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a b s t r a c t

The data-driven phenomenological models based on deformation measurements have been widely
utilized to predict the slope failure time (SFT). The observational and model uncertainties could lead the
predicted SFT calculated from the phenomenological models to deviate from the actual SFT. Currently,
very limited study has been conducted on how to evaluate the effect of such uncertainties on SFT pre-
diction. In this paper, a comprehensive slope failure database was compiled. A Bayesian machine learning
(BML)-based method was developed to learn the model and observational uncertainties involved in SFT
prediction, through which the probabilistic distribution of the SFT can be obtained. This method was
illustrated in detail with an example. Verification studies show that the BML-based method is superior to
the traditional inverse velocity method (INVM) and the maximum likelihood method for predicting SFT.
The proposed method in this study provides an effective tool for SFT prediction.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Due to the difficulty in precisely obtain the physical models for
revealing the effects of complex factors such as external environ-
ments, geological conditions and human activities on the slope
failure (Crosta and Agliardi, 2002; Intrieri and Gigli, 2016; Kothari
and Momayez, 2018; Kardani et al., 2021), data-driven phenome-
nological models based on deformation measurements have been
widely used to predict the slope failure time (SFT) (Petley et al.,
2005; Mufundirwa et al., 2010; Federico et al., 2012, 2015; Xue
et al., 2014). Two categories of uncertainties may exist in the
phenomenological models (Zhang et al., 2020a), i.e. the observa-
tional uncertainty caused by factors including measurement error
and external disturbance (Mazzanti et al., 2015; Intrieri and Gigli,
2016; Carlà et al., 2017), and model uncertainty caused by as-
sumptions associated with the phenomenological models (Carlà
et al., 2018; Kothari and Momayez, 2018). Due to the existence of
the above uncertainties, the predicted SFT calculated from a data-
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driven model could deviate from the actual SFT (e.g. Venter et al.,
2013; Federico et al., 2015).

Recently, efforts have been made to consider the effect of un-
certainties on SFT prediction. (Manconi and Giorden, 2015, 2016)
assessed the confidence interval (CI) and forecast reliability of the
estimated SFT through a bootstrapping resampling strategy
considering the influence of the observational uncertainty. Intrieri
and Gigli (2016) evaluated the reliability of the SFT prediction by
comparing the predictions from several competing phenomeno-
logical models at the same time, through which the influence of the
model uncertainty on time-to-failure analysis was considered.
Zhang et al. (2020a) suggested a maximum likelihood method in
which both the effects of observational and model uncertainties on
the SFT were considered based on several simplified assumptions.
When such assumptions are not valid, how to explicitly consider
both model and observational uncertainties when predicting the
SFT remains a challenging task.

The Bayesian machine learning (BML) refers to a data-driven
method, which can improve modeling capability and prediction
performance based on Bayes’ theorem. As it is flexible in repre-
senting uncertainties from different sources and powerful in
dealing with complex real-world data, it has been popularly
adopted in different fields. The usefulness of the BML has been
demonstrated in many studies (Shirzadi et al., 2017; Ching and
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tjcce_hujz@tongji.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrmge.2021.09.010&domain=pdf
www.sciencedirect.com/science/journal/16747755
http://www.jrmge.cn
https://doi.org/10.1016/j.jrmge.2021.09.010
https://doi.org/10.1016/j.jrmge.2021.09.010
https://doi.org/10.1016/j.jrmge.2021.09.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Schematic of the observational and model uncertainties in the SFT prediction.
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Phoon, 2019; Contreras and Brown, 2019; Wang, 2020; Ma et al.,
2021).

The objective of this paper is to develop a BML-based method
for probabilistic prediction of SFT, which can effectively overcome
the limitations of the maximum likelihood method as suggested in
Zhang et al. (2020a). The proposed method will not only provide a
chance to examine the effect of the simplified assumptions in the
maximum likelihood method for SFT prediction, but also offer a
tool to predict the SFTwhen themaximum likelihoodmethod is not
applicable.

The paper is organized as follows. First, the uncertainties rele-
vant to SFT prediction are explained, and the key assumptions
involved in the maximum likelihood method are discussed. Then,
Bayesian methods are suggested to learn the model and observa-
tional uncertainties, through which the probability distribution of
the SFT can be determined. Thereafter, with an example, the pro-
posed method is illustrated in detail. Finally, the proposed method
is compared with the traditional method for SFT prediction, i.e. the
deterministic method and the maximum likelihood method. The
suggested method in this paper provides a versatile tool for SFT
prediction considering both the slope-specific information and the
information from other slopes.

2. Uncertainties involved in SFT prediction

Many phenomenological models have been suggested for SFT
prediction, e.g. Saito (1969)’s method based on the plot of time vs.
strain or displacement, the inverse velocity method (INVM) based
on the plot of time vs. reciprocal of the velocity (R) (Fukuzono,
1985), the slope gradient method via the plot of velocity vs. the
value of velocity multiplied by time (Mufundirwa et al., 2010), and
the tangential angle method using the transformed plot of
displacement vs. time (Xu et al., 2011). A comprehensive reviewand
comparison of methods for SFT prediction have been conducted in
Federico et al. (2015). Among these methods, the INVM has been
widely used because it is easy to use and the interpretation of re-
sults is intuitive. In addition, as it can be expressed in a linear form,
efficient machine learning algorithm can be developed based on
this method. In this paper, the INVM is considered. The suggested
method may also be potentially applicable to other methods such
as Saito’s method and the slope gradient method, in which the
phenomenological models can also be expressed in a linear form. In
the following, the INVM will be briefly described.

It is empirically shown that the plot of the reciprocal of the
velocity vs. time often approaches linearity, especially in the critical
stage of failure (Rose and Hungr, 2007). Assuming that the recip-
rocal of the velocity is a linear function of the time at the pre-failure
stage of the slope, the relationship between the reciprocal of the
velocity and the SFT can be expressed as follows (e.g. Fukuzono,
1985; Voight, 1988; Rose and Hungr, 2007; Carlà et al., 2017).

R ¼ Aðtc � tÞ (1)

where R and t represent the reciprocal of the velocity and the time,
respectively; and A and tc are the parameters to be calibrated.

