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An intelligent lithology identification method is proposed based on deep learning of the rock microscopic
images. Based on the characteristics of rock images in the dataset, we used Xception, MobileNet_v2,
Inception_ResNet_v2, Inception_v3, Densenet121, ResNet101_v2, and ResNet-101 to develop microscopic
image classification models, and then the network structures of seven different convolutional neural
networks (CNNs) were compared. It shows that the multi-layer representation of rock features can be
represented through convolution structures, thus better feature robustness can be achieved. For the loss
function, cross-entropy is used to back propagate the weight parameters layer by layer, and the accuracy
of the network is improved by frequent iterative training. We expanded a self-built dataset by using
transfer learning and data augmentation. Next, accuracy (acc) and frames per second (fps) were used as
the evaluation indexes to assess the accuracy and speed of model identification. The results show that the
Xception-based model has the optimum performance, with an accuracy of 97.66% in the training dataset
and 98.65% in the testing dataset. Furthermore, the fps of the model is 50.76, and the model is feasible to
deploy under different hardware conditions and meets the requirements of rapid lithology identification.
This proposed method is proved to be robust and versatile in generalization performance, and it is
suitable for both geologists and engineers to identify lithology quickly.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction lithology identification in the laboratory (Bai et al., 2019). Rock li-
Lithology identification is the basis for stratigraphy analysis,
resource/reserve estimation, and geological modeling. It can pro-
vide specific information about the adverse geological character-
istics of the engineering area (Xu et al., 2021a; Lin et al., 2022), and
also provide evidence for geohazards prevention and mitigation
(Martinez-Martinez et al., 2017). Lithology identification is an
important and fundamental indicator in geology, geotechnical
investigation, tunneling and underground engineering (Kearsey
et al., 2015; Kumar et al., 2019; Xu et al., 2021b). Rapid and accu-
rate identification of lithology has important engineering applica-
tions. In engineering practices, visual inspection of hand specimens
in field is insufficient, thus it is necessary to conduct accurate
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thology can be identified based on rock density, magnetism, con-
ductivity, and elemental content, using scanning electron
microscope (SEM), X-ray diffraction (XRD), and electron probe
microanalyzer (EPMA) (Izadi et al., 2017). In general, laboratory li-
thology identification requires high-precision equipment and a
specific working environment, and different equipment facilities
may generate different types of data (Vaneghi et al., 2021). Since
most equipment is costly and the experiment is time-consuming,
the thin section identification still remains the main method for
lithology identification in current engineering practices.

Thin section identification is a traditional method that uses
images to identify mineral lithology. Rock samples are cut into thin
slices, and the crystallization characteristics of minerals are then
observed under a polarizing microscope by the geologists. The
mineral composition of rocks is determined by measuring their
optical properties. Rock type, its genetic characteristics, and li-
thology can be determined based on the rock structure, rock fabric,
and mineral sequence. Compared with the experimental analysis,
the entire identification process is time- and cost-effective. How-
ever, due to the strong subjectivity of results and high requirements
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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for researchers (Fan et al., 2020), it is often challenging to identify
lithology (de Lima et al., 2020). If intelligent lithology identification
can be achieved, it can not only reduce the workload of researchers
but also enablemore practitioners to achieve efficient and objective
identification results.

With the rapid development in computer vision technology in
recent years (Duan et al., 2021; Isleyen et al., 2021), significant
progress has been made in the automatic identification of rock
microscopic images. At present, studies on automatic rock image
identification are primarily focused on image analysis and feature
extraction. According to the characteristics of rock texture, rock
fabric and particle distribution, feature extraction based on image
processing technology and lithology identification based on ma-
chine learning methods have been widely used. For instance,
Khorram et al. (2017) proposed a vision-based rock type and clas-
sification algorithm based on images of samples collected from a
limestone mine. The support vector machine (SVM) and Bayesian
techniques were used for classification, enabling the classification
of lithology in different stages of mining. Mlynarczuk et al. (2013)
used a polarization microscope to obtain digital images from thin
sections of nine types of rock samples. Four pattern-identification
methods (nearest neighbor, K-nearest neighbor, nearest mode,
and optimal spherical neighborhood) were used to automatically
identify rock samples. Singh et al. (2010) proposed a texture iden-
tificationmethod based on image processing of different basalt thin
sections. In their method, the red-green-blue color mode (RGB) or
grayscale images of rock samples were used as inputs, and the
estimated rock texture categories were outputs, which were pro-
vided by the multi-layer perceptron neural networks.

