock media
and the overlying superstructure are subjected to horizontal
seismic acceleration of khg, where kh is the acceleration coefficient,
and g is the acceleration due to gravity. The load on the footing
comes from the superstructure weight and the horizontal pseudo-
static earthquake inertial forces. If the vertical load on the footing
per unit length at collapse is Qu, the footing will be subjected to a



Fig. 1. (a) Problem definition and stress boundary conditions, and (b) A typical chosen
mesh.
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horizontal shear force of khQu along the interface of the footing and
underlying rockmass. Similarly, if the ground surface is loadedwith
a surcharge pressure of q0, it will also be subjected to a uniform
shear stress of kh q0. The rockmediawill be subjected to body forces
per unit volume of g and khg in vertical and horizontal directions,
respectively. It is to determine the magnitude of Qu for various
specified values of material parameters defining the GHB yield
criterion, and different values of g, q0 and kh.

It should be mentioned that the best way to analyze the stability
of any structure due to occurrence of an earthquake is to perform a
dynamic analysis with the consideration of the actual/design
acceleration-time history. However, this kind of approach often
requires a complex numerical analysis which in turn needs quite
high computational effort. In most of the geotechnical stability
analyses in the presence of seismic forces, the conventional
pseudo-static method is often employed to determine the stability
of any structure in the event of occurrence of an earthquake. In this
approach, the seismic inertial force is replaced by an equivalent
static force which is calculated by multiplying the unit weight of
the medium with the seismic acceleration coefficient. The magni-
tude of the seismic acceleration coefficient is determined from the
knowledge of the peak ground acceleration (PGA) for the design
earthquake. The analysis following the pseudo-static method is
generally considered to be conservative (Li et al., 2009; Yang, 2009;
Saada et al., 2011). Despite its limitations, the conventional pseudo-
static method is widely employed due to its simplicity and ease in
implementation. In the presence of seismic forces, this method has
been applied by various researchers for finding the solutions of
numerous geotechnical stability problems, such as finding (i) the
bearing capacity of foundations resting on horizontal ground
surface (Kumar and Rao, 2002; Keshavarz et al., 2016), (ii) the
bearing capacity of foundation on slopes (Kumar and Rao, 2003;
Saada et al., 2011; Kumar and Chakraborty, 2013), and (iii) the
stability of slopes (Li et al., 2009), tunnels (Sahoo and Kumar, 2012;
Saada et al., 2013), and retaining walls (Kumar 2001; Conte et al.,
2017; Chehade et al., 2021). The pseudo-static approach is also
used to countercheck the results of a more sophisticated dynamic
analysis. Therefore, this approach has been employed in the current
research.
4. Analysis

In order to solve the stability problem which involves layers,
complicated geometry and complex boundary conditions, the FELA
is proved to be a powerful tool. This method involves (i) the LB and
UB limit theorems of the plasticity, (ii) the discretization technique
of the finite elements, and (iii) an optimization technique. Although
both the LB and UB solutions help to bracket the true limit load in a
bound form, in practice, however, the LB analysis predicts a collapse
load which is always less than or equal to the true answer. In the
present study, the LB FELA is employed for the computation of the
safe design load.
4.1. Finite elements

The very first step in the formulation of the LB FELA is to dis-
cretize the selected domain with a mesh of chosen finite elements.
The present study employs the three noded linear stress triangular
elements. The chosen problem domain and a typical triangular
element with the unknown nodal stresses (sx; sy and sxyÞ are pre-
sented in Fig. 1a. The stresses (sx;sy and sxy) at any point within the
element are assumed to vary linearly according to the following
expressions:

sx ¼
X3
i¼1

Nisx;i; sy ¼
X3
i¼1

Nisy; i; sxy ¼
X3
i¼1

Nisxy;i (3)

where sx;i, sy; i and sxy;i are the stresses at the node i, and the
parameter Ni represents the linear shape function. If the coordinate
of the node i is denoted by ðxi ; yiÞ and the three nodes of a trian-
gular element are numbered in a counterclockwise directionwith 1,
2 and 3, then the expression for the shape function associated with
the node 1 is given as

N1 ¼ 1
2D

½ðx2y3 � x3y2Þþ ðy2 � y3Þxþðx3 � x2Þy� (4)

where D represents the elemental area, i.e. D ¼ 0:5jðx1 � x3Þðy2 �
y3Þ � ðx3 � x2Þðy3 � y1Þj. For rest of the two nodes, the shape
functions can further be defined by following the same pattern.