The pre-failure stage is often defined as the stage after the point
of onset of acceleration (OOA) (e.g. Dick et al., 2014; Carlà et al.,
2017). Fig. 1 illustrates how to determine the SFT by the INVM.
Comparing Eq. (1) with Fig. 1, it is shown that tc is indeed the
intercept of the fitted R-t linear relationship with the time axis.
Assuming that the velocity of the slope movement is infinite when
the slope failure occurs, tc can be interpreted as the SFT predicted
from the INVM. To derive an efficient algorithm for model uncer-
tainty characterization, Eq. (1) can be rearranged to a linear rela-
tionship of unknown parameters as follows:
t ¼ tc � BR (2)

where B is a coefficient associated with the slope of the R-t curve.
As shown in Fig. 1, the scattered observational data points

around the straight line represent the observational uncertainty.
The observational uncertainty can be modeled through a normal
random variable εo with the mean and standard deviation (SD) of
0 and so, respectively:

t ¼ tc � BRþ εo (3)

Due to the simplifiedmodeling assumptions, the intercept of the
R-t curve may not be exactly the actual SFT, as shown in Fig. 1. The
disparity between the calculated SFTand the actual one is called the
model uncertainty. Let ta represent the actual SFT. In order to
analyze the effect of model uncertainty, the ta related to the
calculated SFT tc is as follows (Zhang et al., 2020a):

ta ¼ tc þ εm (4)

where εm is a normal random variable with the mean and SD of mm
and sm, respectively.

To realistically predict the SFT, both themodel and observational
uncertainties should be taken into consideration. The maximum
likelihood method suggested by Zhang et al. (2020a) was used to
calibrate the above uncertainties. In the following text, the
maximum likelihood method will be briefly reviewed, and the key
assumptions involved will be discussed.
3. Review of maximum likelihood method

In Zhang et al. (2020a), the observational uncertainty modeled
based on Eq. (1) can be written as follows:

R ¼ Aðtc � tÞ þ εoML (5)

where εoML is a normal random variable.
The mean of εoML is 0 and its SD is soML. For ease of illustration,

let q ¼ {A, tc, soML}. Suppose n data points are obtained to calibrate
Eq. (5). Assuming that the observations are statistically indepen-
dent when the value of q is known, the likelihood function of q is
expressed as

lðqÞ ¼
Yn
i¼1

f

�
ri � Aðtc � tiÞ

soML

�
(6)

where f(∙) represents the standard normal probability density
function (PDF); and ri represents the reciprocal of the observed
velocity at time ti, i.e. the observed value of R.



Fig. 2. Bayesian network for model uncertainty calibration.
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Let q* represent the maximum value of q. According to the
principle of maximum likelihood, when the number of observa-
tions is large, q can be approximated as a multivariate normal
vector with a mean mq ¼ q* and a covariance matrix Cq, where Cq is
associated with the Hessen matrix of the logarithm of the likeli-
hood function of q at point q*. Note that tc is one of the elements of
q. Provided that the PDF of q is obtained, the PDF of tc, which is the
marginal PDF of q, can also be obtained.

In Eq. (4), the mean and the SD of εm, i.e. mm and sm, characterize
the model uncertainty. Let g ¼ {mm, sm}. Suppose r slopes are
collected to calibrate the model uncertainty. Let mcj and sci repre-
sent the mean and the SD of tc of the jth slope. Note that the values
of mcj and sci are calculated by means of the maximum likelihood
procedure introduced previously. Let dj represent the observed SFT
of the jth slope. Let d ¼ {d1, d2, ., dr}. Supposing the SFTs of all the
slopes are statistically independent, the likelihood function of mm
and sm is written as follows:

lðg j dÞ ¼
Yr
j¼1

f

0B@dj � mcj � mmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2cj þ s2m

q
1CA (7)

According to the principle of maximum likelihood, when the
number of slopes is large, the optimal values of mm and sm can be
derived by maximizing Eq. (7).

After the model and observational uncertainties are character-
ized, the mean and the SD of the SFT can be obtained. Assuming the
SFT follows the normal distribution, the cumulative distribution
function (CDF) of SFT is computed as follows (Zhang et al., 2020a):

Pðta < tÞ ¼ F

0B@t � mc � mmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2c þ s2m

q
1CA (8)

where F(∙) represents the standard normal CDF.
As mentioned above, the maximum likelihood method is

founded on the following assumptions:

(1) Both the model and the observational uncertainties are
estimated by means of the maximum likelihood procedure,
inwhich it is assumed that the amount of observed data is far
larger than the number of model parameters.

(2) When estimating the observational uncertainty, the distri-
bution of tc is assumed to be normal.

(3) When estimating the model uncertainty, only the best esti-
mate values of the model uncertainty parameters are figured
out. The uncertainties associated with mm and sm are not
considered.

(4) The distribution of SFT is assumed to be normal.

Therefore, although the above maximum likelihood method
suggested in Zhang et al. (2020a) is easy to use, it is necessary to
develop methods which can bypass the above assumptions. The
availability of such methods will not only provide a chance to
examine the effect of the simplified assumptions in the maximum
likelihood method for SFT prediction, but also provide a tool to
predict the SFT while the maximum likelihood method is not
applicable. In the following, we will introduce such a method
through BML. As will be shown, the proposed method in the paper
requires less assumptions and can provide predictions which
accord better with the observed SFT.
4. Machine learning of model uncertainty

4.1. Bayesian network

As the model uncertainty refers to the disparity between model
predictions and observed SFT, it can be studied through a system-
atic analogy between the predicted SFT and the observed one for
large amounts of slopes, which involves large amounts of uncertain
variables. As the Bayesian network is capable of modeling the
complex dependence relationships among a large set of uncertain
variables (e.g. Aguilera et al., 2011; Bartlett and Cussens, 2017), the
machine learning method proposed in this study will be developed
through a Bayesian network.