The aforementioned machine learning methods can greatly
reduce the subjectivity in lithology identification. However, ma-
chine learning based lithology identification still requires manual
image processing. To improve the automation of the whole iden-
tification process and reduce the difficulty of image processing,
deep learning has been gradually applied to intelligent lithology
identification based on rockmicroscopic images. For example, Polat
et al. (2021) used a transfer learning model based on Densenet121
and ResNet 50 to extract the features of microscopic images of
volcanic rocks to achieve a rapid and intelligent identification of six
types of volcanic rocks. Bai et al. (2019) proposed a model of rock
microscopic image classification based on visual geometry group
(VGG) to identify six common rock types, such as andesite, dolo-
mite, and granite. Because of the diversity and complexity of rock
features, many factors need to be considered when selecting a deep
learning model.

In previous studies, building a single model is often insufficient
to explain the best effect of convolutional neural network (CNN) in
image identification. When selecting a CNN, it is necessary to
consider not only the identification accuracy but also the identifi-
cation speed and portability of the proposed model. Considering
the diversity and abstraction of rock characteristics, we choose
seven kinds of CNNs commonly used in the image classification
area. The accuracy of the networks is improved through iterative
training. By loading the pre-trained model, the convergence speed
is improved, and the training difficulty is reduced. Accuracy (acc)
and frames per second (fps) are used as the evaluation indices for
assessing model identification accuracy and speed, respectively.
The well-trained classification models have good lithology identi-
fication ability on the rock microscopic data.

2. Comparison and selection of neural network for lithology
identification

We used the CNN to classify rock microscopic images. The main
process is to give an input image and use a deep learning model to
assign it with a label of a known mixed type. The input is a
collection of images under the microscope, and the label of each
image is one of the rock types. The training dataset is used to learn
different features of each type and then generate a microscopic
image classification model. The classifier in the model is used to
predict images in the testing dataset, and the labels predicted by
the classifier are compared against the ground-truth labels to
evaluate the quality of the model. In general, different CNNs have
different effects on different datasets. The selection of the CNN is
very important for lithology identification. By comparing the
structure and design characteristics of commonly used CNNs, the
best-performing networks in rock microscopic image datasets are
selected to build the classification model.

2.1. Comparison of different neural networks

By designing appropriate network structures, the performance
of CNNs can be improved. Increasing the image resolution can allow
for more information to be added to the network. Increasing the
width and depth of the network can enable the network to learn
more parameters. Adding skip connections can increase the
complexity of the network and therefore improve the representa-
tion of the network. Different network designs will bring different
benefits and will also have different effects on model parameters
and identification speed.

Prior to the series of inception networks, most popular CNNs
simply stack the convolutional layers to obtain better performance
by using deeper networks. The model requires to be transplantable,
suitable for lithology identification in practical conditions, and can
be used in different hardware environments. The inception model
is designed to build a network with an excellent local topology
structure with fewer parameters. Specifically, multiple convolution
and pooling operations are performed on the input image in par-
allel, and then all output results are spliced into a very deep feature
map (Szegedy et al., 2016a). The continuous improvement in the
inception series network has led to a variety of network versions.
Each version is an iterative evolution of the previous version.
Choosing the appropriate version helps optimize the speed and
accuracy. In this work, we selected Inception_v3 and Inception
ResNet_v2 (Szegedy et al., 2016b) for comparison.

In addition to the inception network, the residual structure in
ResNet is also a very important network design in the development
of CNNs. Empirically, the impact of network depth on model per-
formance is very important. As the number of network layers in-
creases, the network can extract more complex features. However,
experiments show that when the network is too deep, the accuracy
will not continue to improve. As a result, residual learning is used to
address the problem, whereby the residual unit is added through
shortcut connections (He et al., 2016a). Due to the complexity and
abstraction of rock characteristics, we selected ResNet-101 and
ResNet101_v2 (He et al., 2016b) for comparison. Experiments show
that the structure of ResNet101_v2 is superior to that of ResNet-101.

The above two design ideas for a CNN are: (1) deepening the
network (such as ResNet), and (2) widening the network (such as
the Inception network). Densenet starts with features and achieves
better results through the extreme use of features (Huang et al.,
2016). The narrower network structure and fewer parameters of
Densenet are largely due to the design of dense blocks. Through
dense connections, the transmission of features and gradients is
more efficient, helping reduce the disappearance of gradients.

