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Slope stability prediction plays a significant role in landslide disaster prevention and mitigation. This
study develops an ensemble learning-based method to predict the slope stability by introducing the
random forest (RF) and extreme gradient boosting (XGBoost). As an illustration, the proposed approach is
applied to the stability prediction of 786 landslide cases in Yunyang County, Chongqing, China. For
comparison, the predictive performance of RF, XGBoost, support vector machine (SVM), and logistic
regression (LR) is systematically investigated based on the well-established confusion matrix, which
contains the known indices of recall rate, precision, and accuracy. Furthermore, the feature importance of
the 12 influencing variables is also explored. Results show that the accuracy of the XGBoost and RF for
both the training and testing data is superior to that of SVM and LR, revealing the superiority of the
ensemble learning models (i.e. XGBoost and RF) in the slope stability prediction of Yunyang County.
Among the 12 influencing factors, the profile shape is the most important one. The proposed ensemble
learning-based method offers a promising way to rationally capture the slope status. It can be extended
to the prediction of slope stability of other landslide-prone areas of interest.

© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Landslide is one of the most severe natural hazards occurring in
mountainous areas, which has attracted increasing concern in
geotechnical and geological engineering researches, because it may
induce considerably detrimental social and economic impacts (e.g.
Huang et al., 2018, 2020a; Tang et al., 2019). China is one of the
countries with the most severe landslides in the world. For
example, there have been more than 5000 landslides or potential
landslides distributed in the Three Gorges Reservoir area since the
first impoundment in 2003 (Gu et al., 2017). Thus, it is of great
significance to evaluate the slope stability for designing remedial
and mitigation measures. Generally, for a specific slope, its stability
can be rationally and explicitly quantified by performing slope
stability analysis with existing commercial geotechnical software.
However, when facing numerous landslides or potential landslides,
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it is unrealistic to conduct slope stability analysis for all of them in
practice. In such case, slope stability prediction has gained popu-
larity in geotechnical engineering and geological engineering.

In the past few decades, many researchers have contributed to
slope stability prediction (e.g. Qi and Tang, 2018; Zhou et al., 2019;
Kardani et al., 2021; Pham et al.,, 2021; Zeng et al., 2021). For
example, Qi and Tang (2018) compared the predictive performance
of six integrated artificial intelligence approaches in slope stability
prediction based on the 168 slope cases in the literature. Zhou et al.
(2019) introduced the gradient boosting machine method to slope
stability prediction using a database that contains 221 actual slope
cases with circular mode failure. Kardani et al. (2021) developed a
hybrid stacking ensemble approach for improving the slope sta-
bility prediction based on synthetic and field data. Besides, it can be
observed that the previous studies have paid more attention to the
mechanical parameters and geometric variables. For example,
Mojtahedi et al. (2019) considered the four input parameters (i.e.
slope height, slope angle, cohesion, and friction angle). Gordan et al.
(2016), Mahdiyar et al. (2017), Koopialipoor et al. (2019), Luo et al.
(2021), and Pham et al. (2021) used the five inputs, i.e. slope height,
angle, cohesion, angle of internal friction, and unit weight (or peak
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ground acceleration). Qi and Tang (2018), Zhou et al. (2019),
Kardani et al. (2021), and Zeng et al. (2021) selected six influencing
factors (i.e. unit weight, cohesion, angle of internal friction, slope
angle, slope height, and coefficient of pore water pressure). It is well
recognized that slope stability is influenced by many factors, such
as mechanical parameters, geometric variables, topographic fea-
tures, and geological conditions. However, the latter two factors are
rarely considered. With the rapid advancement of remote sensing
technology and geological exploration technology, the topographic
features and geological conditions of a specified region can be ac-
quired rationally (Huang et al., 2020b; Ji et al., 2020). Benefited
from the fast development of computer technology, many machine
learning algorithms have been successfully applied to addressing
geotechnical-related problems and significant progress has been
achieved (e.g. Kamrava et al., 2020; Liu et al., 2020; Zhang et al.,
2020a, b; Kardani et al., 2021; Li et al., 2021; Wang et al., 2021).
With the application of machine learning, it is possible to reveal the
relative importance of topographic features and geological condi-
tions in slope stability prediction.

As a branch of machine learning, ensemble learning techniques
make full use of multiple predictors to form a superior one for
improving the performance of machine learning, which has
attracted increasing attention in geotechnical engineering (e.g.
Wang et al., 20204, b; Liu et al., 2021; Zhang et al., 2021a, b; Zhou
et al., 2021; Zhu et al., 2021). For example, Wang et al. (2020a)
proposed an extreme gradient boosting (XGBoost)-based reli-
ability analysis approach for calculating the failure probability of
earth dam slope. Zhang et al. (2021c) applied the random forest
(RF) and XGBoost to predicting the undrained shear strength of soft
sensitive clays. Zhou et al. (2021) compared the performance of six
hybrid XGBoost models in the prediction of tunnel boring ma-
chine’s penetration rate. Generally, ensemble learning techniques
can be broadly categorized into two groups according to their
structures, including bagging (parallel) and boosting (sequential)
(Zhang et al.,, 2021c). The RF mentioned above belongs to the
bagging method (Breiman, 2001; Xia et al., 2017) and the XGBoost
is developed within the boosting framework (Chen and Guestrin,
2016). Inspired by the contribution of previous researches, this
study tries to investigate the performance of these two well-known
ensemble learning techniques (i.e. RF and XGBoost) in the predic-
tion of slope stability.