The statically admissible stress discontinuities in between
adjoining elements are permitted in the LB FELA. The discontinuous
stress field generates additional degrees of freedom which help to
improve the LB solution significantly (Sloan, 1988; Pastor, 2003).

Fig.1b presents a typical mesh used in the analysis. Note that the
sizes of the elements gradually decrease as it approaches towards
the edges of the strip footing. To simulate the singularity of stress at
the footing edge, a fan type of the mesh is chosen along the edges of
the footing. The horizontal and vertical extents of the semi-circular
domain (UVR), denoted by Lh and Lv, respectively, are kept suffi-
ciently large so that the proximity of the stresses near the edge of
the boundaries remains far away from the yield. It is also ensured
that the magnitude of the collapse load remains unchanged even if
the chosen boundaries of the domain are extended further.
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4.2. LB formulation

As per the theory of the plasticity, the LB solution is achieved
from a statically admissible stress field which satisfies equilibrium
conditions everywhere in the domain and stress boundary condi-
tions and it nowhere violates the yield criterion (Sloan, 1988).

4.2.1. Equilibrium equation
As the rock media are subjected to horizontal pseudo-static

seismic acceleration kh, the equilibrium of each element must be
satisfied using the following equations:

vsx
vx

þ vsxy
vy

¼ khg (5a)

vsy
vy

þ vsxy
vx

¼ g (5b)

Note that the pseudo-static horizontal seismic body forces are
incorporated in the analysis with the application of Eq. (5a). For
kh ¼ 0, the term on the right hand side of equal sign in Eq. (5a)
becomes simply equal to zero. Substituting Eq. (3) into Eq. (5)
will lead to the following equality constraint(s):

Aequis ¼ bequi (6)

where Aequi and bequi represent the matrix and vector associated
with the equilibrium conditions, respectively; and s comprises the
global vector of unknown stresses at the nodes.

4.2.2. Stress discontinuities
The continuities of normal and shear stresses are maintained

along the interfaces of all the elements. Along the interface of any
two adjacent elements i and j, with the nodal pairs (1, 2) and (3, 4),
the following conditions must hold good:

sn;1 ¼ sn;2; stn;1 ¼ stn;2; sn;3 ¼ sn;4; stn;3 ¼ stn;4 (7)

where subscripts n and tn represent the normal and tangential
directions, respectively, along the discontinuity line. The nodes 1
and 3 are associated with the element i, and the nodes 2 and 4 form
a part of the element j. This will result in the generation of the
following equality constraints:

Asds ¼ bsd (8)

where Asd and bsd represent the matrix and vector associated with
the continuity of the stresses along the interface (discontinuity
line) of the two adjoining elements.

It should be mentioned that the state of stress for any plane
strain problem can be defined with the usage of three stress vari-
ables. The continuity of the normal and shear stresses only ensures
the equal values of the two of the three stress variables on either
side of the stress discontinuity. The difference in the value of the
third stress variable makes the stress state different on either side
of the stress discontinuity.

4.2.3. Boundary conditions
The boundary conditions applicable for this problem are shown

in Fig. 1a, in which ST denotes the base of the footing. Note that at
failure, the vertical load on the footing is Qu and the horizontal
shear force is khQu. The extent of the semi-circular periphery (UVR)
is kept sufficiently large, and it is ensured, like everywhere within
the problem domain, the GHB yield condition is nowhere violated
along this boundary.
(1) Boundary conditions along the ground surface

A vertical surcharge of q0 is applied over ground surface either
side of the footing, i.e. along the boundaries RS and TU. Therefore,
the vertical normal stress (sn) along these boundaries will be
simply equal to the applied surcharge pressure (q0). Due to hori-
zontal inertial seismic force, a shear stress of khq0 will develop
along these boundaries. Hence, the following boundary stresses
need to be enforced along the boundaries RS and TU:

sn ¼ q0; s ¼ khq0 (9)

