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This paper proposes a rigorous undrained solution for cylindrical cavity expansion problems in K0-
consolidated clays, adopting a simple non-associated and anisotropic model, SANICLAY. The cavity
expansion theory is well extended to consider non-associativity, K0-consolidation and stress-induced
anisotropy with combined rotational and distortional hardening of yield surface and plastic potential
in the multiaxial stress space. The developed solution can be recovered for validation against the
modified Cam-clay (MCC) solution by simply setting model constants, avoiding non-associativity and
anisotropy. The source code is provided to facilitate the use for extensions. After investigating the effects
of overconsolidation ratio on the cavity pressure curves, stress distributions, evolutions of anisotropic
parameters and stress paths, the variations with three-dimensional (3D) evolutions of yield surface and
plastic potential during undrained cavity expansion are shown for various K0-consolidated clays. A
parametric study on the model constants is presented to depict the influences on the stress distributions
and paths, critical state surfaces and Lode’s angles at failure. The proposed solution also provides a
general framework for formulating equations for undrained expansion of cylindrical cavities under an
initial cross anisotropic condition using sophisticated anisotropic soil models. It serves as a precise
benchmark for extensions of analytical solutions, numerical simulations of cavity expansion, and back-
calculations of geotechnical problems.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The in situ stress state of natural soil deposits is usually inher-
ently anisotropic, and it is common to define the at-rest coefficient
as the ratio of horizontal (s0h0) to vertical (s0v0) effective stress at the
geostatic condition, i.e. K0 ¼ s0h0=s

0
v0. Considering the sedimentary

process without lateral deformation, the initial stress-induced
anisotropy is particularly crucial to the mechanical behaviours of
saturated clays (e.g. Nakase and Kamei, 1983; Ghaboussi and
Momen, 1984; Mayne, 1985; Wang et al., 2008). Following the
early developments on plasticity theory for geomaterials, many
anisotropic constitutive models for soft clays have been proposed
considering anisotropic K0-consolidation. Originated from the
anisotropic extension of work by Dafalias (1986), the anisotropic
o).
ock and Soil Mechanics, Chi-

ics, Chinese Academy of Sciences.
ecommons.org/licenses/by-nc-nd/4
critical statemodels were extensively developedwith various types
of yield surfaces and hardening rules (e.g. Whittle and Kavvadas,
1994; Wheeler et al., 2003; Dafalias et al., 2006; Yin et al., 2010;
Rezania et al., 2016). The SANICLAY (an abbreviation of ‘Simple
ANIsotropic CLAY’) model, extended by Dafalias et al. (2006), is one
of the milestones for simulation of both undrained and drained
rate-independent behaviours of sensitive clays, using a non-
associated flow rule, a combined rotational and distortional hard-
ening rule and the evolution laws for hardening variables. Exten-
sions of the SANICLAY model have also been developed in the
recent years for further considerations of destructuration, plastic
deformations within yield surface, and cyclic behaviour, etc. (e.g.
Taiebat et al., 2010; Jiang et al., 2012; Dafalias and Taiebat, 2013;
Seidalinov and Taiebat, 2014; Yang et al., 2019).

The cavity expansion theory has been greatly developed and
widely applied in geotechnical engineering since 1940s (e.g. Bishop
et al., 1945; Hill, 1950; Chadwick, 1959). Considering more sophis-
ticated constitutive models for geomaterials, cavity expansion so-
lutions have been progressively improved during the past half
century (e.g. Vesic, 1972; Carter et al., 1986; Yu and Houlsby, 1991;
Production and hosting by Elsevier B.V. All rights reserved. This is an open access
.0/).
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Table 1
Summary of recent solutions to cavity expansion problem.

Constitutive model Predominant features Source

Modified Cam-clay (MCC) e Chen and Abousleiman
(2012, 2013)

K0-consolidated
anisotropic MCC

K0-consolidation Li et al. (2016a, 2017)

ACMEG-T (Laloui and
François, 2009)

Environmental
geomechanical thermal
effect

Zhou et al. (2017)

Unified state parameter
model

Overall soil (sand and clay)
behaviour

Mo and Yu (2017,
2018)

SMP revised AMCC K0-consolidation and 3D
strength

Chen et al. (2019)

Anisotropic MCC model
(Dafalias, 1987)

K0-consolidation and the
stress-induced anisotropy

Chen and Liu (2019);
Liu and Chen (2018)

S-CLAY1 model (Wheeler
et al., 2003)

K0-consolidation and the
stress-induced anisotropy

Sivasithamparam and
Castro (2018);
Chen et al. (2020)

EVP constitutive model
(Kelln et al., 2008)

Elastic-viscoplastic
behavior of soil

Zhou et al. (2020)

SMP revised S-CLAY1 K0-consolidation,
anisotropy, and 3D strength

Yang et al. (2020)

Modified Cam-clay (MCC) Similarity solving technique Zhou et al. (2021)
Einav’s breakage

mechanics model
(Einay, 2007)

Crushable soils Liu et al. (2021)

Fig. 1. Schematic illustration of cylindrical cavity expansion problem.
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Cao et al., 2001; Chen and Abousleiman, 2012; 2018; Mo and Yu,
2017, 2018; Chen et al., 2020; Zhao et al., 2020). The derivations
for stress and displacement fields around cavities are then
employed for analyses of complex geotechnical problems, including
in situ soil testing, foundations, underground excavations, wellbore
instability. However, most of the early solutions are developed for
cavities embedded in an infinite medium and isotropic stress field,
leading to inaccurate results for solving boundary value problems
in numerous applications. Correction factors based on numerical
methods or empirical relationships were then introduced for the
compromised use of analytical results (e.g. Naggar and Naggar,
2012).