When improving the network performance, we also needed to
consider the practicability of the network. Under different hard-
ware conditions, there are many limitations in computing perfor-
mance and storage space, and there are also high requirements for
computational speed. Therefore, it is important to achieve
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lightweight while ensuring network accuracy. We selected two
lightweight networks, i.e. MobileNet v2 and Xception (Chollet,
2017). MobileNet v2 abandons the conventional convolution op-
erations and introduces the depthwise separable convolution as the
basic unit. Experiments show that its overall effect is equivalent to a
standard convolution, but can greatly reduce the computation and
the number of model parameters, which is beneficial to reduce the
time and space complexity of convolution (Howard et al., 2017).
Xception adopts the depthwise separable convolution similar to
MobileNet (the specific structure is described in the following
section), which not only makes full use of hardware resources but
also maximizes the efficiency and performance of the network.

By comparing the effects of different CNNs, Xception is selected
as the backbone network of the microscopic image classification
model for intelligent lithology identification.
2.2. Network selection and evaluation

To evaluate the performance of different microscopic image
classification models, acc represents the evaluation index for ac-
curacy, fps represents the evaluation index for speed, and the
confusion matrix is used as the evaluation index to describe the
specific situation of microscopic image identification for different
rock types.

Since acc is generally used to evaluate the global accuracy of a
model, it is necessary to use the confusion matrix to comprehen-
sively evaluate the model classification performance on individual
categories. The x-coordinate in the confusion matrix represents the
statistical quantity of categories predicted by the model, and the y-
coordinate represents the statistics of the quantity of real labels.
Diagonals represent the probability of labels predicted by the
model that are consistent with the ground-truth labels. The larger
the diagonal value, the better the identification result from the
model on this type of rock (which is denoted by the darker color in
the visualization results). Off-diagonal values represent the prob-
ability of misprediction for other types of rocks, i.e. the lower value
indicates better a prediction result. True positive (TP) indicates the
number of positive samples correctly identified as positive; true
negative (TN) indicates the number of negative samples correctly
identified as negative; false positive (FP) indicates the number of
negative samples incorrectly identified as positive; and false
negative (FN) indicates the number of positive samples incorrectly
identified as negative. Then, acc can be expressed as

acc ¼ TP þ TN
TP þ TN þ FP þ FN

(1)

In addition to the detection accuracy, another important per-
formance index for the model evaluation is computational speed.
Rapid identification improves the model’s efficiency in engineering
applications. The comparison of fps needs to be done under the
same hardware condition. The larger the fps value, the faster the
speed of identification.
3. Xception-based intelligent lithology identification

On the basis of deep learning of rock microscopic images, an
intelligent lithology identification method is proposed. Rock
microscopic images are divided into training dataset and testing
dataset. First, The Xception-based microscopic image classification
model is used to directly extract advanced features through
convolution operation and pooling operation as the inputs to the
full connection layer, and then use these features to classify input
images based on the training dataset. Then, in the training, the
transfer learning method is used to improve the learning ability of
rock characteristics by loading the pre-trained weights. Finally, this
method is verified using the testing dataset to achieve the intelli-
gent lithology identification.

3.1. Microscopic image classification model based on deep learning

When deep learning is used to classify rock microscopic images,
rock features are often abstract representations of deep features
(Xu et al., 2021c). CNN has become the dominant deep learning
method to extract deep features (Men et al., 2017). Image identifi-
cation using CNN typically consists of four operations, i.e. convo-
lution, nonlinear processing, pooling, and classification. The
purpose of convolution is to extract features from the input images.
The feature map can be obtained by sliding the filter over the im-
age. For the same input image, different convolution operations
generate different feature maps.

As shown in Fig. 1, the lightweight deep learning model based
on the Xception architecture contains 36 convolution layers,
divided into the entry flow, middle flow, and exit flow. The entry
flow contains 8 convolution layers, the middle flow contains 24
convolution layers, and the exit flow contains 4 convolution layers
(Chollet, 2017). Xception is combined with deep separable convo-
lutions to learn deep features from a small fraction of data in the
image and preserve the spatial relationships between pixels.
Different fromother lightweight networks, the function of Xception
is not to compress the model, but to improve the performance.
Because it expands the network with an equivalent number of
parameters with Inception_v3. Therefore, the Xception-based
microscopic image classification model not only makes full use of
hardware resources but also maximizes the network efficiency and
performance, thus extracting richer rock features.