(2) Boundary conditions along the footing-rock interface

Since the footing is assumed to be rough, the yield strength of
the footing-rock interface is assumed to be the same as that of the
yield strength of the rock medium. Therefore, no exclusive
constraint on the shear stress needs to be imposed for any node
along the footing-rock interface. However, the effect of the hori-
zontal inertial force due to the overlying mass of the superstructure
is incorporated by introducing the following equality constraint
along the footing-rock interface:

Qh ¼ khQu (10)

where Qu ¼ R
A
sydx and Qh ¼ R

A
sxydx, in which A denotes the area

of the strip footing. This implies that the resultant load on the
footing becomes inclined with the vertical inclination of the
resultant load at an angle tan�1kh

The imposition of the stress boundary conditions can be speci-
fied by the following condition:

Abcs ¼ bbc (11)

where Abc and bbc represent the matrix and vector in connection
with the applied boundary conditions, respectively.
4.2.4. Imposition of the yield condition
The GHB yield criterion, as defined by Eq. (1), can be expressed

as

s1 �s3 � ðps1 þ rÞa (12)

where p ¼ �mbð�sciÞð1�aÞ=a and r ¼ sð�sciÞ1=a.
Introducing a new variable t such that

t ¼ ðps1 þ rÞa (13)

Since s1 > s3 and t � 0, hence, Eq. (12) can be re-written as

s1 �s3 � t (14)

For a plane strain problem, we have

s1 ¼ sx þ sy
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�sx � sy

2

�2 þ s2xy

r
(15a)

s3 ¼ sx þ sy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�sx � sy

2

�2 þ s2xy

r
(15b)

Therefore, Eq. (14), after substituting Eqs. (15a) and (15b), can be
written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

�2 þ �
2sxy

�2q
� t (16)
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Since t � 0, Eq. (16) can easily be expressed in the standard form
of a second order conic constraint:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23

q
� x1 (17)

where x1 ¼ t, x2 ¼ ðsx �syÞ and x3 ¼ 2sxy.
For a plane strain case problem, using Eq. (15a), the value of t in

Eq. (13) can be written in terms of sx, sy and sxy:

t ¼
	
p
2


�
sx þ sy

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

�2 þ �
2sxy

�2q �
þ r

�a

(18)

Since the value of the exponent a is always positive, using Eqs.
(16) and (18), it can be written as

t �
np
2

�
sx þ sy

�þ t
�þ r

oa
(19)

If x4, x5 and x6 are defined by the following expressions:

x4 ¼ p
2

�
sx þ sy

�þ t
�þ r; x5 ¼ 1; x6 ¼ t (20)

Then, Eq. (19) will take the form of a power conic constraint as
defined by

ffiffiffiffiffi
x26

q
� xa4x

1�a
5 (21)

Note that the variable x4 needs to be always positive.
Accordingly, the optimization problem in the LB FELA can be

solved by imposing the GHB failure criterion as the summation of
one quadratic conic constraint (Eq. (17)) and one power conic
constraint (Eq. (21)).

It should be mentioned that an n-dimensional power cone can
be defined as

§n ¼
	
u˛Rn

���� ua1 u1�a
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u23 þ u24 þ.þ u2n

q �
ð u1; u2 �0

and 0<a< 1Þ
(22a)

In the present formulation, the following form of the 3D power
cone has been considered:

ffiffiffiffiffiffi
u23

q
� ua1 u1�a

2 ðu1; u2 �0 and 0<a<1Þ (22b)

This form of the GHB yield constraint has already been indicated
in Eq. (21) with u3 ¼ x6; u1 ¼ x4 and u2 ¼ x5.
4.3. The optimization problem

Finally, all the constraints were assembled to maximize the
objective function, i.e. the magnitude of the collapse load, by
forming the following canonical form of the optimization problem:

Maximize cTs (23a)