Like the maximum likelihood method, suppose that r slopes are
collected to learn themodel uncertainty. Fig. 2 depicts the structure
of the Bayesian network. In this figure, Bj, tcj and soj denote the
unknown parameters when analyzing the jth slope with the INVM
as given by Eq. (3). For the jth slope (j¼ 1, 2,., r), suppose there are
nj data points for calibration of the INVM. Let tji (i ¼ 1, 2, ., nj)
denote the ith observation time corresponding to the observed Rji
of the jth slope. According to Eq. (3) and the normal assumption on
εo, the conditional PDF of tji given Bj, tcj and s2oj can be written as

follows:

f
�
tji
��� Bj; tcj; s2oj� ¼ f

 
tji �

�
tcj � BjRji

	
soj

!
(9)

Let taj represent the actual SFT of the jth slope. According to Eq.
(4), when the values of mm, s2m and tcj are known, the conditional
PDF of taj is as follows:

f
�
taj
��� mm; s2m; tcj

�
¼ f

 
taj �

�
tcj þ mm

	
sm

!
(10)

In a Bayesian network, the nodes at the head and the tail of an
arrow are called the child node and the parent node, respectively.
The nodes without parents are called the root nodes. In Fig. 2, the
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root nodes include mm, s2m, Bj, tcj and s2oj. To perform the Bayesian

learning, the prior PDFs of the root nodes should be specified.
4.2. Prior PDF for the Bayesian network

In principle, the prior PDF of the random variables of the root
nodes should be settled according to the prior knowledge so that
the prior PDF of all variables can be obtained. When the prior
knowledge about the root nodes is lacking, non-informative priors
can be used (Del Castillo, 2007). On the other hand, when conjugate
priors are adopted, the involved computational work can be
significantly simplified (Del Castillo, 2007). Due to the above con-
siderations, conjugate prior distributions are adopted for the root
nodes in this study, which facilitate the development of an efficient
Gibbs sampling algorithm to learn the database of SFT. Based on the
Bayesian network and the normality of Eqs. (9) and (10), the con-
jugate prior PDFs for mm, Bj, and tcj are normal (e.g. Gelman et al.,
2013):

f ðmmÞ ¼ f

�
mm � mm

sm

�
(11)

f
�
Bj
	 ¼ f

 
Bj � mBj

sBj

!
(12)

f
�
tcj
	 ¼ f

 
tcj � mtcj

stcj

!
(13)

where mm and sm are the mean and the SD of mm, respectively; mBj
and sBj are the mean and the SD of Bj, respectively; and mtcj and stcj
are the mean and the SD of tcj, respectively. When mm, mBj and mtcj
take finite numbers and sm, sBj and stcj take large numbers, i.e. sm
/ þN, sBj / þN and stcj / þN, the above prior PDFs of mm, Bj
and tcj may be considered to be non-informative.

Based on the Bayesian network and the normality of Eqs. (9) and
(10), the conjugate prior PDFs for s2m and s2oj are scaled inverse chi-

squared distributions (e.g. Del Castillo, 2007; Gelman et al., 2013):

f
�
s2m

�
¼ Scale� Inv� c2

�
nm; s2m

�
(14)

f
�
s2oj

�
¼ Scale� Inv� c2

�
noj; s

2
oj

�
(15)

where nm and noj represent the degrees of freedom; s2m and s2oj are

the scale parameters; and Scale-Inv-c2(n, s2) denotes the scaled
inverse chi-squared distribution whose degree of freedom and
scale parameter are n and s2, respectively. When the degrees of
freedom are small and the scale parameters are finite, i.e. nm / 0þ,
noj / 0þ and 0 < s2m < þN, 0 < s2oj < þN, the scaled inverse chi-

squared distributions may be considered to be non-informative.
With the above two types of prior PDFs, one can obtain the

closed-form solutions of conditional distributions of random vari-
ables involved in the Bayesian network, which are summarized in
the Appendix. As the purpose of the Bayesian network is to learn
the model uncertainty, which are characterized by mm and s2m, the
key step is how to determine the posterior distributions of mm and
s2m. In the following, an efficient algorithm is described to draw
samples for the randomvariables in the Bayesian network, through
which the samples of mm and s2m can also be obtained.
4.3. Algorithm for machine learning

Let tj ¼ {tj1, tj2, ., tjnj
} (j ¼ 1, 2, ., r) denote the time when the

velocities are measured for the jth slope. For ease of presentation,
let T ¼ {t1, t2,., tr}, ta ¼ {ta1, ta2,., tar}, B ¼ {B1, B2,., Br}, tc ¼ {tc1,
tc2, ., tcr}, and So ¼ {s2o1; s

2
o2; ., s2or}. In this way, all the random

variables can be expressed as {mm, s2m, B, tc, So, T, ta}. According to
the chain rule and the Markov property of the Bayesian network
(e.g. Pearl, 1988; Neapolitan, 2004; Darwiche, 2009; Koller and
Friedman, 2009), the joint PDF of the variables involved in the
Bayesian network is expressed as follows:

f
�
mm; s2m; B; tc;So; T ; ta

�
¼ f ðmmÞf

�
s2m

�

$
Yr "

f
�
Bj
	
f
�
tcj
	
f
�
s2oj

�
f
�
taj
���mm;s2m;tcj

�Ynj

f
�
tji
���Bj;tcj;s2oj�

#

j¼1 i¼1

(16)

where f(mm), f(s2m), f(Bj), f(tcj) and f(s2oj) represent the prior PDFs of

mm, s2m, Bj, tcj and soj
2 , respectively; f(taj j mm, s2m, tcj) represents the

PDF of taj conditional on mm and s2m; and f(tji j Bj, tcj, s2oj) represents
the PDF of tji conditional on Bj, tcj and s2oj.