The main structure of Xception is a block stack containing a
residual network and separable conv Fig. 2 shows the structure of
two common blocks in Xception (see Fig. 1), mainly in the entry
flow and exit flow. In conventional convolution, the convolution
kernel is usually responsible for both channel and spatial rela-
tionship mapping. The separable conv module of Xception draws
the idea from the depth separable convolution, which separates the
two relationship mappings to make the entire convolution process
simpler and more efficient. Depth separable convolution includes
two operations: depthwise convolution and pointwise convolution.
The depthwise convolution performs the first convolution opera-
tion on a two-dimensional plane, after which three feature maps
are generated. The number of feature maps after the depthwise
convolution is the same as the number of channels in the input
layer, and thus the feature maps cannot be extended. In addition,
the convolution operation of each channel is independent, and the
feature information of different channels in the same spatial posi-
tion is not used effectively. Therefore, the pointwise convolution is
used to weight the feature maps of the previous steps in the depth
direction and combine them to generate a new feature map. When
the inputs are the same and the number of feature maps is the
same, the number of depth separable convolution parameters is
approximately 1/3 that of conventional convolution. Therefore, the
number of CNN layers with depth separable convolution can reach
deeper under the premise of the same number of parameters.

As shown in Fig. 2, the residual network is introduced into the
Xception block for operation. This depth separable convolution
structure with residual connection is easy to define and modify,
speeding up training and improving overall performance. The ReLU
nonlinear activation function is set after each operation in Xcep-
tion. Experiments show that using ReLU as an activation function
can avoid the disappearance of gradients in back propagation. At
the same time, part of the output will be 0 after the ReLU operation.
By forming a sparse network, the interdependence of parameters



Fig. 1. The network architecture of microscopic image classification model based on Xception.
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can be reduced and the overfitting issue can be alleviated.
Compared to the sigmoid and tanh activation functions, the deri-
vation of the ReLU function is simpler and computational more
efficient (Xu et al., 2021d). Therefore, ReLU is used as the activation
function to extract rock features in our classification models, which
can be expressed as

f ðxÞ ¼ maxð0; xÞ (2)

where f ðxÞ represents the activation function, i.e. a function that
maximizes the input value x of a neuron.

The output of the CNN is used as the input to the full connection
layer and is trained by back propagation. The full connection layer is
a traditional multi-layer perceptron. The high-level features of the
input image can be classified by the full connection layer. Adding a
full connection layer is also an easy way to learn the nonlinear
combination of these features. Finally, SoftMax is used as the acti-
vation function in the output layer, which converts any input vector
greater than 0 into a numeric vector between 0 and 1, with the sum
of the output probabilities obtained from the full connection layer
being 1. Experiments show that the most advanced features are
trained in combination, which is more effective for classification
tasks. Taking the output of the i th node as an example, the SoftMax
function can be expressed as

zi ¼ log 10
bPðy ¼ ijxÞ (3)

SoftmaxðziÞ ¼
eziPK
k¼1ezk

ði ¼ 1;2;.; kÞ (4)
Fig. 2. The Block_1 and Block_2 in Xception: (a) Block_1 and (b) Block_2.
where x is the input vector; zi is the output probability of the i th
node, and k is the number of output nodes, that is, the number of
types classified.

3.2. Network training

Compared with vehicle or face identification, there are some
special issues with rock microscopic image identification:

(1) Complex data acquisition. Rocks are formed in fundamen-
tally different ways and have clearly different physical and
chemical characteristics. There are three main types of rocks:
sedimentary, igneous, and metamorphic. Within each of
these types, these are many classes of rocks formed by
physical changes such as melting, cooling, eroding, com-
pacting, or deforming. Collecting a large number and variety
of samples manually is a time- and labor-consuming long-
term task.

(2) Complex feature representation. Different rocks have
different features because of their minerals, theways that the
rocks were formed, and the geological processes that act on
them since they are formed. The thin sections of rocks have
complex mineral crystallization and optical properties under
the microscope. It is necessary to determine the mineral
composition of a rock and study its structure and fabric. Also
we should analyze the generation sequence and genetic
characteristics of minerals. Therefore, the microscopic fea-
tures of a rock cannot be described only by simple features
such as contours and colors.

Transfer learning and a large amount of source domain infor-
mation are used to improve the prediction performance of the
training model in the target domain. The source domain refers to as
the set of annotated instances, and the target domain the set of
instances to be annotated. These two domains have different
feature spaces. Loading the ImageNet pre-trained model can
improve the convergence speed of gradient descent, and obtain a
model with a low generalization error. The pre-trained model has a
higher performance and faster training speed, which also reduces
the gradient disappearance or gradient explosion problem caused
by no initialization or improper initialization.

In order to fully use the dataset of rock microscopic images, data
augmentation operations such as random scaling, flipping, and
rotation are used in training to improve the learning ability of rock
features. The best model is verified through the testing dataset.