Subjected to Aeqs ¼ beq; Aconesþ xcone ¼ bcone (23b)

where c is the vector containing the coefficients of the objective
function; Aeq is the matrix containing the coefficients of all the
equality constraints as expressed in Eqs. (6), (8) and (11); beq is
corresponding right known vector of the equality constraints; Acone

is the matrix containing the coefficients of all the conic constraints,
and bcone is the corresponding right known vector of the conic
constraints. If the total number of nodes is denoted by NN, the
vectors s and xcone are defined as

sT ¼
n
s1x s1y s1xy t

1;.; six s
i
y s

i
xy t

i;.;sNNx sNNy sNNxy tNN
o

(24a)

xTcone ¼
n
x11 x12 x13 x14 x15 x16;.; xi1 xi2 xi3 xi4 xi5 xi6;.;

xNN1 xNN2 xNN3 xNN4 xNN5 xNN6
o

(24b)

where six; s
i
y and sixy represent the stresses; ti refers to the slack

variable at the node i; and xi1; x
i
2; x

i
3; x

i
4; x

i
5 and xi6 are the conic

variables corresponding to the node i. Note that the equality
constraint in the second equation of Eq. (23b) is the combination of
Eqs. (17) and (21), obtained from the conic representation of the
GHB criterion.

The computer code to perform the LB FELAwith the usage of the
GHBwas written inMATLAB. For this large-scale conic optimization
problem, the solver MOSEK, which is based on the primal-dual
interior-point method (Andersion et al., 2003) and has already
been recommended by a number of researchers (Martin and
Makrodimopoulos, 2008; Tang et al., 2014; Kumar and Mohapatra,
2017; Ukritchon and Keawsawasvong, 2018) because of its robust-
ness and computational efficiency, was used in the present analysis.
The computations were carried out on a desktop computer (Intel
Core i7e7700 K CPU @ 4.20 GHz, 16 GB RAM) in the Windows 10
operating-based system.
5. Results and discussions

5.1. Bearing capacity equation

Similar to Terzaghi (1943)’s bearing capacity equation for a
footing resting on a soil medium, the following equation is used to
determine the ultimate bearing capacity (qu ¼ Qu=AÞ of a strip
footing placed on rock mass:

qu ¼ sciNs þ q0Nq (25)

where Ns and Nq refer to the non-dimensional bearing capacity
factors associated with the self-weight of rock mass and surcharge
pressure, respectively. Deriving the bearing capacity factor (Ns) due
to unit weight of the rock mass requires surcharge pressure to be
zero (q0 ¼ 0), thus it is calculated as

Ns ¼ qu
sci

(26)

If the rock mass is considered to be weightless, then the bearing
capacity factor Ns is termed as Ns0.

The bearing capacity factor due to surcharge (Nq) can be
expressed as

Nq ¼ qu � sciNs

q0
(27)

The bearing capacity factors for different seismic coefficients
(kh), ranging from 0.0 to 0.5 (Terzaghi, 1950), have been computed
and the final results are presented in both graphical and tabular
forms for all the practical range of the Hoek-Brown parameters as
mentioned in the earlier section. The effects of g and q0 on bearing
capacity factors have been examined in the form of dimensionless
parameters sci=ðgBÞ and q0=sci. The value of sci=ðgBÞ is varied from
100 to infinity (inf); the infinite value of sci=ðgBÞ implies a zero
value of the unit weight. The value of q0=sci was varied from 0 to 1.



O. Rahaman, J. Kumar / Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 560e575 565
It should be noted that the rock mass in this study is considered to
be an undisturbed (D ¼ 0) one.

5.2. Validation of the present analysis

The present analysis has been validated by comparing the ob-
tained solutionwith that reported in the literature. The comparison
of the results has been carried out for the static case as well with
the consideration of the pseudo-static inertial forces. On account of
non-availability of the results, at present, no comparison could be,
however, made for the true dynamic case; this will form the scope
of the future study.

5.2.1. Comparison for static case
The accuracy of the present solutions is verified by comparing

the bearing capacity factor Ns0 for a weightless rock medium with
the available results of Kulhawy and Carter (1992) using the LB
analysis but with an assumption of the collapse mechanism,
Serrano et al. (2000) on the basis of the slip line method, Merifield
et al. (2006) using the average of the LB and UB solutions using the
nonlinear optimization, and the LB solution of Chakraborty and
Kumar (2015). The comparisons of all these results are shown in
Table 1 for kh ¼ 0. The bearing capacity factors proposed by
Kulhawy and Carter (1992) from the simplified LB solutions are
always found to be remarkably lower than all the other reported
solutions. The slip-line solutions estimated by Serrano et al. (2000)
are found to be quite close to the present FELA solutions and the
difference between the two solutions is found to be very nominal.
The present LB solutions are also found to match well with the
average of the LB and UB solutions of Merifield et al. (2006), and the
LB solutions of Chakraborty and Kumar (2015). The studies of
Table 1
A comparison of the bearing capacity factor for a weightless rock mass in the
absence of surcharge with kh ¼ 0.