Over the last decade, many attempts have been made to tackle
this issue providing semi-analytical solutions of cavity expansion or
contraction under anisotropic initial stress conditions. Following
the framework of Chen and Abousleiman (2012, 2013), semi-
analytical solutions of undrained and drained cylindrical cavity
expansion were proposed by Li et al. (2016a, 2017) to consider the
effects of initial stress anisotropy by employing an associative
K0-consolidated anisotropic modified Cam-clay (AMCC) model
(Sekiguchi and Ohta, 1977). It was reported that the degree of initial
anisotropy has a notable influence on the stress distributions
around the cylindrical cavity, though the rotation of yield surface
representing the stress-induced anisotropy was neglected for
simplicity. Chen and Liu (2019) reported a rigorous undrained so-
lution in the AMCC model (Dafalias, 1987), which considers both
rotation and distortion of yield surfaces. The effects of K0-consoli-
dation and the stress-induced anisotropy were clearly shown on
the distributions of effective stresses and excess pore pressure
around the cylindrical cavity. This work was then extended for the
drained solution (Liu and Chen, 2018). Similarly, an undrained so-
lution in the S-CLAY1 model (Wheeler et al., 2003) was developed
by Sivasithamparam and Castro (2018), considering the fabric
anisotropy of soft soils and its evolution with plastic strains. It was
later updated using the S-CLAY1S model (Karstunen et al., 2005),
accounting for both fabric anisotropy and destructuration
(Sivasithamparam and Castro, 2020).

Since the strength of clay is typically overestimated by theMises
criterion-based models, the spatially mobilized plane (SMP) crite-
rion is suggested for the three-dimensional (3D) strength of the
cohesive-frictional soil (Li et al., 2016b). Following the advanced
cavity expansion solutions of Li et al. (2016b) and Chen and
Abousleiman (2012), Chen et al. (2019) presented a generic stress
transform approach for both undrained and drained cylindrical
cavity expansion solutions in an SMP criterion revised AMCCmodel
(Yao and Wang, 2014). The solution was then modified for the
undrained contraction problems by Zhang et al. (2020). Addition-
ally, the effects of rotational hardening, ignored in Chen et al.
(2019), have been recently included in Yang et al. (2020) under
drained loading conditions. Some recent solutions for cavity
expansion theory are summarized and compared in Table 1.

In this paper, an undrained expansion solution in the SANICLAY
model, incorporating 3D strength of soil, a non-associated flow rule
and a combined rotational and distortional hardening rule, is pro-
posed for cylindrical cavities considering K0-consolidation and
stress-induced anisotropy. The solution with attached corre-
sponding MATLAB source code (see Appendix A) is validated
against that based on the recovered isotropic model by Chen and
Abousleiman (2012), and the results of K0-consolidated clays are
presented to investigate the effects of overconsolidation ratio and
model constants on the cavity expansion responses and the stress
paths, along with the evolutions of anisotropic parameters. The
highlight of this context also lies in the provided generic framework
for the derivation of undrained cavity expansion in an anisotropic
critical state model, and the solution using the SANICLAY model
could serve as a useful benchmark for further developments and
numerical calculations, along with the source code and a worked-
out example.

2. Definition of cavity expansion problem

The problem of this study concerns with the evolutions of stress
and displacement fields during the undrained expansion of a vertical
and cylindrical cavity in K0-consolidated clays. Assuming the plane-
strain condition along the vertical direction, the in-plane schematic
of the cylindrical cavity expansion problem is illustrated in Fig. 1. The
initial stress condition of the infinite soil mass is considered as
K0-consolidatedwith in situ horizontal and vertical effective stresses
s0h0 and s0v0. The case s0r0ss0

q0 will not be considered in the present
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study, in which s0r0 and s0
q0 are the initial radial and circumferential

stresses, respectively. The circular cavity expands from its initial
cavity radius a0 to its current cavity radius a under an internal cavity
pressure sa. During the process of expansion, soil mass near the
cavity wall is squeezed outwards under the increase of internal
cavity pressure, and a plastic region with a radius of rp is developed
around the cavity wall, which is embedded within the outer elastic
region. In the framework of critical state soil mechanics, further
expansion may create a critical state region adjoined to the cavity
wall. The quasi-static stress state of an arbitrary soil element around
the cylindrical cavity at any time is governed by the equilibrium
equation in the radial direction alone:

ds0r
dr

þdu
dr

þ s0r � s0
q

r
¼ 0 (1)

where s0r and s0
q are the effective radial and circumferential stresses,

respectively; u is the pore water pressure; r is the radius of a soil
element; dðÞ is the Eulerian derivative for every material particle at
a specific moment.

To accommodate large strains in the plastic and critical state
regions during the cavity expansion process, the logarithmic strains
are assumed as (Chen and Abousleiman, 2012; Chen et al., 2021):

εr ¼ � ln
�
dr
dr0

�
(2a)

εq ¼ � ln
�
r
r0

�
(2b)

where εr and εq are the radial and circumferential strains, respec-
tively; r0 is the initial position of a soil element before expansion.
The undrained expansion condition used to formulate the problem
later indicates that the specific volume v remains constant during
expansion, and the volumetric strain εv of soil around the cavity
vanishes everywhere, which gives

εv ¼ εr þ εq þ εz ¼ εr þ εq ¼ 0 (3)

where εz is the vertical strain, which is equal to zero under the
plane-strain condition.
Fig. 2. Yield surface and plastic potential of the SANICLAY model in (a) p0 � q space and
(b) p plane.
3. SANICLAY model