During the model training, we first initialized all filters, loaded
the pre-trained model, and set parameters and weights with
random values. Random initialization can break the symmetry of
the data so that different hidden units can learn different infor-
mation. The convolution network receives the training images as
the inputs and obtains different types of output probabilities
through the forward propagation (including convolution, ReLU,
pooling operations, and forward propagation of the full connection



Fig. 3. Examples of typical igneous rock microscopic images in the dataset: (a) Rhyolite; (b) Granite; (c) Granite pegmatite; (d) Andesite; (e) Diorite-porphyry; (f) Syenite; (g)
Anorthosite; (h) Stomatal basalt; (i) Amygdaloidal basalt; (j) Diabase; (k) Gabbro and (l) Peridotite.
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layer). The total error is calculated at the output layer, and the back
propagation is used to calculate the error gradient based on the
weight of the network. The gradient descent algorithm updates the
values, weights, and parameters of all filters to minimize output
errors. We repeated the steps above for all images in the training
dataset. The update step is obtained by calculating the adaptive
learning rate for each parameter by using the Adam optimizer.

Forward propagation is the process of using a SoftMax classifier
to calculate the probability score and obtain the corresponding loss
function. After obtaining the loss function, the microscopic image
classification model is optimized according to the loss function to
lower the loss value. We used cross-entropy as the loss function.
Cross-entropy measures the difference between two different
probability distributions for the same random variable. In deep
learning, it represents the difference between the real probability
distribution and the predicted probability distribution. The smaller
the cross-entropy, the better themodel predicts. Usually, SoftMax is
used to process outputs, and the sum of the predicted values of
multiple classifications is 1. Cross-entropy is used to calculate the
loss, which can be expressed as

L ¼ �
Xn
i¼1

pilnp
0
i (5)

where i is the index of outputs, L is the loss, pi is the actual prob-
ability distribution, and p0i is the predicted probability distribution.



Fig. 4. Examples of typical sedimentary rock microscopic images in the dataset: (a) Volcanic breccia; (b) Tuff; (c) Conglomerate; (d) Siltstone; (e) Shale; (f) Limestone; (g) Wormkalk
and (h) Dolomite.
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4. Case study and verification

To verify the fidelity of this method and model, 30 types of rock
microscopic images are selected for tests, and lithology identifica-
tion is conducted by using the microscopic image classification
model based on Xception. To compare the performance of different
CNNs in rock microscopic image datasets, ResNet101_v2, Mobile-
Net_v2, Inception_ResNet_v2, Inception_v3, Densenet121, and
ResNet-101 are used to establish microscopic image classification
models for comparative tests.

4.1. Dataset

We used a total of 30 rock types from three categories as the
dataset, which are common and representative. In our dataset, 12
types of igneous rocks are classified as Category A, including
rhyolite, granite, granite pegmatite, andesite, diorite porphyry, sy-
enite, anorthosite, stomatal basalt, amygdaloidal basalt, diabase,
gabbro, and peridotite. Eight types of sedimentary rocks are clas-
sified as Category B, including volcanic breccia, tuff, conglomerate,
siltstone, shale, limestone, wormkalk, and dolomite (tuff and vol-
canic breccia are in the form of sedimentary rocks). Ten types of
metamorphic rocks are classified as Category C, including black
slate, phyllite, granite schist, granite gneiss, garnet gneiss, quartzite,
serpentinized marble, greisen, skarn, and striped migmatite.
Samples are cut into thin slices, and then are photographed by
an Olympus DP74 polarizing microscope (orthogonal polarizing,
magnification: 10 times). Figs. 3�5 show an example of 30 types of
rock microscopic images in the dataset. Collecting thin section
images from the same rock in different angles can further improve
the model’s ability to extract rock features.

A total of 14,950 rock microscopic images are used to create
the dataset. The images are randomly selected with a ratio of 9:1
between the training dataset and the testing dataset. Specifically,
the training dataset has 13,463 images, and the testing dataset
has 1487 images. The number of training and testing datasets for
each rock type is listed in Table 1. In order to ensure that the
model is insensitive to the missing values of samples in training,
the weight relationship between different feature factors and
corresponding types is established. The uniformly distributed
rock microscopic images dataset is beneficial to improving the
identification accuracy and generalization ability of the model.
Images in the training set are labeled and trained according to
the ground-truth labels.