Let dji represent the observational value of tji (j ¼ 1, 2,., r; i ¼ 1,
2, ., nj), and let dj ¼ {dj1, dj2, ., djnj

} denote the data of the
observation time at the jth slope. Let saj denote the observational
value of taj (j ¼ 1, 2, ., r), i.e. the observed SFT of the jth slope. For
ease of presentation, let sa ¼ {sa1, sa2,., sar}, and D ¼ {d1, d2,., dr}.
When some of the variables are observed, the distribution of other
variables in the network can be updated (Pearl, 1988). Based on Eq.
(16), the conditional distribution of {mm, s2m, B, tc, So}, given T ¼ D
and ta ¼sa, is expressed as follows:

f
�
mm; s2m;B; tc;So

��� T ¼ D; ta ¼ sa
�

¼ f
�
mm; s2m; B; tc; So; T ¼ D; ta ¼ sa

	
f ðT ¼ D; ta ¼ saÞ

(17)

Eq. (17) sheds light on the posterior PDF of the variables of in-
terest in the Bayesian network, including mm and sm, i.e. the mean
and the SD ofmodel uncertainty. Note the dimension of the random
variables to be updated in Eq. (17) is 3r þ 2. If r ¼ 50, the number of
variables to be updated is 152. The number of variables to be
updated will increase as the number of slopes further increases.
Such a Bayesian problemwith high dimensions is generally difficult
to solve. In the suggested method, the Markov-chain Monte Carlo
simulation (MCMCS) is conducted to readily study the properties of
the posterior distributions. Particularly, the Gibbs sampler (e.g.
Geman and Geman, 1984; Ching and Phoon, 2019; Zhang et al.,
2020b) is adopted to construct the Markov chains. In a Gibbs
sampler, the samples of a variable are generated from the PDF of the

random variable conditional on other variables. Let {mð0Þm , s2ð0Þm , B(0),

tc(0), S
ð0Þ
o } be an arbitrarily chosen initial point of the Markov chain.

The following procedure shows how to conduct the Gibbs sampler.
Here k serves as the loop counter, which starts from 1:

(1) Draw a sample mðkÞm from its conditional distribution given the
current sample points of other variables on the Markov

chain, i.e. f(mðkÞm js2ðk�1Þ
m , B(k-1), tðk�1Þ

c , Sðk�1Þ
o , T ¼ D, ta ¼ sa);
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(2) Draw a sample s2ðkÞm from its conditional distribution given
the current sample points of other variables on the Markov

chain, i.e. f(s2ðkÞm jmðkÞm , B(k-1), tðk�1Þ
c , Sðk�1Þ

o , T ¼ D, ta ¼ sa);
(3) Loop through j ¼ 1, 2, ., r as follows:
(i) Draw a sample Bj
(k) from f(Bj(k) j mðkÞm , s2ðkÞm , B*j

(k-1), tðk�1Þ
c ,

S
ðk�1Þ
o , T ¼ D, ta ¼ sa), in which

B*j
(k-1) ¼ {BðkÞ1 , BðkÞ2 , ., BðkÞj�1, B

ðk�1Þ
jþ1 , ., Bðk�1Þ

r } represents

the vector consisting of all the elements of B except for Bj
at their current values;

(ii) Draw a sample tðkÞcj from i.e. f(tðkÞcj j mðkÞm , s2ðkÞm , Bj
(k), tðk�1Þ

c*j ,

S
ðk�1Þ
o , T ¼ D, ta ¼ sa), in which Bj

(k) ¼ {BðkÞ1 , BðkÞ2 , ., BðkÞj ,

Bðk�1Þ
jþ1 ,., Bðk�1Þ

r } represents the vector of Bwith the first

j elements updated, and tðk�1Þ
c*j ¼ {tðkÞc1 , t

ðkÞ
c2 , ., tðkÞcðj�1Þ,

tðkÞcðjþ1Þ, ., tðkÞcr } represents the vector consisting of all the

elements of tc except for tcj at their current values;

(iii) Draw the sample s2ðkÞoj from f (s2ðkÞoj j mðkÞm , s2ðkÞm , Bj
(k),

tcj(k), So*j
(k-1), T ¼ D, ta ¼ sa), in which tcj(k) ¼ {tðkÞc1 , t

ðkÞ
c2 ,., tðkÞcj ,

tðk�1Þ
cðjþ1Þ,., tðk�1Þ

cr } represents the vector of tc with the first

j elements updated, and S
ðk�1Þ
o*j ¼ {s2ðkÞo1 , s2ðkÞo2 , ., s2ðkÞoðj�1Þ,

s2ðk�1Þ
oðjþ1Þ ,., s2ðk�1Þ

or } represents the vector consisting of all

the elements of So except for s2oj at their current values.
(4) Let k ¼ k þ 1. Then return to step (1) unless the sufficient
samples are collected.

The implementation of the above algorithm requires the
analytical expressions of a series of conditional PDFs as mentioned
in Steps (1)e(3), which have been summarized in the Appendix.
With the above procedure, the samples of different variables in the
Bayesian network can be obtained, including those of mm and s2m.
When drawing samples with MCMCS, one should judge if the
Markov chain converges to the equilibrium state. Assessing the
convergence of a Markov chain is one of the most challenging
problems in MCMCS, and many methods have been suggested to
analyze the convergence of the Markov chain (e.g. Cowles and
Carlin, 1996; Brooks and Roberts, 1998; Kass et al., 1998; Sinharay,
2003). However, none of these methods can ensure the conver-
gence of a Markov chain within a finite number of samples. A re-
view and comparison of different techniques for convergence
checking can be found in Cowles and Carlin (1996). In practice, the
convergence is often checked empirically by observing if the Mar-
kov chain generates samples with stable statistics such as the
median and the correlation (e.g. Geman and Geman, 1984). If stable
statistics can be obtained, the number of samples in the Markov
chain can be considered sufficient (e.g. Gelman et al., 2013; Ching
and Phoon, 2019). In this paper, such an empirical method is
adopted. For ease of illustration, the dataset of these samples of mm
and s2m is denoted as S-1.