GSI mi Bearing capacity factor of weightless media, Ns0

Kulhawy and
Carter (1992)a

Serrano
et al.
(2000)b

Merifield
et al. (2006)c

Chakraborty and
Kumar (2015)d

Present
analysise

10 5 0.016 0.035 0.042 0.04 0.042
10 0.022 0.072 0.077 0.075 0.077
20 0.032 0.159 0.156 0.151 0.153
30 0.039 0.259 0.238 0.23 0.237
35 0.043 0.314 0.288 0.276 0.282

30 5 0.095 0.227 0.235 0.23 0.234
10 0.127 0.393 0.397 0.388 0.395
20 0.174 0.716 0.713 0.701 0.705
30 0.21 1.038 1.022 1.015 1.011
35 0.226 1.2 1.193 1.182 1.164

50 5 0.29 0.638 0.644 0.631 0.642
10 0.38 1.031 1.037 1.028 1.032
20 0.51 1.76 1.765 1.739 1.752
30 0.61 2.458 2.467 2.406 2.439
35 0.654 2.801 2.817 2.766 2.776

70 5 0.785 1.574 1.582 1.571 1.576
10 1.012 2.434 2.444 2.415 2.433
20 1.339 3.998 4.012 3.978 3.986
30 1.592 5.47 5.491 5.437 5.447
35 1.703 6.187 6.068 6.036 6.156

100 5 3.449 6.114 6.124 6.095 6.101
10 4.317 8.875 8.896 8.798 8.86
20 5.583 13.809 13.847 13.789 13.78
30 6.568 18.39 18.444 18.398 18.341
35 7 20.628 20.688 20.587 20.543

a Simple analytical LB solution.
b Slip-line solution.
c Average of LB and UB FELA solutions using nonlinear programing.
d LB FELA solution using nonlinear programing.
e LB FELA solution using power cone programing.
Merifield et al. (2006) and Chakraborty and Kumar (2015) are based
on the FELA technique using the nonlinear programming.

5.2.2. Comparison for pseudo-static case
For g ¼ 0; q0 ¼ 0 and kh ¼ 0e0.2, Table 2 provides a com-

parison of the present results with the existing solution of Saada
et al. (2011) on the basis of the kinematic limit analysis approach
with the incorporation of the pseudo-static inertial forces. It can be
noted that the values of Ns0 reported by Saada et al. (2011) are
found to be marginally greater than the present LB solution; it is
quite an expected outcome since the present analysis is based on
the application of the LB limit theorem.

5.3. The variation of the bearing capacity factors with kh

The variation of the bearing capacity factor Ns0 for a weightless
rock mediumwith respect to changes in kh, ranging from 0 to 0.5, is
illustrated in Fig. 2. This figure displays the variation of Ns0 for
seven different values ofmi ranging from 5 to 35, with an interval of
5, and six different values of GSI, i.e. 10, 20, 40, 60, 80 and 100. It can
be clearly noted that the magnitude of Ns0 decreases continuously
with an increase in the value of kh. For GSI ¼ 10 andmi ¼ 5, with an
increase in kh from 0 to 0.2, the factor Ns0 decreases by 30.14%, and
from 0.2 to 0.4, the factor Ns0 decreases by 35.96%. Similarly, for
GSI¼ 10 andmi ¼ 30, with an increase in kh from 0 to 0.2, the factor
Ns0 decreases by 33.77%, and from 0.2 to 0.4, the factor Ns0 de-
creases by 38.77%. Furthermore, for GSI ¼ 80 and mi ¼ 5, with an
increase in kh from 0 to 0.2, the factor Ns0 decreases by 27.54%, and
from 0.2 to 0.4, the factor Ns0 decreases by 33.89%.