4.2. Network training

Deep learning models are used to identify rock microscopic im-
ages. In this paper, seven network models including Xception,
ResNet101_v2, MobileNet_v2, Inception_ResNet_v2, Inception_v3,



Fig. 5. Examples of typical metamorphic rock microscopic images in the dataset: (a) Black slate; (b) Phyllite; (c) Granite schist; (d) Granite gneiss; (e) Garnet granulite; (f) Quartzite;
(g) Serpentinized marble; (h) Greisen; (i) Skarn and (j) Striped migmatite.
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Densenet121 and ResNet-101 are used to build classification models,
which are trained under the framework of Keras in Python. Cross-
entropy is used as the loss function to further optimize the model,
and the pre-trained model is loaded to speed up the convergence
and improve the accuracy of the model. To better evaluate the seven
models, experiments must be performed under the same hardware
condition and themodel parameters are adjusted to be the same.We
used quad core CPU (2.6 GHz), and the NVIDIA geforce GTX 1080was
used as the graphics card. Through many experiments, we set the
batch size to be 10, the learning rate to be 0.0001, the learning rate
decay to be 0.0001, and the weight decay to be 0.0001. As shown in
Fig. 4, after 40 iterations, the losses of all seven models are basically
stabilized, indicating that the classification models can extract rock
features. In the training dataset, the loss value of Xception,
MobileNet_v2, Inception_ResNnet_v2, Inception_v3, and Dense-
net121 are stable at about 0.05, which have better convergence
compared with ResNet101_v2 and ResNet-101.

As shown in Fig. 6, Xception, Inception_ResNet_v2, Incep-
tion_v3, and Densenet121 have relatively modest loss performance
in the test set. After 40 iterations, Xception, MobileNet_v2, Incep-
tion_ResNet_v2, Inception_v3, and Densenet121 have an acc value
of 97.3%e97.6% on the training dataset. This also shows that the
model with better convergence yields better results in multi-class
image identification. As shown in Figs. 7 and 8 due to the
randomness of testing dataset, the performance of the seven
models on the test set is relatively volatile. Among them, Xception’s
acc is relatively stable, after 30e40 rounds of iterations, it remains
at a relatively stable value.



Table 1
Datasets for the image classification of rock lithology.

Category Rock type Number of
images

Training
dataset

Testing
dataset

A Rhyolite 440 396 44
Granite 546 492 54
Granite pegmatite 527 475 52
Andesite 477 429 48
Diorite-porphyrite 493 440 53
Syenite 480 432 48
Anorthosite 246 225 21
Stomatal basalt 541 487 54
Amygdaloidal
basalt

462 416 46

Diabase 461 415 46
Gabbro 457 412 45
Peridotite 504 454 50

B Volcanic breccia 522 470 52
Tuff 536 483 53
Conglomerate 489 441 48
Siltstone 533 480 53
Shale 513 462 51
Limestone 527 475 52
Wormkalk 474 427 47
Dolomite 528 476 52

C Black slate 502 452 50
Phyllite 523 471 52
Staurolite schist 530 477 53
Granitic gneiss 446 402 44
Garnet granulite 484 436 48
Quartzite 550 495 55
Serpentinized
marble

531 478 53

Greisen 527 475 52
Skarn 541 486 55
Striped migmatite 560 504 56

Fig. 6. The convergence loss and accuracy curves in the training dataset: (a) Loss and
(b) Accuracy.

Z. Xu et al. / Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 1140e1152 1147
4.3. Network evaluation

MobileNet_v2 is the fastest among the sevenmodels, processing
54.76 images per second. Xception ranks second, processing 50.76
images per second. MobileNet_v2 and Xception, as the typical
lightweight CNNs, can achieve the purpose of rapid lithology
identification. Although MobileNet_v2 is slightly faster than
Xception, this is achieved at the expense of model accuracy. Under
the premise of ensuring high accuracy, the Xception-based micro-
scopic image classification model can meet the rapid identification
of lithology in engineering practices. Although the other five
models are relatively slow, in general, deep learning-based rock
microscopic image identification has a significant advantage over
manual identification.

For model evaluation, the size of the model is also important.
When the hardware conditions are not the same, it is necessary to
consider the difficulty of deploying on different computing devices.
The smaller the model size, the less the calculations and the more
scenarios that can be applied. It is more suitable for a wide range of
laboratory environments. As shown in Table 2, MobileNet_v2 has
the smallest model (only 80.91 MB), followed by Densenet121
(130.36 MB), and Xception (311.56 MB). For models with small
sizes, hardware conditions are less demanding, so the portability of
the model is stronger. Fig. 10 shows the acc from the Xception-
based microscopic image classification model is the highest,
which can reach 98.65%. Similarly, acc of ResNet101_v2, Mobile-
Net_v2, Inception_ResNet_v2, Inception_v3, Densenet121, and
ResNet-101 can reach 94.81%, 96.43%, 97.64%, 97.71%, 97.17%,
91.99%, respectively.