Note in addition to theMCMCS, approaches such as the Bayesian
updating with structural reliability method suggested in Straub and
Papaioannou (2015) and adaptive Bayesian updating with subset
simulation (e.g. Giovanis et al., 2017; Jiang et al., 2020) are also
increasingly used for solving high dimensional Bayesian problems.
Although MCMCS is used in this study, other approaches may also
be potentially useful to solve the model uncertainty characteriza-
tion problem as described in this study.
5. Machine learning of the observational uncertainty

In the preceding section, the model uncertainty in Eq. (4) is
calibrated through the Bayesian network. Its observational uncer-
tainty should also be calibrated when predicting the failure time of
a new slope. Let tcN, BN and s2oN denote tc, B and s2o of the new slope,
respectively. When applying Eq. (3) to a new slope, there are three
uncertain variables, i.e. tcN, BN, and s2oN. Let b ¼ (tcN, �BN)T. Suppose
at time tNi, the observed reciprocal of velocity is RNi, and there are
nN pairs of tNi and RNi. For ease of presentation, let tN ¼ (tN1, tN2, .,
tNnN)T and RN ¼ {RN1, RN2, ., RNnN}T. As the values of RN, b and s2oN
are given, the likelihood function is expressed as follows:

L
�
tN
���RN; b;s

2
oN

�
¼
YnN

i¼1

f

�
tNi � tcN þ BNRNi

soN

�
(18)

The conjugate prior distributions for s2oN and b are as follows
(e.g. Walter and Augustin, 2010):

f
�
s2oN

�
¼ Scale� Inv� c2

�
n0; s

2
0

�
(19)

f
�
b
��� s2oN� ¼ MVNormal

�
m0; s

2
oNL

�1
0

�
(20)

where n0 represents the degree of freedom; s20 represents the scale

parameter; m0 represent the mean; and s2oNL
�1
0 represents the

covariance matrix. When n0 / 0þ, 0 < s20 < þN and L0 / 0, the

above prior PDFs of s2oN and b may be considered to be non-
informative (Gelman et al., 2013). When the above conjugate
priors and the likelihood function are given, the posterior distri-
bution of s2oN and b are as follows (e.g. Korner-Nievergelt et al.,
2015):

f
�
s2oN

��� tN;RN

�
¼ Scale� Inv� c2

�
nN; s

2
N

�
(21)

f
�
b
��� s2oN; tN;RN

�
¼ MVNormal

�
mN;s

2
oNL

�1
N

�
(22)

where mN, LN, nN, and s2N are the parameters of the updated dis-
tribution. These parameters can be calculated analytically as
follows:

mN ¼
�
XTX þL0

��1�
L0m0 þXTXbb� (23)

LN ¼ XTX þ L0 (24)

nN ¼ n0 þ ðnN �pÞ (25)

s2N ¼ n0
nN

s20 þ
1
nN

�
tTNtN þmT

0L0m0 �mT
NLNmN

�
(26)

where X ¼ (1nN�1 RN) contains all the observed data; 1nN�1 ¼ (1,1,

.,1)T is the vector consists of nN 1’s; bb ¼ (XTX)-1XTtN; and p is the
dimension of b which equals 2 in this study. In the literature, X is
usually called the design matrix (e.g. Castillo et al., 2015). Based on
Eqs. (23)-(26), the posterior samples of b can be obtained, including
the samples of tcN. Note that the large sample assumption and the



Fig. 3. Displacement data of the Abbotsford slope (Adapted from Hancox, 2008).
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normal assumption about tcN are both not required in the suggested
method in this study. The above method is also called Bayesian
linear regression in the literature (Smith, 1973; Walter and
Augustin, 2010). Starting from k ¼ 1, the samples of tcN can be
drawn based on Eqs. (21) and (22) using the following procedure,
i.e. the procedure of the Gibbs sampler.

(1) Draw the sample s2ðkÞoN from the distribution as given by Eq.
(21);

(2) Draw the sample b(k) from the distribution as given by Eq.

(22) conditional on s2ðkÞoN . Note that tcN is the first element of

b. After the sample b(k) is drawn, the kth sample of tcN, i.e. t
ðkÞ
cN

can be obtained;
(3) Let k ¼ k þ 1. Then return to step (1) unless the sufficient

samples are collected.

For ease of illustration, the dataset of the samples of tcN is called
S-2 in this paper.
6. Failure time prediction of the new slope

Let taN represent the actual SFT of the new slope to be predicted.
Following Eq. (4), taN is assumed to follow the normal distribution
given the values of tcN, mm, and s2m, and its mean is tcN þ mm and its
SD is sm. Hence, its PDF conditional on tcN, mm, and s2m can be
written as follows:

f
�
taN

��� mm; s2m; tcN
�
¼ f

�
taN � ðtcN þ mmÞ

sm

�
(27)

As mentioned previously, the exact values of tcN, mm, and s2m are
unknown and are modeled as random variables. Previously, a
Bayesian network has been suggested to learn mm and s2m, and the
posterior samples of these two variables are stored in S-1. The
Bayesian linear regression method has been suggested to learn tcN,
and its posterior samples have been stored in S-2. Starting with
l¼ 1, the following procedure shows how to draw the samples of taN
based on S-1 and S-2:

(1) Draw samples of mm and s2m at random from S-1, which are
denoted as mðlÞm and s2ðlÞm , respectively;

(2) Draw a sample of tcN at random from S-2, which is denoted as
tðlÞcN;

(3) Draw the lth sample of taN, which is denoted as tðlÞaN here,
based on Eq. (27), i.e. f (taN j mðlÞm , s2ðlÞm , tðlÞcN);

(4) Let l ¼ l þ 1. Then return to step (1) unless the sufficient
samples are collected.
Fig. 4. Observed data of the reciprocal of the velocity of the Abbotsford slope after the
OOA point.
7. Suggested procedure for SFT prediction

To facilitate implementation, the procedure for predicting SFT
with the method suggested in this paper is summarized as follows:

(1) Learn the model uncertainty through the Bayesian network
based onwhich the samples of mm and s2m can be obtained. In
this step, the knowledge from slope failure data is learned.

(2) Learn the observational uncertainty associated with tcN
through Bayesian regression analysis of the monitoring data
at the new slope to be analyzed, for which the samples of tcN
can be obtained. In this step, the knowledge from the
monitoring data at the new slope is learned.
(3) Simulate the samples of the actual SFT with samples of mm,
s2m, and tcN based on Eq. (27). With these samples, the
histogram and empirical CDF of the SFT are obtained.