Figs. 3 and 4 display the variation of the bearing capacity factor
Ns with the changes in kh for sci=ðgBÞ ¼ 100 and 1000, respectively.
Four different sub-plots are meant for four different values of GSI,
i.e. 20, 40, 60 and 80. It can be seen that in all the cases, the value of
the factor Ns reduces invariably with an increase in the value of kh.
Table 2
A comparison of the bearing capacity factor for g ¼ 0 and q0 ¼ 0 with kh � 0.

mi GSI Bearing capacity factor of weightless media, Ns0

kh ¼ 0 kh ¼ 0.1 kh ¼ 0.2

Saada et al.
(2011)a

Present
analysisb

Saada et al.
(2011)a

Present
analysisb

Saada et al.
(2011)a

Present
analysisb

10 10 0.0779 0.0769 0.065 0.0643 0.053 0.0525
20 0.2097 0.2071 0.1765 0.1747 0.1449 0.1437
30 0.3996 0.395 0.3378 0.3348 0.2788 0.2767
40 0.6632 0.6563 0.5627 0.558 0.466 0.4628
50 1.0416 1.0319 0.8861 0.8795 0.7356 0.7311
60 1.6027 1.5891 1.3663 1.3572 1.1366 1.1305
70 2.452 2.4329 2.0946 2.082 1.7454 1.7371
80 3.7544 3.7267 3.2136 3.1962 2.6823 2.6709

15 10 0.116 0.1142 0.0962 0.0949 0.0779 0.077
20 0.3008 0.2962 0.2518 0.2487 0.2059 0.2037
30 0.5588 0.5511 0.4708 0.4654 0.3871 0.3834
40 0.9118 0.9005 0.7709 0.7632 0.6364 0.6309
50 1.4139 1.3979 1.1988 1.1876 0.9917 0.9843
60 2.1522 2.1292 1.8282 1.8127 1.5161 1.5052
70 3.2581 3.2269 2.7727 2.7519 2.3024 2.2892
80 4.9379 4.8921 4.2104 4.181 3.5026 3.4834

25 10 0.1985 0.1945 0.1634 0.1606 0.1314 0.1294
20 0.4863 0.4773 0.4052 0.3987 0.3296 0.325
30 0.8734 0.8585 0.7326 0.722 0.5999 0.5924
40 1.3945 1.3728 1.1744 1.159 0.9653 0.9546
50 2.1283 2.0981 1.7969 1.7759 1.4817 1.4665
60 3.1969 3.1551 2.7049 2.6758 2.2345 2.214
70 4.7823 4.7236 4.0533 4.0125 3.3544 3.3268
80 7.1632 7.0809 6.0834 6.0269 5.0399 5.0009

a UB kinematic limit analysis.
b LB FELA.



Fig. 2. Variation of Ns0 with kh for different mi values and (a) GSI ¼10, (b) GSI ¼20, (c) GSI ¼40, (d) GSI ¼60, (e) GSI ¼ 80, and (f) GSI ¼ 100.
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To examine the effect of surcharge (q0) on the bearing capacity
factor, several computations have been performed and these results
have been presented in Figs. 5e13 in terms of the variation of the
factor Nq with an increase in the value of kh. Similar to Ns, a sig-
nificant reduction in Nq with an increase in kh is observed. For
example, in case of sci=ðgBÞ¼ inf, q0=sci ¼ 0.25 and mi ¼ 20, if the
value of kh changes from 0 to 0.3, the corresponding magnitude of
Nq decreases by 49.22% and 45.06% corresponding to the value of
GSI equal to 20 and 60, respectively. Fig. 5 has been drawn to bring
out the effect of sci=ðgBÞ on the variation of Nq with changes in kh.
Three different values of sci=ðgBÞ, i.e. 100, 1000 and infinity (g ¼ 0)
have been used. Note that themagnitude ofNq increasesmarginally
with an increase in sci=ðgBÞ. The difference in the values of Nq for
sci=ðgBÞ ¼ 1000 and inf has been found to be much smaller than
the corresponding difference between the values of Nq for
sci=ðgBÞ ¼ 100 and 1000. The variation of Nq for sci=ðgBÞ¼100,
q0=sci¼ 0.25, with respect to kh for different values ofmi between 5
and 35, and GSI between 20 and 80 is shown in Fig. 6. Likewise,
Figs. 7e9 present the results for sci=ðgBÞ¼100 corresponding to the
value of q0=sci equal to 0.5, 0.75 and 1, respectively. Note that the
magnitude of Nq decreases marginally with an increase q0=sci, it
should be mentioned that the product q0Nq always increases with
an increase in q0=sci. The magnitude of Nq increases continuously
with increases inmi and GSI. Figs. 10e13 provide the variation of Nq