The fundamental formulation of the SANICLAYmodel developed
by Dafalias et al. (2006) will be adopted in the present solution. The
tensorial form of the plastic potential in the general stress space is
given as

g ¼ 3
2
ðs� p0aÞ : ðs�p0aÞ�

�
M2 �3

2
a : a

�
p0
�
p0a �p0

� ¼ 0 (4)

where s is the deviatoric stress tensor, defined as s ¼ s � p0I (s is
the effective stress tensor, I is the identity tensor, and p0 is the
effective mean stress with p0 ¼ (1/3)trs); a is the non-dimensional
anisotropic variable tensor, which serves for the rotational hard-
ening of the plastic potential surface; the symbol ‘:’ implies the
trace of the product of two tensors; M is the critical stress ratio; p0a
is the value of p0 at q ¼ p0a, where q is the deviatoric stress and
a ¼ [(3/2)a:a]1/2. It should be noted that p0a is determined by
substituting the tensors s and a into Eq. (4), and no hardening law is
adopted to updated p0a. In the general stress space, the 3D soil
strength is considered by means of the Lode’s angle qL, and the
Lode’s angle dependent formulation of M is defined as follows:
M ¼ 2Me=Mc

ð1þMe=McÞ � ð1�Me=McÞcos ð3qLÞ
Mc (5a)

cos ð3qLÞ¼
ffiffiffi
6

p
tr n3;n¼ r � a

½ðr � aÞ : ðr � aÞ�1=2
; r¼ s

p0
(5b)

where Mc and Me are the critical stress ratios in compression and
extension, respectively. According to Jiang and Pietruszczak (1988),
the shape of Eq. (5) in the p plane might be concave when Me/
Mc < 7/9, which is a shortcoming of Eq. (5) compared to other
methods for introducing 3D strength such as the stress trans-
formation method (Matsuoka and Sun, 2006). The potential func-
tion is a curved triangle as shown in Fig. 2, and both Mc and Me are
subtly considered in SANICLAY. Hence, the present solution can be
seen as a more general solution to the cavity expansion problem
than the exiting circular critical state line-based solutions, such as
Chen and Abousleiman (2012), Sivasithamparam and Castro (2018).

The non-associated flow rule was employed in the SANICLAY
model, which means the yield surface does not overlap the plastic
potential surface. The tensorial form of the yield surface function in
the general stress space is defined as
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f ¼ 3
2
ðs�p0bÞ : ðs�p0bÞ�

�
N2 �3

2
b : b

�
p0
�
p0c �p0

� ¼ 0 (6)

where b is the rotational hardening variable tensor of yield sur-
face; p0c is the value of p0 at h ¼ b0, where h is the stress ratio
defined as q/p0 and b0 ¼ [(3/2)b:b]1/2, which represents the
isotropic hardening variable; N is a soil constant that serves as the
bound for b and is assumed independent on the Lode’s angle.
Again, the proposed solution with a non-associated flow rule can
be regarded as a more general case than the existing associated
constitutive model-based solutions, which is another predomi-
nant feature of this study.

Both yield surface and plastic potential surface are schemat-
ically illustrated in Fig. 2 in the p0-q space and the deviatoric
plane, respectively. The critical stress state at failure is unnec-
essarily located at the peak of the yield surface in the p0-q space
(Fig. 2a), contributing to the undrained softening after K0-
consolidation. The shape of yield function in the p plane is a
circle, whereas the plastic potential surface is anisotropic owing
to dependence on the Lode’s angle. To describe the evolution of
the internal variables serving as three hardening laws, the
isotropic hardening parameter p0c and the anisotropic rotational
hardening parameter tensors a (for plastic potential) and b (for
yield surface) are defined in terms of their rate forms as

_p0c ¼ hLip0c ¼ hLi1þ e0
l� k

p0c tr
�
vg
vs

�
(7a)

_a ¼ hLia ¼ hLi v0
l� k

C
�
p0

p0c

�2����tr
�
vg
vs

�����
$

�
3
2
ðr � xaÞ : ðr � xaÞ

	1=2
ðab � aÞ

(7b)

ab ¼
ffiffiffiffiffiffiffiffi
2=3

p
M

ðr=xÞ � a

½ðr=x� aÞ : ðr=x� aÞ�1=2
(7c)

_b ¼ hLib

¼ hLi1þ e0
l� k

C
�
p0

p0c

�2����tr
�
vg
vs

�����
�
3
2
ðr � bÞ : ðr � bÞ

	1=2
ðbb � bÞ

(7d)

bb ¼
ffiffiffiffiffiffiffiffi
2=3

p
N

r � b

½ðr � bÞ : ðr � bÞ�1=2
(7e)

where L is the loading index, which will be specified later from the
plastic consistency condition; h i is the Macaulay bracket; e0 is the
initial void ratio, v0 is the initial specific volume; l and k are the
slopes of normal compression and swelling lines, respectively, in
the e � lnp0 space (e is the void ratio); C is a model constant, which
represents the rate of evolution of anisotropy; the subscript ‘b’ is
used for the bounding ‘image’ of the variable; x is another model
parameter to define the attractor tensor r/x for a, indicating the
saturation limit of anisotropy.
4. Undrained cavity expansion solution

4.1. Constitutive relationship in matrix form

In the classical plasticity theory, the incremental total strains in
the plastic phase can be divided into elastic and plastic compo-
nents, with superscripts ‘e’ and ‘p‘, respectively. In terms of the
cylindrical coordinates in this problem, the rates of the elastic
strains can be represented by the effective stresses in the matrix
form, following the small-strain assumption and the Hooke’s law
for isotropic mass:

2
664
_εer
_εeq
_εez

3
775 ¼ 1

E

2
41 �m �m
�m 1 �m
�m �m 1

3
5
2
664
_s0r
_s0q
_s0z

3
775 (8)

where m is the Poisson’s ratio; E is the elastic modulus, which de-
pends on the current effective mean stress p0, specific volume v and
basic soil parameters as