The indicators commonly used in classification problems are
used to compare microscopic image classification models. Fig. 9
shows the comparison of the confusion matrices of different
models. As shown in Fig. 9a, The Densenet121-based microscopic
image classification model has a 19% probability of identifying
diabase as gabbro, and a 36% probability of identifying gabbro as
diabase. The probabilities of identifying siltstone as anorthosite,
phyllite, and serpentinized marble are 15%, 11%, and 19%, respec-
tively. Similarly, the probabilities of identifying rhyolite as anor-
thosite and diabase are 9% and 2%, respectively. The identification
acc of other rock types is higher than 90%, and 24 rock types out of
30 are identified completely correct.

As shown in Fig. 9b, there is a 27% probability that gabbrowill be
identified as diabase from the microscopic image classification
model based on Inception_ResNet_v2. The probability of identi-
fying gabbro as diabase is 17%, and the probabilities of identifying
black slate as volcanic breccia and dolomite are 10% and 2%,
respectively. The identification acc of other types of rocks is higher
than 90%, and 22 types of rocks are identified completely correct.

Fig. 9c shows that for themicroscopic image classificationmodel
based on Inception_v3, there is a 25% probability that gabbro is
misidentified as diabase. The probability of misidentifying gabbro
as diabase is 17%, and the probability of misidentifying conglom-
erate as siltstone is 12%. The identification acc of other types of
rocks is higher than 90%, and 24 types of rocks are identified
completely correct.



Fig. 7. The convergence loss and accuracy curves in the testing dataset using Xception,
Inception_ResNet_v2, Inception_v3, and Densenet121: (a) Loss and (b) Accuracy.

Fig. 8. The convergence loss and accuracy curves in the testing dataset using Resnet
101_v2, Mobilenet_v2, Resnet101: (a) Loss and (b) Accuracy.

Table 2
Test result of the seven classification models.

Method fps Size of model (MB) Input size Acc (%)

Resnet 101_v2 24.37 561.32 160 � 160 94.81
Mobilenet_v2 54.76 80.91 224 � 224 96.43
Inception_resnet_v2 10.7 685.09 299 � 299 97.64
Inception_v3 27.25 323.08 224 � 224 97.71
Xception 50.76 311.56 299 � 299 98.65
Densenet121 22.48 130.36 224 � 224 97.17
Resnet-101 25.32 561.74 224 � 224 91.99
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For the microscopic image classification model based on
MoblieNet_v2, as shown in Fig. 9d, there is a 40% probability that
gabbro is misidentified as diabase. The probabilities of mis-
identifying black slate as granite pegmatite, andesite, and volcanic
breccia are 8%, 2%, and 2%, respectively. The identification acc of
other types of rocks is higher than 90%, and 16 types of rocks are
identified completely correct.

Fig. 9e shows that, for the ResNet10-based microscopic image
classification model, there is a 25% probability that gabbro is mis-
identified as diabase. The probability of misidentifying gabbro as
diabase is 11%. The probabilities of misidentifying granite as sye-
nite, volcanic breccia, and garnet granulite are 2%, 2%, and 13%,
respectively. The probabilities of misidentifying granite pegmatites
as syenite, volcanic breccia, and garnet breccia are 2%, 2%, and 13%,
respectively. The probabilities of misidentifying andesite as amyg-
daloidal basalt, shale, dolomite, serpentinized marble, and greisen
are 6%, 2%, 30%, 2%, and 2%, respectively. The probabilities of mis-
identifying anorthosite as diorite porphyry, and garnet granulite
are 10% and 2%, respectively. The probabilities of misidentifying
volcanic breccia as granite, syenite, black slate, garnet granulite,
and quartzite are 2%, 6%, 4%, 2%, and 2%, respectively. The proba-
bility of misidentifying volcanic tuff as serpentinized marble is 24%.
The probability of misidentifying conglomerate as peridotite or
garnet granulite is 6%. The probabilities of identifying wormkalk as
shale, garnet granulite, and serpentinized marble are 9%, 5%, and
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20%, respectively. The probability of misidentifying serpentinized
marble as garnet granulite is 19%. The identification acc of other
types of rocks is higher than 90%, and eight types of rocks are
identified completely correct.

For the ResNet101_v2-based microscopic image classification
model, there is a 21% probability that gabbro is misidentified as
diabase, as shown in Fig. 9f. The probability of misidentifying
gabbro as diabase is 23%. The probabilities of misidentifying vol-
canic breccia as granite, syenite, shale, dolomite, black slate, and
garnet granulite are 19%, 2%, 2%, 4%, 6%, and 6%, respectively. The
probabilities of misidentifying black slate as granite and syenite are
6% and 8%, respectively. The probability of misidentifying serpen-
tinized marble as siltstone is 14%. The identification acc of other
types of rocks is higher than 90%, and 10 types of rocks are iden-
tified completely correct.