with an increase in kh for sci=ðgBÞ¼ inf corresponding to q0=sci
equal to 0.25, 0.5, 0.75 and 1, respectively. As indicated earlier, the



Fig. 3. Variation of Ns with kh for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.

Fig. 4. Variation of Ns with kh for sci=ðgBÞ ¼ 1000 for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.
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Fig. 5. Effect of sci=ðgBÞ on Nq with changes in kh for (a) mi¼15, GSI¼20 and q0=sci¼ 0.25; (b) mi¼15, GSI¼80 and q0=sci¼ 0.25; (c) mi¼30, GSI¼20 and q0= sci¼ 0.25; (d) mi¼30,
GSI¼80 and q0=sci¼ 0.25; (e) mi¼15, GSI¼20 and q0=sci¼ 0.75; and (f) mi¼15, GSI¼80 and q0=sci¼ 0.75.
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magnitude of Nq for sci=ðgBÞ¼inf becomes marginally greater than
that with sci=ðgBÞ ¼ 100.
5.4. Failure patterns

In order to investigate how the failure patterns are influenced by
the variation in the seismic coefficient with and without the
presence of surcharge pressure, the proximity of the stress state to
failure was defined in terms of a non-dimensional ratio, a/b, where
a ¼ ðs1 �s3Þ and b ¼ ðps1 þ rÞa. This ratio is defined in away such
that it will attain a maximum value of 1 when the point is in the
state of yield, otherwise, it will have a value smaller than unity for a
non-yielded stress state. The failure patterns are shown in Figs. 14
and 15. With sci=ðgBÞ ¼ 100, Fig. 14 illustrates the failure pat-
terns, without any surcharge pressure, for different values of kh, i.e.
0, 0.02, 0.05 and 0.1 with GSI¼ 30,mi ¼ 5, and GSI¼ 80,mi ¼15. For
kh ¼ 0, the failure patterns become symmetrical about the center
line passing through the footing base. In the presence of kh, the
pattern becomes unsymmetrical. With an increase in kh, the extent
of the plastic zone on one side of the footing, both horizontally and
vertically, reduces continuously. The extent of the plastic zone for
larger values of GSI and mi becomes continuously greater. Fig. 15
illustrates the effect of surcharge on the shape of the yielded
zone for different values of GSI, mi and kh and q0=sci¼0.5 and 1.
Once again, an introduction to the seismic force produces a non-



Fig. 6. Variation of Nq with kh for sci=ðgBÞ¼100, q0=sci¼ 0.25 for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.

Fig. 7. Variation of Nq with kh for sci=ðgBÞ¼100 and q0=sci¼ 0.5 for different mi with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.
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Fig. 9. Variation of Nq with kh for sci=ðgBÞ¼100 and q0=sci¼ 1 for different mi with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.

Fig. 8. Variation of Nq with kh for sci=ðgBÞ¼100 and q0=sci¼ 0.75 for different mi with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.
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Fig. 10. Variation of Nq with kh for sci=ðgBÞ¼ inf and q0=sci¼ 0.25 for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.

Fig. 11. Variation of Nq with kh for sci=ðgBÞ¼ inf and q0=sci¼ 0.5 for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.
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Fig. 12. Variation of Nq with kh for sci=ðgBÞ¼ inf and q0=sci¼ 0.75 for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.