E ¼ 3ð1� 2mÞvp0
k

(9)

Based on the plastic flow rule (see Eq. (4)), the rate of the plastic
strain tensor εp can be written as

_εp ¼ hLi vg
vs

(10)

where

vg
vs

¼ 3ðs�p0aÞþ1
3
p0


M2 � h2

�
I þ vg

vqL

vqL
vs

(11a)

vg
vqL

¼6M2p0
�
p0a�p0

� 1�Me=Mc

ð1þMe=McÞ�ð1�Me=McÞcosð3qLÞ
sinð3qLÞ

(11b)

vqL
vs

¼ �
ffiffiffi
6

p

sin ð3qLÞ
n2�ncos ð3qLÞffiffiffi

6
p � 1

3I
h
1þ tr

�
n2a

�� cos ð3qLÞffiffiffi
6

p tr ðnaÞ
i

½ðs�p0aÞ : ðs�p0aÞ�1=2
(11c)

For determination of the loading index L, the plastic consistency
condition needs to be fulfilled as follows:

_f ¼ vf
vs

: _sþ vf
vb

: _bþ vf
vp0c

_p0c ¼ 0 (12)

Substituting Eq. (7) into Eq. (12) yields the expression of loading
index L:

L ¼ 1
Kp

vf
vs

: _s (13a)

Kp ¼ �
�
vf
vp0c

p0c þ
vf
vb

: b

�
(13b)

where

vf
vs

¼ 3ðs�p0bÞ þ 1
3
p0


N2 � h2

�
I (14a)
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vf
vp0c

¼ �
�
N2 �3

2
b : b

�
p0 (14b)

vf
vb

¼ � 3p0
�
s�p0cb

�
(14c)

The rates of the three plastic strain components can thus be re-
written in the matrix form based on Eq. (10):

2
664
_ε
p
r

_ε
p
q

_εpz

3
775 ¼ 1

Kp

2
4ArBr ArBq ArBz
AqBr AqBq AqBz
AzBr AzBq AzBz

3
5
2
664
_s0r
_s0q
_s0z

3
775 (15)

where the matrix elements are given as

Ai ¼
vg
vs0i

ði ¼ r; q; zÞ (16a)

Bi ¼
vf
vs0i

ði ¼ r; q; zÞ (16b)

Combining the stress-strain relationships in Eqs. (8) and (15),
the rates of stress components can be inversely expressed in terms
of the incremental total strain components as follows:

2
664
_s0r
_s0q
_s0z

3
775 ¼ 1

H

2
4Hr Hrq Hrz
Hqr Hq Hqz
Hzr Hzq Hz

3
5
2
4 _εr
_εq
_εz

3
5 (17)

where the matrix elements are given as

H¼ðmþ1Þ
h
Kp



1�m�2m2

�
þEð1�mÞðArBrþAqBqþAzBzÞ

þEmðArBqþAqBrþAqAzþAzAqþAzBrþArBzÞ
i

(18a)

Hi ¼ E
h
Kp



1�m2

�
þ E
�
AjBj þAkBk

�þ Em
�
AjBk þAkBj

�i
ði; j; k ¼ r; q; z; is js kÞ (18b)

Hij ¼ E
h
Kp



mþm2

�
� EAiBj

þ Em
�
AkBk �AiBk�AkBj

�iði; j; k ¼ r; q; z; is js kÞ (18c)
4.2. Solution in the elastic region

At a K0-consolidation condition before expansion, the initial
stress relation gives s0h0 ¼ K0s

0
v0. Considering the rotational hard-

ening of the yield surface and plastic potential, the initial values of
the dimensionless anisotropic variable tensors a0 and b0 are related
to the coefficient of lateral earth pressure at rest K0 in terms of the
cylindrical coordinates, as follows (Dafalias et al., 2006):
a0 ¼ r0
x

¼ 1
x

2
666666664

K0 � 1
2K0 þ 1

0 0

0
K0 � 1
2K0 þ 1

0

0 0
2� 2K0

2K0 þ 1

3
777777775

(19a)

b0 ¼ r0 ¼

2
666666664

K0 � 1
2K0 þ 1

0 0

0
K0 � 1
2K0 þ 1

0

0 0
2� 2K0

2K0 þ 1

3
777777775

(19b)

The elastic region is located outside of the elastoplastic
boundary with r > rp after cavity expansion. The elastic solution
can then be expressed following the small-strain elasticity (Yu,
2020), as

s0r ¼ s0h0 þ


s0rp � s0h0

� r2p
r2

(20a)

s0q ¼ s0h0 �


s0rp � s0h0

� r2p
r2

(20b)

s0z ¼ s0v0 (20c)

Ur ¼ 1
2G0



s0rp � s0h0

� r2p
r

(20d)

where s0rp denotes the effective radial stress at the elastoplastic
boundary, which will be determined in the following section; Ur is
the radial displacement; G0 is the shear modulus in the elastic re-
gion, taking G ¼ E=½2ð1þmÞ� with Eq. (9). Note the excess pore
pressure in the elastic region remains to be zero, owing to the
unchanged mean stresses.
4.3. Solution in the plastic region

4.3.1. Conditions at elastic-plastic boundary
Soil states at the elastoplastic boundary are taken as the initial

conditions for the solutionwithin the plastic region. Combining the
yield surface function, initial anisotropic tensor, and the stress state
at the elastic-plastic boundary (Eqs. (6), (19b), and (20a)-(c)), the
value of s0rp can be obtained as

s0rp ¼ K0s
0
v0 þ

p00ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N2 � 3

2
b0 : b0

�
ðOCR� 1Þ

s
(21)

where p00 is the in situ value of the effective mean stress (i.e. p00 ¼
ð1 þ 2K0Þs0v0=3); OCR denotes the overconsolidation ratio and is
defined as p0c0=p