Notably, the calibration of the model and the observational
uncertainty are separate. One might be interested if the two types
of uncertainties can be calibrated simultaneously. Such an idea is
also tested. However, it turns out that when the two types of un-
certainties are calibrated together, the model is very difficult to
converge. Hence, the two-stage calibration method is used in this
paper.
8. An illustrative example of the abbotsford landslide

8.1. The Abbotsford landslide

The Abbotsford landslide is located in southwest Dunedin, New
Zealand (Hancox, 2008). The slope lies on a spur that rises at an
angle of 20�e25� for about 100 m and flattens toward the top. A
sand quarry modifies the southern end of the slope, and a prehis-
toric slide lies to the north. The underlying rock of the landslide is
comprised of mudstone, overlain by clayey to silty sand. Large
cracks were found between Edwards and Mitchell streets to the
west side of the slope in early July 1979. Fig. 3 shows the cumulative
displacement across the crack in Mitchell street determined by the
survey monitoring line from June 18 (t ¼ 0) to August 8, 1979. In
early July, the groundmoved about 10mm per day. Triggered by the
rainfall, the ground movements accelerated to about 650 mm per
day prior to the final movement. The compression rolls and cracks
with a length of 30 m also developed in the prehistoric slide area in
mid-July. The final movement of the slope lasted about 30min from



Table 1
The landslide database compiled in this paper.

No. Landslide Material Triggering factors Actual SFT
(d)

95% CI of SFT (d) Source

Maximum likelihood
method

BML-based
method

1 Abbotsford Rock Rainfall and groundwater 51.88 [49.76, 53.85] [48.40, 53.9] Hancox (2008)
2 Agoyama Rock Human activities 55.06 [53.11, 56.15] [53.26, 57.62] Saito (1979)
3 Allori Soil Excavation 1706 [1535.08, 1865.33] [1525.2, 1883.6] D’Elia et al. (1998)
4 Asamushi Rock Weathering and thermal metamorphosis 6.93 [5.77, 8.33] [5.88, 9.72] Saito (1969)
5 Baige Rock Long-term slope deformation and more

precipitation
2.74 [1.83, 4.34] [2.01, 5.63] Li et al. (2020)

6 Baishi Rock Rainfall and earthquake 200.98 [200.86, 203.72] [200.59, 204.84] Xu et al. (2011)
7 Bomba Soil Excavation 1036 [1035.24, 1044.8] [1032.7, 1047.5] D’Elia et al. (1998)
8 Ca’Lita (2004.11) Rock and

soil
Rainfall and weathering 140 [128.59, 148.31] [119.69, 158.18] Borgatti et al. (2006)

9 Ca’Lita (2005.04) Rock and
soil

Rainfall and weathering 147 [126.77, 160.62] [126.31, 162.51] Borgatti et al. (2006)

10 Cavallerizzo Rock and
soil

Rainfall and snowfall 6.12 [5.93, 8.87] [5.34, 10.74] Iovine et al. (2006)

11 Cowden Soil Marine erosion 163 [153.99, 179.91] [143.26, 190.09] Dixon et al. (2003)
12 Dangchuan#4 Loess Irrigation 121.2 [122.06, 126.75] [120.9, 125.98] Xu et al. (2020)
13 Daye Rock Human activities and rainfall 1282 [1268.32, 1280.07] [1267.1,

1282.07]
Xu et al. (2011)

14 Dosan Rock Erosion 3.12 [2.08, 4.61] [1.92, 6.01] Saito (1969)
15 Excavation C Rock e 207 [193.92, 207.05] [188.42, 214.33] Moretto et al. (2017)
16 Hanjiang Rock and

soil
Rainfall 184 [152.9, 215.6] [148.78, 219.96] Wang (2018)

17 Harmony 1C Rock Mining and blasting 41 [37.5, 42.22] [37.09, 43.97] Cahill and Lee (2006)
18 Huanglongxicun Loess Rainfall and human activities 5 [3.03, 5.87] [2.98, 7.25] Li et al. (2012)
19 Jimingsi Rock Human activities and rainfall 432 [429.32, 433.64] [429.2, 435.04] Xu et al. (2011)
20 Jinchuan Rock Excavation and blasting 814 [766.17, 859.9] [762.3, 864.82] Xu and Li (1986)
21 Jizukiyama Rock and

soil
Rainfall 11.72 [9.67, 12.02] [9.55, 13.51] Hayashi et al. (1988)

22 Kagemori Rock Rainfall 405 [397.45, 410] [395.62, 412.46] Segalini et al. (2018)
23 Kensal Green Clay Groundwater and excavation 4758 [4566.24, 4762.97] [4549.8, 4789.1] Skempton (1977)
24 La Saxe Rock Snow melt 21 [19.79, 22.33] [19.83, 23.8] Manconi and Giordan (2016)
25 Letlhakane Rock Mining activities 48 [46.79, 49.85] [46.73, 51.34] Kayesa (2006)
26 Longjing Rock Excavation 20.25 [19.47, 21.97] [19.55, 23.29] Fan et al. (2019)
27 Luscar Rock e 249 [247.65, 251.62] [247.55, 253.11] Cruden and Masoumzadeh

(1987)
28 Maoxian Rock Rainfall 989 [972.44, 1005.13] [967.3, 1013.5] Intrieri et al. (2018)
29 Mt Beni Rock Rainstorm 248 [233.46, 253.03] [233.02, 253.35] Gigli et al. (2011)
30 Mt Owen Soil e 11.32 [10.7, 13.17] [10.65, 14.7] Harries et al. (2006)
31 Nevis Bluff Rock Excavation 286 [275.35, 298.49] [274.82, 300.47] Brown et al. (1980)
32 New Tredegar Rock Porewater 70 [68.38, 71.35] [68.24, 72.79] Carey et al. (2007)
33 Ohto Rock Rainstorm 86 [83.08, 85.77] [82.84, 86.21] Suwa et al. (2010)
34 Ooigawa Soil Erosion 9.17 [8.14, 10.7] [8.16, 12.14] Saito (1969)
35 Open cut mine in

Africa
Rock e 194.5 [174.97, 196.54] [173.07, 198.62] Harries et al. (2006)

36 Open pit mine in
Chile

e e 420 [394.65, 444.59] [390.81, 448.59] Xu et al. (2011)

37 Otomura Rock Rainfall 5.01 [3.96, 6.48] [3.95, 8.15] Fujisawa et al. (2010)
38 Preonzo Rock Rainfall 680 [674.88, 679.85] [674.45, 680.34] Loew et al. (2017)
39 Puigcercos Rock Progressive degradation of the stability

conditions
2198 [2162.9, 2229.11] [2142.5, 2250.5] Royán et al. (2015)