Fig. 13. Variation of Nq with kh for sci=ðgBÞ¼ inf and q0=sci¼ 1 for different mi values with (a) GSI ¼ 20, (b) GSI ¼ 40, (c) GSI ¼ 60, and (d) GSI ¼ 80.
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Fig. 14. The collapse mechanisms for sci=ðgBÞ ¼ 100 and q0=sci¼ 0 with (a) mi¼5, GSI ¼30 and kh¼0.0; (b) mi¼5, GSI ¼30 and kh¼0.02; (c) mi¼5, GSI ¼30 and kh¼0.05; (d) mi¼5,
GSI ¼30 and kh¼0.1; (e) mi¼15, GSI ¼80 and kh¼0.0; and (f) mi¼15, GSI ¼80 and kh¼0.1.
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symmetrical yielded zone, and the size of the yielded zone de-
creases continuously with an increase in surcharge pressure. Since
the footing-rock interface is considered to be perfectly rough, in all
the cases, a small non-plastic wedge is found to exist invariably
below the footing base.

6. Conclusions

The LB FELA in conjunction with the PCP has been employed
to compute in an accurate fashion the seismic bearing capacity
factors for a strip footing lying on rock media. The yielding of
rock media has been modelled by the GHB criterion. No
approximation is needed to make any assumption either about
the geometry of the failure mechanism or smoothing of the yield
criterion. The effects of the equivalent inertial forces on the
bearing capacity factors, induced due to an occurrence of earth-
quake, are accounted for by means of equivalent pseudo-static
horizontal seismic forces with the usage of the earthquake ac-
celeration coefficient (kh). It has been observed that the bearing
capacity factors Ns and Nq decrease continuously with an in-
crease in the magnitude of the earthquake acceleration coeffi-
cient (kh). The magnitudes of Ns and Nq increase continuously
with an increase in the values of GSI and mi. The failure patterns
in the presence of the earthquake acceleration become always
un-symmetrical. The size of the plastic zone increases with an
increase in the values of GSI and mi. The results provided in this
study will be useful for designing strip footings on rock media in
a seismically active zone.



Fig. 15. The collapse mechanisms for sci=ðgBÞ ¼ 100 with (a) mi¼5, GSI ¼30, q0=sci¼ 0.5 and kh¼0.0; (b) mi¼5, GSI ¼30, q0=sci¼ 0.5 and kh¼0.02; (c) mi¼15, GSI ¼80, q0= sci¼ 0.5
and kh¼0.0; (d) mi¼15, GSI ¼80, q0=sci¼ 0.5 and kh¼0.02; (e) mi¼15, GSI ¼80, q0=sci¼ 1 and kh¼0.0; and (f) mi¼15, GSI ¼80, q0=sci¼ 1 and kh¼0.1.
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List of symbols

B Width of foundation
q0 Surcharge pressure
g Unit weight of rock mass
kh Horizontal acceleration coefficient
g Acceleration due to gravity
Qu Vertical collapse load
s1 Major principal stress
s3 Minor principal stress
sci Uniaxial compressive strength
mb, mi, s, a Hoek-Brown material constants
GSI Geological strength index
D Disturbance factor
Lh Horizontal extents of the circular domain
Lv Vertical extents of the circular domain
sx Normal stress on x-plane
sy Normal stress on y-plane
sxy Shear stress with respect in x-y plane
Ni Shape function
sn Normal stress
s Shear stress
Aequi Matrix containing the left hand side of all the equilibrium

equations
Asd Matrix containing the left hand side of all the

discontinuity equations
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Abc Matrix containing the left hand side of all the boundary
conditions

Aeq Matrix containing the coefficients of all the equality
constraints

Acone Matrix containing the coefficients of conic constraints
bequi Vector containing the right hand side of all the

equilibrium equations
bdis Vector containing the right hand side of all the

discontinuity equations
bbc Vector containing the right hand side of all the boundary

conditions
beq Vector containing the right hand side of the equality

constraints
bcone Right known vector of the conic constraints

Global unknown vector of stress variables
s Global unknown vector of stress and slack variables
xTcone Global unknown vector of conic variables
t An auxiliary variable
c Vector containing the objective function
NN Number of nodes
qu Ultimate bearing pressure
Ns Bearing capacity factor due to unit weight
Ns0 Bearing capacity factor of weightless media
Nq Bearing capacity factor due to surcharge
a, b Parameters which defines the state of stress
§n n-dimensional power cone
Rn n-dimensional real number
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