0
0. Note that the value of OCR in this paper repre-

sents the isotropic overconsolidation ratio, in terms of the mean
effective stress rather than the conventional vertical effective
stress, following Mo and Yu (2017).
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The ratio of the current position of one soil particle to its original
position is introduced herein to indicate the relative deformation as
a time variable, i.e. r ¼ r=r0. From the displacement distribution in
the elastic region (see Eq. (20d)), the value of r at the elastic-plastic
boundary is derived as

rp ¼ rp
rp0

¼ 1

1� s0
rp�K0s0

v0
2G0

(22)

The range of r within the plastic zone is given as

rp � r � ra ¼ a
a0

(23)

Considering the undrained condition with Eqs. (2) and (3), the
current radial coordinate can be determined from r:

r
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �a0a �2
1� �1r�2

vuuut (24)
4.3.2. Governing differential equations
In conjunction with the introduced definition of r and the un-

drained condition for a cylindrical scenario, the incremental strains
can be re-written as

_εq ¼ � DlnðrÞ
Dr

¼ �1
r

(25a)

_εr ¼ _εv � _εq � _εz ¼ � _εq ¼ 1
r

(25b)

where DðÞ is the material derivative along the particle motion path
using the Lagrangian description.

Considering the undrained condition and the definition of r, the
Eulerian derivative for every material particle at a specific moment
can also be related to r as

dðÞ
dr

¼DðÞ
Dr

dr
dr

¼
 
1
r0
� r
r20

dr0
dr

!
DðÞ
Dr

¼ 1
r

h
r�r2 expðεrÞ

iDðÞ
Dr

¼ r�r3

r
DðÞ
Dr

(26)

It should be noted that Eqs. (25) and (26) can be easily extended
to their drained versions by taking the specific volume as an extra
unknown. Then the proposed solving approach can be easily
extended to the drained case, which shows the advantages of the
utilized time variable r-based solving technique over the existing
solutions.

By substituting the strain definitions of Eq. (25) into the
constitutive matrix of Eq. (17), the components can be expressed as

Ds0r
Dr

¼ Hr � Hrq
rH

(27a)

Ds0q
Dr

¼ Hqr � Hq

rH
(27b)

Ds0z
Dr

¼ Hzr � Hzq
rH

(27c)

It should be noted that both p0c and p0a are expressed by stresses,
a and b according to Eqs. (4) and (6) during the updating of the
constitutive matrix. Therefore, p0a and p0c are not involved in the
constitutive matrix and not updated by integration.

Combining Eq. (1) with Eq. (26), the excess pore water pressure
can be obtained as

Du
Dr

¼ � Ds0r
Dr

� s0r � s0
q

r� r3
¼ �Hr � Hrq

rH
� s0r � s0

q

r� r3
(28)

It should be noted that Eqs. (27a-c) and (28) are first-order
differential equations with respect to r. Substituting Eq. (25) back
into Eqs. (7) and (13a), one can also express the rates of isotropic
hardening parameter p0c and anisotropic parameters a and b as
functions regarding r, which are given in Appendix A. Therefore,
the governing equations for the cavity expansion problem can now
be simplified to a system of first-order differential equations, which
can be solved by the Runge-Kutta method (Atkinson, 1989) via a
computational software as shown in Fig. 3. The corresponding
MATLAB source code can be found in Appendix A to facilitate the
use of the presented solution, as well as a worked-out example.
Since the cavity in the infinite medium expands in a self-similar
way, all the soil particles experience the same stress path.
Considering the relative deformation along with the position to the
cavity wall, the stress and displacement distributions in both elastic
and plastic regions are obtained, as well as their evolutions during
the cavity expansion process.

5. Results and discussion

5.1. Validation against MCC solution

The proposed solution is firstly validated against the MCC so-
lution proposed by Chen and Abousleiman (2012), excluding the
anisotropy and non-associativity by setting N ¼ Mc ¼ Me, x ¼ 1
and C ¼ 0. The soil parameters are set equivalent to those for the
normally consolidated Boston Blue clay with K0 ¼ 0:625, after
Chen and Abousleiman (2012), as detailed in Table 2.

The normalized distributions of stress components after a
certain expansion with a=a0 ¼ 2 are compared in Fig. 4. The
effective stresses (s0r , s0q, s

0
z) and excess pore pressure (Du) based on

the recovered SANICLAY model are identical to those of the MCC
solution, for both critical state and plastic regions, validating the
developed formulation in the previous section. Additionally,
comparing to the MCC solution, the advantages of the current so-
lution lie on the rotation and distortion of both yield surface and
plastic potential with respective evolution law considering
K0-consolidation and stress-induced anisotropy, as follows.

5.2. Influence of overconsolidation ratio

A parametric study is then conducted to present the results of
cylindrical cavity expansion using the foregoing solution, exam-
ining the effects of overconsolidation ratio. All the SANICLAY model
parameters are set as those fromDafalias et al. (2006) for the Lower
Cromer Till (LCT) clay, and four tests with different OCR in the range
of 1e10 are considered with identical initial effective mean stress
(p00 ¼ 120 kPa). The corresponding initial state parameters are
summarized with details in Table 3.

The variations of the normalized cavity pressure (sa=p00) and
excess pore pressure at the cavity wall (Du=p00) during expansion
from a=a0 ¼ 1 to a=a0 ¼ 10 are shown in Fig. 5, for tests of soil
with various values of OCR. The cavity pressure increases rapidly at
the initial expansion stage with a=a0 < 3, which tends to approach
an asymptotic limit pressure at a larger expansion period. The
normalized cavity pressure appears to increase with OCR, and
similar trends were also reported by Sivasithamparam and Castro



Fig. 3. Solving procedures for soil particle in plastic zone.