Fig. 9g illustrates that, for the Xception-based microscopic im-
age classification model, there is a 37% probability that gabbro is
misidentified as diabase. The identification acc of other types of
rocks is higher than 90%, and 23 types of rocks are identified
completely correct.
Fig. 9. The confusion matrices from different microscopic image classification models: (a) D
101; (f) ResNet101_V2 and (g) Xception.
Table 3 shows the average accuracy of microscopic image clas-
sification models based on Inception_ResNet_v2, Inception_v3,
Densenet121, MobileNet v2, ResNet101 v2, ResNet-101, and Xcep-
tion. The results show that Xception has the highest average acc
and the accuracy for the overall model can reach 98.02%. Models
based on Inception_ResNet_v2, Inception_v3, and Densenet121
perform well, with an average accuracy of 96.88%, 96.85%, and
94.75%, respectively. Models based on MobileNet_v2,
ResNet101_v2, and ResNet-101 perform modest, with an average
accuracy of 90.53%, 88.66%, and 89.18%, respectively. Again, these
results show that Xception has the optimum identification ability
on the rock microscopic image dataset used in this work among the
seven models, with the highest accuracy and stability.
5. Discussion

Because thin section identification usually depends on empirical
methods, and experience is difficult to be described in mathemat-
ical language. It is difficult to judgewhich traditional image features
play a universal role in lithology identification. Therefore, it is
ensenet121; (b) Inception_ResNet_V2; (c) Inception_v3; (d) MoblieNet_v2; (e) ResNet-



Fig. 9. Continued.

Fig. 10. The maximum accuracy of the lithology identification models.
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Table 3
Result of the average accuracy of the seven classification models.

Method Average of accuracy (%)

Resnet 101_v2 88.66
Mobilenet_v2 90.53
Inception_resnet_v2 96.88
Inception_v3 96.85
Xception 98.02
Densenet121 94.75
Resnet-101 89.18
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difficult to use traditional image processing methods to extract and
reduce the dimension of microscopic features. Due to the rotation
invariance and translation invariance of features, the CNN can
adaptively form filters, which are sensitive to various key deep
features in the learning process. Moreover, the CNN can fully
consider the relationship between the local pixels of the image.
Therefore, the CNN can better extract features and carry out
downstream classification tasks than traditional methods.

Different CNNs have different performances on different data-
sets, which requires to consider all aspects simultaneously. In this
paper, seven different CNNs are compared under the same hard-
ware condition. The model based on Xception has the highest ac-
curacy, with a fast calculation speed and appropriate scale.
Compared with other models, Xception uses depth separable
convolution that makes the CNN layer deeper but with the same
parameters, thus maximizing the network efficiency and perfor-
mance. During the training, the transfer learning method is used to
speed up the convergence of gradient descent by loading the
ImageNet pre-trained model. Finally, the model with low general-
ization error is obtained.

The identification of constituentminerals is fundamental to rock
microscopic image identification. Some rocks contain similar min-
eral components and thus have similar microscopic manifestations.
Whenusingdeep learningmodels for identification, theCNNmaybe
prone to insufficient extraction of features, and the extracted fea-
tures may not be targeted. These factors can eventually lead to
misidentification. For example, diabase and gabbro have a large
probability to be misidentified with each other in all seven models.
In addition, siltstone, black slate, volcanic breccia, and conglomerate
can also be misidentified. The characteristics of rock constituent
minerals can be further analyzed in futurework. At present, weused
commonCNNs, and transformer-based deep learningmodels can be
explored in future. In addition, considering the variety of rock types
and the different compositions of minerals, the dataset of rock
microscopic images can be expanded in future work.
6. Conclusions

We used rock microscopic images as the research object, and
combine the image identification technology with lithology iden-
tification. The main conclusions can be drawn as follows:

(1) An intelligent lithology identification method is proposed
using deep learning of rock microscopic images. The Xcep-
tion, MobileNet_v2, Inception_ResNet_v2, Inception_v3,
Densenet121, ResNet101_v2, and ResNet-101 are used to
establish the microscopic image classification models, and
rapid intelligent lithology identification can be realized.

(2) In terms of accuracy, the Xception-based model is compared
with six other models. The Xception model has the highest
accuracy of 98.65% and an average accuracy of 98.02%. In
terms of the identification speed and model size, the
Xception-based model is of medium size, and the fps of
Xception can reach 50.76, indicating high identification
speed.

(3) Transfer learning and data augmentation are used to expand
the data set, which helps optimize the training speed.
Compared with traditional methods, this method has a bet-
ter ability to extract features. Without preprocessing images,
the lithology identification process can be greatly simplified.
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