40 Roesgrenda Clay Short-term rainfall 3.45 [2.52, 5.04] [2.5, 6.54] Okamoto et al. (2004)
41 Ruinon Rock Rainfall 193 [181.16, 204.2] [180.36, 205.94] Crosta and Agliardi (2002)
42 Selborne Soil Groundwater 602 [592.43, 602.84] [589.33, 606.63] Petley (2004)
43 Stromboli Rock Volcano eruption 30.1 [28.76, 33.15] [28.8, 34.37] Carlà et al. (2017)
44 Takabayama Rock Rainfall and snowfall 62.06 [61.65, 64.14] [61.63, 65.56] Saito (1979)
45 Tama Rock e 3.9 [2.92, 5.59] [2.83, 7.03] Saito (1979)
46 Tianhuangping Rock Excavation blasting and rainfall 39 [36.63, 38.97] [36.3, 39.57] Mei (2001)
47 Tom Price’s North

Deposit
Rock Reduction in the thickness and quality of the

covering
132 [129.9, 134.96] [130.17, 135.93] Venter et al. (2013)

48 Town of Peace River Rock Rainfall 176 [164.53, 183.6] [165., 184.45] Kim et al. (2010)
49 Tuveras e e 294 [292.04, 296.86] [292.13, 298.05] Rochet (1992)
50 Vajont Rock Groundwater 70 [69.12, 72.63] [68.91, 73.63] Sornette et al. (2004)
51 Volterra Soil Water accumulation 9.6 [8, 10.57] [7.94, 12.12] Carlà et al. (2017)
52 Welland Clay Water seepage 7.69 [6.57, 9.12] [6.53, 10.54] Kwan (1971)
53 West Angelas’

Centre
Pit North

Rock Reduction in the thickness and quality of the
covering

223 [219.98, 222.59] [219.92, 223.37] Venter et al. (2013)

54 Xintan Rock Rainfall and groundwater 2393 [2391.34, 2399.50] [2382.8, 2407.3] Xue et al. (2014)
55 Yunotani Soil Snow melt 7.74 [6.5, 9.11] [6.46, 10.72] Saito (1979)
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Fig. 5. Histograms of the samples of different variables in the SFT prediction of the Abbotsford slope: (a) mm; (b) s2m; (c) tcN; and (d) taN.
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about 9 p.m. on August 8, 1979 (t ¼ 51.88 d). The slope mass with a
volume of 5 million m3 slid southeast down about 50 m, which
destroyed more than 20 houses and dammed Miller Creek.
Following the criterion introduced in Dick et al. (2014) and Segalini
et al. (2018), the OOA point is identified as t ¼ 39 d. The observed
data of the reciprocal of the velocity of this slope after the OOA
point are shown in Fig. 4.
8.2. Landslide database

To characterize the model uncertainty of the INVM, the
displacement data of other 54 landslides are collected. Together
with the Abbotsford landslide, a landslide database with 55 slopes
is formed. Table 1 summarizes the general information of the 55
landslides. As revealed from Table 1, both rock and soil landslides
are contained in the database as both types of slopes can be
analyzed through the linear INVM. The majority of the landslides
are triggered by water-related factors such as rainfall, groundwater
and snow melt, as well as production activities of human being.
Fig. 6. Difference between the calculated SFT in the deterministic INVM and the actual
one.
Next, the monitoring data of the 2nd-55th landslides in Table 1 will
be used as the training dataset for model uncertainty character-
ization, through which the SFT of the Abbotsford slope will be
analyzed.

8.3. Calibration of model uncertainty

First, the monitoring data of the 2nd-55th landslides in Table 1
are substituted into the Bayesian network, and the model uncer-
tainty is learned throughMCMCS. The length of theMarkov chain is
105. It was found that the Markov chain of each variable can soon
provide stable statistics with the number of samples increasing. To
remove the influence of the initial point, the first 5 � 104 samples
are discarded. Then the other 5 � 104 samples can be considered in
the convergence stage and are collected as the samples of the
posterior distributions. Fig. 5a and b shows the sample histograms
of mm and s2m, respectively. Computed with these samples, the
means of mm and s2m are 0.36 d and 0.37 d2, respectively; the SDs of
mm and s2m are 0.14 d and 0.15 d2, respectively. As is shown in the
above analysis, the uncertainties associated with mm and s2m are not
negligible.

8.4. Calibration of observational uncertainty

Substituting the data of Fig. 4 into Eqs. (23)-(26), one can then
draw samples for s2oN and tcN from the distribution defined by Eqs.
(21) and (22). The histogram of tcN is shown in Fig. 5c. The mean
and the SD of the calculated tcN are 50.7 d and 0.98 d, respectively.
Note that the value of sm is similar to that of the SD of tcN, indicating
that in this example, the observational and the model uncertainties
are of similar magnitudes, and hence both types of uncertainties
are important for SFT prediction.

In the maximum likelihoodmethod, tcN is assumed to follow the
normal distribution. After obtaining the samples from the Bayesian
method, it is interesting to assess if the normal assumption about
tcN is appropriate. Here, the Jarque-Bera test is conducted to verify



Fig. 7. Comparison of results from the maximum likelihood method and BML-based method: (a) Mean of tcN; (b) SD of tcN; (c) mm; (d) s2m; (e) Mean of taN; and (f) SD of taN.
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the normality of tcN, which serves as a normality goodness-of-fit
test suitable for large datasets (Jarque and Bera, 1987). The critical
value for the Jarque-Bera test is 5.97 at the 0.05 significance level. In
this example, the Jarque-Bera statistic is 47, which is far larger than
the critical value. Therefore, the null hypothesis that tcN is normal
should be rejected when the significance level is 0.05.
Fig. 8. Jarque-Bera statistics for tcN and taN.
8.5. SFT prediction

The histogram of taN is shown in Fig. 5d. For these samples, the
Jarque-Bera statistic is equal to 6.85, slightly larger than the critical
value when the significance level is 0.05. Thus, the null hypothesis
of normality of taN is rejected. Themean and the SD of taN are 51.12 d
and 1.42 d, respectively. Based on the samples of taN, the 95% CI of
the SFT is [48.4 d, 53.9 d]. The observed SFT of the Abbotsford slope,
51.88 d, is within the 95% interval of taN derived from the suggested
procedure.