Table 2
Parameters of special case for comparison of present solution and MCC solution.

Soil model M Mc Me l k m N x C

SANICLAY e 1.2 1.2 0.15 0.03 0.278 1.2 1 0
MCC 1.2 e e 0.15 0.03 0.278 e e e

Note: s0h0 ¼ 100 kPa, s0v0 ¼ 160 kPa, v0 ¼ 2:09, u0 ¼ 100 kPa, OCR ¼ 1.

Fig. 4. Distributions of stress components of special case for comparison of present
solution and MCC solution.

Table 3
Stress conditions and material properties of the LCT clay involved in parametric
analysis. (Extended and revised from Chen and Abousleiman, 2012).

OCR s0h0 (kPa) s0v0 (kPa) u0 (kPa) K0 p00 (kPa) q0 (kPa) v0 G0 (kPa)

1 100 160 100 0.625 120 60 2.04 20358
3 120 120 100 1 120 0 1.98 19765
5 130 100 100 1.3 120 30 1.95 19489
10 144 72 100 2 120 72 1.91 19114

Note:Mc ¼ 1:18,Me ¼ 0:86, l ¼ 0:063, k ¼ 0:009, m ¼ 0:2, N ¼ 0:91, x ¼ 1:56,
C ¼ 16:
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(2018). The excess pore pressure at the cavity wall, as depicted in
Fig. 5b, shows generally a gradual increase at a=a0 < 4, and also
approaches the limiting value at notable expansion. The soil with a
larger value of OCR is found to have a higher limiting value of
normalized excess pore pressure. However, slight negative excess
pore pressure appears during the very early expansion with a=a0 <

1:1 for heavily overconsolidated soil with OCR ¼ 10, which is
consistent with those in Chen and Abousleiman (2012) and Li et al.
(2016b).

The distributions of effective stresses and excess pore pressure
at an expansion instant of a=a0 ¼ 2 are provided in Fig. 6, for all
cases with various values of OCR in the range 1e10. All stress
components are normalized by the initial effective mean stress p00,
and the radial distance of soil element to the cavity center r is



Fig. 5. Variations of (a) normalized cavity pressure and (b) normalized excess pore
pressure at cavity wall during expansion in soil with different values of OCR.

Fig. 6. Distributions of normalized stresses and excess pore pressure after undrained
expansion of a=a0 ¼ 2. (a) OCR ¼ 1, K0 ¼ 0:625; (b) OCR ¼ 3, K0 ¼ 1; (c) OCR ¼ 5,
K0 ¼ 1:3; (d) OCR ¼ 10, K0 ¼ 2.
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normalized by the current cavity radius a. For normally consoli-
dated clay (Fig. 6a), any degree of expansion causes the plastic
yielding, leading to an infinite plastic region. For the isotropically
consolidated clay with K0 ¼ 1 in Fig. 6b, the effective stresses
converge to an identical constant at far field of the elastic region for
undisturbed soil element after expansion. Stress changes at the
elastoplastic boundary are shown unsmooth, especially for the
circumferential stress. The radial stress in the elastic region de-
creases with radial distance, whereas the mean stress, vertical
stress and pore pressure remain constants during the elastic stage,
as reflected in Eq. (20). The effective stresses in the vicinity of the
cavity wall are uniform within the critical state regions, while the
excess pore pressure decreases almost linearly with the logarithmic
scale of the radial distance and the size of the critical state region
decreases with the value of OCR. The size of the plastic region is also
found to decrease with the overconsolidation ratio, and negative
excess pore pressure is shown in the distribution curve for heavily
overconsolidated clay (Fig. 6d). Note that the effective vertical
stress is not always the intermediate principal stress in the critical
state region, for example as shown in Fig. 6d, which was also re-
ported by Chen and Liu (2019) but is against that of Chen and
Abousleiman (2012), where the ultimate vertical stress equalled
to the average of radial and circumferential stresses.

Correspondingly, Fig. 7 presents the distributions of aniso-
tropic parameters (a and b) after undrained expansion of a= a0 ¼
2 for all tests with various values of OCR. All parameters in both
critical state and elastic regions remain constant, while the
monotonical transitions appear in the plastic regions, indicating
the rotation and distortion of yield surface and plastic potential
with plastic yielding. It should be noted that the magnitudes of
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radial and circumferential parameters are identical at the elastic
stage (i.e. ar0 ¼ aq0 and br0 ¼ bq0), due to the initial vertical
cross anisotropy. They start to deviate from each other at the
elastoplastic boundary, and the amounts of changes of parame-
ters represent the degree of induced anisotropy. Following the
definitions of Eq. (19), the anisotropic parameters converge to
zeros in the elastic region for isotropically consolidated clay
(Fig. 7b). The radial parameters (ar and br) tend to increase with
expansion while the circumferential parameters show opposite
trends for all tests with the OCR in range of 1e10. It is interesting
to find that the vertical parameters (az and bz) decrease with
expansion for normally consolidated and lightly overconsolidated
soils, whereas they increase slightly with expansion for heavily
overconsolidated soil (Fig. 7d). However, the restrictive relations
of ar þ aq þ az ¼ 0 and br þ bq þ bz ¼ 0 hold true during the
whole stages of cavity expansion, as also reported by Chen and
Liu (2019). This is because the following equations maintain
zero throughout the expansion process:

_ar þ _aq þ _az ¼ trð _aÞf trðab �aÞ ¼ 0 (29a)

_br þ _bq þ _bz ¼ trð _bÞf trðbb �bÞ ¼ 0 (29b)
D
�
2s0z � s0r � s0

q

�
Dr

¼ Eð1� 2mÞðBr � BqÞðAr þ Aq � 2AzÞ
rH

¼ 3Eð1� 2mÞðBr � BqÞ
rH

��
s0r þs0q �2s0z

�� p0ðar þaq �2azÞþ1
3

vg
vqL

�
vqL
vs0r

þ vqL
vs0

q

� 2
vqL
vs0z

�	
(30)
The effective stress paths (ESP) of cavity expansion in both
normally consolidated and heavily overconsolidated soils are
depicted in the p0 � q plane with normalization of the initial
effective mean stress (Fig. 8). The initial stress states, represented
by the notation ‘O’ in the figure, are located at the K0-line (q=p0 ¼
3j1 � K0j=ð1 þ 2K0Þ) for K0-consolidated soil, and both initial yield
and plastic potential surfaces plotted in dash lines intersect at point
‘O‘. As for critical-state theory, the hardening/softening behaviour
of soil is associatedwith stress ratio h (q=p0) rather than shear stress
q according to Wood (1990). The expansion for normally consoli-
dated soil (Fig. 8a) causes immediately plastic yielding with rota-
tion and distortion of yield and plastic potential surfaces. The ESP
describes the evolutions of effective stresses during undrained
expansion, and clearly reflects the hardening behaviour (increase of
stress ratio h) with the loading history of cavity expansion. The
stress state approaches to the final point (’F’ in the figures) at the
critical state line (CSL). It should be noted that the ESP does not
intersect with the final potential surface because the extension of
the potential surface from p0 axis is much smaller during loading
than its final state (Fig. 8b). For heavily overconsolidated soil in
Fig. 8b, the vertical elastic trajectory is firstly shown to reach its
initial yield condition at the ‘dry’ side of the CSL (q=p0 > M). Plastic
softening behaviour (decrease of stress ratio h) is then observed
during the plastic stage, and the stress path eventually terminates
at a critical state as well.

In terms of the anisotropic stress condition in conjunction with
the distortion and rotation of yield and plastic potential surfaces,
the ESPs are depicted in the deviatoric (p) plane (Fig. 9), for both
normally consolidated and heavily overconsolidated soils. The
initial ‘O’ points along the s0z axis indicate the K0 stress anisotropy,
and the axisymmetric location of the initial plastic potential implies
the initial cross-anisotropy and depends on the magnitude of OCR
value. The shape of yield surface is a circle in the p plane, while the
plastic potential function gives a smoothed-triangular surface
owing to the non-associated flow rule and the 3D definition of
critical stress ratio in Eq. (5). The shape of the potential function is
concave as the ratio of Me to Mc in this study is only 0.729. This
value is less than the convexity criterion value 7/9 for Eq. (5) ac-
cording to the research on the convexness of Eq. (5) by Jiang and
Pietruszczak (1988). It should be noted that the initial yield sur-
face returns to a single point ‘O’ for normally consolidated soil
(Fig. 9a). The evolutions of yield and plastic potential surfaces are
clearly shown, along with the ESPs during undrained expansion.
Note that the horizontal elastic trajectory in Fig. 9b represents the
unchanged vertical stress during the elastic expansion, and the final
critical states are unnecessarily located at a specific Lode’s angle
(qL ¼ p=2), as reported by Sivasithamparam and Castro (2018,
2020). It should be noted that the elastic volumetric strain rate
plastic _εev is null at the critical state. Then considering the undrained
condition, the volumetric strain rate _εpv should also vanish (i.e.
tr ðvg =vsÞ ¼ 0) at the critical state, thus no unique relation be-
tween a and r can be found as indicated by Eq. (7b). Following Chen
et al. (2019), combing Eq. (27a-c) gives
Due to the existence of vg=3vqLðvqL =vs0r þvqL =vs
0
q
�2vqL =vs0zÞ

and the lack of determined relation between a and r, Eq. (30) does
not guarantee s0z ¼ ðs0r þs0

qÞ=2 and az ¼ ðar þaqÞ=2 at the critical
state and this is the reason that the ESPs would not always termi-
nate at qL ¼ p=2.

5.3. Effects of model constants

The test of normally consolidated clay in Table 3 (OCR ¼ 1) is
taken as a reference in this section, for investigating effects of the
three new model constants of SANICLAY (i.e. N, x and C), compared
with the MCC model. The parameter ‘N’ was used to define the
shape of the yield surface in Eq. (6) that introduces the non-
associativity compared with the plastic potential defined by Eq.
(4) with anisotropic value of M. A restrained condition was also
noted by Dafalias et al. (2006) with Me � N < Mc for predictions of
softening behaviour following K0-consolidation only in the
compression scenarios. The effects of N value between 0.91 and 1.1
are shown in Fig. 10, with respect to the changes of the stress dis-
tributions and the stress paths. The increase of N results in the rise
of all effective stresses (s0r , s0q and s0z) in both plastic and critical
state regions, whereas the magnitude of the increase of s0r is more
notable than the others. However, the excess pore pressure in the
plastic region is reversely smaller for tests with higher value of N. It
is clear to notice the effects on the stress paths on the normalized
p0 � q plane (Fig. 10b), while all tests seem to fall on an identical
critical state line (CSL) after expansion. The stress path rises with N
value, indicating the increases of mean and deviatoric stresses
during expansion. The stress paths in the p plane are depicted in
Fig. 10c, and the critical state surface at failure (CSLf) expands with
N again, showing plastic hardening. Note that the shape of plastic



Fig. 7. Distributions of anisotropy parameters after undrained expansion of a= a0 ¼ 2.
(a) OCR ¼ 1, K0 ¼ 0:625; (b) OCR ¼ 3, K0 ¼ 1; (c) OCR ¼ 5, K0 ¼ 1:3; (d) OCR ¼
10, K0 ¼ 2.