For comparison, the predicted SFT is 51.63 d when the tradi-
tional deterministic INVM is used. When adopting the maximum
likelihood method, the 95% CI of the SFT is [49.77 d, 53.88 d]. The
95% CI predicted via the maximum likelihood method is narrower
than that predicted using the BML-based method in this study,
indicating that the uncertainty relevant to the SFT is under-
estimated in the maximum likelihood method. Nevertheless, the
SFT is located in the CI determined based on the BML-basedmethod
and the maximum likelihood method. In the following, a system-
atic comparison of the three methods will be conducted.

9. Comparison of methods for SFT prediction

To show the advantage of the suggested method, the SFT of each
slope in Table 1 was analyzed using the traditional deterministic
method, the maximum likelihood method, and the BML-based



Fig. 9. Comparison of the observed SFT and the 95% CI of the SFT: (a) Maximum
likelihood method; and (b) BML-based method.

J. Zhang et al. / Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 1188e1199 1197
method. When analyzing the SFT in Table 1 with the maximum
likelihood method or the BML-based method, the rest slopes were
used as the training dataset to learn the model uncertainty.

First, the traditional deterministic method was carried out to
forecast the SFT. Let tcN,d denote the SFT calculated by the tradi-
tional deterministic method. Let D¼ ta � tcN,d denote the difference
between the calculated SFT and the actual one. By definition, if
D > 0, the calculated SFT is earlier than the actual one, resulting in
false warnings. If D < 0, the calculated SFT is later than the actual
one, resulting in missing alarms (i.e. warnings that are too late).
Fig. 6 shows the values of D for each slope in Table 1. As can be seen
from this figure, there are 33 out of 55 slopes with D being positive,
and 22 out of 55 cases with D being negative. Among the 55 cases,
there are 30 cases with the D values less than 1 d, indicating that
the INVM is reasonable for SFT prediction. Nevertheless, it is also
observed that the greatest difference between the actual and the
predicted SFTs can be up to about 94 d. Such a difference can be
caused by both the observational and the model uncertainties. If
such uncertainties are not considered, the reliability of the pre-
diction from the traditional INVM is largely unknown.

Then, the maximum likelihood method and BML-based method
are used to analyze the SFTof each slope. Fig. 7a and b compares the
mean and the SD of tcN calculated through the maximum likelihood
method and the BML-based method, respectively. As is shown in
these two figures, the mean values of tcN predicted based on the
two methods are quite close. However, the SD predicted based on
the maximum likelihood method are generally smaller than those
calculated using the BML-based method, indicating that the
observational uncertainty is underestimated in the maximum
likelihood method.

Fig. 7c and d compares the values of mm and sm estimated by the
maximum likelihood method and the BML-based method respec-
tively. As mentioned previously, the uncertainties of mm and sm in
the maximum likelihood method are not considered. Hence, the
values of mm and sm predicted by the maximum likelihood method
are represented as points in these two figures. For comparison, in
the BML-based method, the uncertainties associated with mm and
sm are considered. The 95% CI of mm and sm estimated by the BML-
based method is shown in Fig. 7c and d. It is meaningful to notice
that the values of mm and sm estimated by the maximum likelihood
method are well within the 95% CI estimated based on the Bayesian
method. On the other hand, the uncertainties associated with mm
and sm are not negligible. Hence, the maximum likelihood method
also underestimates the model uncertainty.

Fig. 7e and f compares the mean and the SD of taN calculated by
the maximum likelihood method and the BML-based method. As
can be seen in Fig. 7e, the mean values of taN calculated using the
two methods are largely consistent. The values of SD calculated
with the maximum likelihood method are generally smaller than
those calculated by the BML-based method in this paper. This is
reasonable, since the model uncertainty is underestimated by the
maximum likelihoodmethod as well the observational uncertainty.

To check the normality assumptions about tcN and taN made in
the maximum likelihood method, Fig. 8 shows the Jarque-Bera
statistics for tcN and taN for each slope in Table 1. As mentioned
above, the critical value for the Jarque-Bera test for normality test is
5.97 at the significance level of 0.05. As can be seen from Fig. 8, the
Jarque-Bera statistics for tcN and taN for the slopes in Table 1 are
generally greater than 5.97. Therefore, the null hypothesis of
normality should be rejected.

Let taL and taU denote the lower and upper bounds of the 95% CI
of the predicted SFT, respectively. To facilitate verification, a
normalized actual SFT, ta,norm, is defined as follows:

ta;norm ¼ ta � 1
2 ðtaL þ taUÞ

1
2 ðtaU � taLÞ

(28)

By definition, if ta,norm is between �1 and 1, it indicates that the
95% CI of the predicted SFT covers the actual SFT. If ta,norm is smaller
than�1, the actual SFT is earlier than the lower bound of the 95% CI.
If ta,norm is greater than 1, the actual SFT is later than the upper
bound of the 95% CI of the SFT. Fig. 9a shows the normalized actual
SFT of all the 55 slopes when each of them is considered as the
verification example for the case of maximum likelihood method.
There are 6 slopes out of 55 slopes with the 95% CI of the predicted
SFT not covering the observed SFT. Fig. 9b compares the observed
SFT and the 95% CI of the SFT calculated by the suggestedmethod in
this study. In this case, the actual SFT of all the 55 slopes falls within
their predicted 95% CI, respectively. Overall, while the maximum
likelihood method can lead to reasonable prediction of the SFT, it
could be unconservative due to the underestimation of the model
and observational uncertainties. On the other hand, the BML-based
method suggested in this paper is based on less assumptions and
can provide more reliable predictions on the SFT.

10. Concluding remarks

Due to model and observational uncertainties, accurate SFT
prediction is challenging. In this paper, a BML-based method is
proposed to predict the SFT, in which both the model and obser-
vational uncertainties are considered. A comprehensive slope
database is compiled so that the model uncertainty can be learned
through the INVM. Compared with the BML-based method, the
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previous maximum likelihood method underestimates both the
model and observational uncertainties, and hence also un-
derestimates the uncertainty in the actual failure time. A compre-
hensive comparison among predictions from different methods
shows that the prediction from the BML-based method accords
better with the observations of slope failure phenomenon.
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