Fig. 8. Effective stress paths in p0 � q plane during undrained expansion of a=a0 ¼ 2.
(a) OCR ¼ 1, K0 ¼ 0:625; (b) OCR ¼ 10, K0 ¼ 2.
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potential and the critical state surface are analogues, owing to the
identical Lode’s angle dependent critical stress ratio. Moreover, the
final states after cavity expansion are located at the same Lode’s
angle, giving the identical CSL in Fig. 10b, since the rotational
hardening is not affected by the value of N.

The parameter ‘x’was introduced to define the ‘attractor’ tensor,
for a, that accounts for the anisotropy in the plastic potential. In
Fig. 11, it shows the influences of x on the stress distributions and
the stress paths of cavity expansion. When x varies between 1 and
2, the influence on the distributions of effective radial and
circumferential stresses and the excess pore pressure is relatively
limited, while the decrease of effective vertical stress with the
magnitude of x is more distinct in the plastic and critical state re-
gions. The stress paths in the p0 � q plane (Fig. 11b) show that both
effective mean and deviatoric stresses at failure decrease margin-
ally with x, whereas the stress ratio at the critical state appears to
increase slightly with x. It is worth noting that the CSL differs from
each other, despite the identical stress ratios at the critical state in
compression and extension (i.e. Mc ¼ 1:18, Me ¼ 0:86). It is
attributed to the different rotational hardening of the plastic po-
tential with changes of x, and the critical stress ratio M depends on
Lode’s angle that can be observed from the p plane (Fig. 11c). The
ultimate Lode’s angle decreases nonlinearly with x, and the size of
the critical state surface at failure in the p plane reduces with x,
indicating less plastic hardening.

The parameter ‘C’ was adopted in Eqs. (7b) and (7d) for deter-
mination of the rates of evolutions for the anisotropy variables (i.e.
_a and _b), and Dafalias et al. (2006) suggested that the magnitude of



Fig. 9. Effective stress paths in p plane during undrained expansion of a= a0 ¼ 2. (a)
OCR ¼ 1, K0 ¼ 0:625; (b) OCR ¼ 10, K0 ¼ 2.

Fig. 10. Effects of N on (a) stress distributions after cavity expansion; (b) stress paths in
p0 � q plane; (c) stress paths and critical state surfaces in p plane.
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C is usually between 3 and 20 for various clays. The effects of C are
presented in Fig. 12, with the variation of C between 11 and 21.
Higher effective stresses are noticed for tests with larger C value,
and the excess pore pressure in the critical state region increases
slightly with C. Fig. 12b shows that the stress paths in the p0� q
plane for cavity expansion rise with C value, and the stress ratios at
failure are quite close with a tiny growth against C. It is also illus-
trated in Fig. 12c with the stress paths in the p plane, providing
larger critical state surfaces and lower Lode’s angles at failure for
tests with higher C value.
It is noticed that the model constants have significant effects on
the stress distributions and paths during the undrained cavity
expansion, and the uniqueness of the critical state is affected by the
anisotropy and the evolution laws. The developed solution can
provide more possibilities for accurate predictions and back-
calculations, with considerations of K0-consolidation and the
stress-induced anisotropy. The proposed solution in SANICLAY is
rigorously formulated, and the governing differential equations are



Fig. 11. Effects of x on (a) stress distributions after cavity expansion; (b) stress paths in
p0 � q plane; (c) stress paths and critical state surfaces in p plane.

Fig. 12. Effects of C on (a) stress distributions after cavity expansion; (b) stress paths in
p0 � q plane; (c) stress paths and critical state surfaces in p plane.
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numerically solved for the stress and strain fields around the
expanded cavities. Further considering the rate-dependent behav-
iour and destructuration upon loading, the presented framework is
thus suitable for extensions using other SANICLAY based soil
models (e.g. Taiebat et al., 2010; Seidalinov and Taiebat, 2014;
Rezania et al., 2016). The current solution without introducing any
assumptions, along with the provided source code, can also
potentially serve as a benchmark for the extended analytical
solutions and for the simplified numerical simulations of cavity
expansion problems.

6. Conclusions

A rigorous semi-analytical solution of undrained cylindrical
cavity expansion in the SANICLAY model is proposed in this paper,
considering the K0-consolidation and the stress-induced
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anisotropy. The corresponding MATLAB source code is attached to
facilitate the use of the solution and to serve as a benchmark for
validations and extensions. Comparing to the MCC model, three
model constants were introduced to include the 3D strength, non-
associativity, rotational and distortional hardening, and the evolu-
tion laws in the multiaxial stress space. By utilizing a time variable
r, both the position derivative and particle derivative can be con-
verted to the same framework, thus the time variable-based solving
technique can be used for both undrained and drained cavity
problems. The exact derivation yields to the governing first-order
differential equations, and the stress and strain distributions
around the cavity after a certain expansion can be obtained effec-
tively for all elastic, plastic and critical state regions, by adopting
the Runge-Kutta method. The developed solution is firstly validated
against the well accepted MCC solution, by setting constants for
model recovering. Four tests in Lower Cromer Till clay with various
overconsolidation ratio or alternatively the at-rest earth pressure
coefficient K0 are then conducted to examine the influences on the
cavity pressure curves, stress distributions, evolutions of aniso-
tropic parameters, and stress paths. The 3D evolutions of yield
surface and plastic potential during cavity expansion in
K0-consolidated clays are accurately captured by the solution in a
non-associated anisotropic model without introducing assump-
tions and complexities. The effects of newmodel constants are also
investigated, indicating the abilities with various stress paths,
critical state surfaces and Lode’s angles at failure. The proposed
procedure is also capable for further extensions, and the solution is
potentially useful for verifying numerical results and for back-
analyses of geotechnical problems, including pressuremeter tests
and pile installation.
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