This study aims to develop an approach to predict the slope
stability using the RF and XGBoost. As an illustration, the proposed
approach is applied to stability data of 786 landslide cases in
Yunyang County. The remainder of this paper starts with the
introduction of this area, followed by a brief description of the RF
and XGBoost. Finally, the performance of RF, XGBoost, support
vector machine (SVM), and logistic regression (LR) in the slope
stability prediction of Yunyang County is systematically explored,
and the feature importance of the 12 influencing factors is ranked.

2. Investigated area

The Yunyang County covers an area of approximately 3649 km?,
located in Chongqing, China. The shoreline of the Three Gorges
Reservoir in this area is approximately 707.8 km, accounting for
about 11% of the overall length (i.e. 6300 km).

2.1. Topographic conditions

Elevation accurately reflects the altitude of a specific
geographical location, and the visualized elevation map of Yunyang
County can be obtained from the ArcMap 10.2 software, as shown
in Fig. 1. According to the investigation report of geological disasters
in Yunyang County, this area contains numerous landslides, and

more landslides occurred in low altitude regions than that in high
altitude regions. Fig. 2a and b plots the distribution of the front
edge and back edge elevations, respectively. It can be seen that the
heights of landslide cases in Yunyang County are mostly between
200 m and 700 m, and the cases with an elevation of about 400 m
are the most.

The height describing the relative relief between the front edge
and back edge elevations is significantly related to the inner stress
of the slope, which plays a controlling role in slope stability.
Generally, higher slopes are accompanied by stronger disturbance
sensitivity. The combined effect of the slope height and angle is
crucial in slope stability. According to the distribution of the heights
shown in Fig. 2¢, heights of most slopes are between 40 m and
120 m, while those higher than 180 m account for a small
proportion.

The slope directly affects the amount of geomaterial deposited
on a slope and further affects the stability of the slope. The map of
slope angle can be obtained by ArcGIS software using grid analysis
to transform the coordinate system and extract the slope value in
the elevation figure (Fig. 3). Besides, Fig. 2d shows the distribution
of slope angle. It can be observed that the slope angles are mainly
between 10° and 30°, slopes with an angle more than 30° take up a
few parts and only one slope with angle more than 50°. Besides,
Fig. 4 also portrays the aspect map of the investigated area.

2.2. Geological conditions

Due to differences in tectonic movement, different rock masses
have different cohesions and shear strengths, which thus lead to
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Fig. 1. Elevation map of the investigated area.
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Fig. 2. Distributions of topographic features: (a) Elevation of front edge, (b) Elevation of back edge, (c) Slope height, and (d) Slope angle.

various evolution trends of slopes subject to the identical external
conditions. The statistics show that rock masses in the investigated
area are mainly mudstone, argillaceous limestone, sandstone,
sandy mudstone, and shale. According to the classification based on
rock hardness, slope rock masses in Yunyang County are divided
into extremely soft rock, soft rock, moderately soft rock, and
moderately hard rock. Fig. 5a plots the distribution of the four
types. It shows that moderately soft rock accounts for the highest
proportion while extremely soft rock is the lowest one.

Rock mass with larger inclination angle is more likely to suffer
weathering, denudation, and deformation, which thus result in
changes in the slope morphology. Fig. 5b shows the distribution of
inclination angle. It can be observed that the inclination angles are
mainly 5°—25° and the number of slopes decreases with the in-
crease in inclination angle when larger than 10°.

The dip direction is one of the three major factors that affect the
attitude of rock formations, as it determines the spatial orientation
of a layer. There are many dip directions of rock layers in this area
(Fig. 5c¢). The statistics show that slopes with north and south dip
directions are most common, which is mainly related to the
geographical location of Yunyang County.

Slope structures reflect the relative positions of the rock layers
in the slope. According to the intersection angle between the dip
and slope angles, the slopes can be categorized into five structures:
dip, anti-dip, oblique-dip, cross-dip, and horizontally layered slopes
(Fig. 5d). It is shown that the dip, anti-dip, and oblique-dip slopes

are the most common ones, followed by the cross-dip slope, while
the horizontally layered slope is the least one.

2.3. The features of landslide cases

The plane morphology and profile shape reflect the deformation
area and overall shape of the landslide, which can be obtained by
the projection method in geotechnical and geological engineering
researches. The plane morphology reflects the projection of the
landslide in the horizontal direction (i.e. x-y plane), while the
profile shape portrays the projection of the landslide in the vertical
direction (i.e. y-z plane). The statistics of different plane morphol-
ogies and profile shapes in the investigated area are illustrated in
Fig. 6a and b. Among the six types of plane morphology, the tongue
and irregular shapes are the dominant, followed by rectangular,
semicircular, laterally long, and dustpan shapes (Fig. 6a). As shown
in Fig. 6b, concave, convex, and flat shapes are the majority among
the five types of profile shapes.

Through the statistics of the landslide volume in this area, it can
be seen that the volumes of most slopes are in the range of 0—
500,000 m>, accounting for more than half of the total number
(Fig. 6¢). The number of landslides gradually decreases with the
increase of landslide volume. The engineering construction activ-
ities may exert adverse influence on slope stability. In the investi-
gated area, the main human activities involve underground
excavation, post-slope loading, vegetation destruction, slope
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Fig. 3. Map of slope angle of the investigated area.

cutting, and blasting vibration. The influence degree of each human
activity is defined as 1, and the influence degree will be super-
imposed when subjected to multiple activities. As plotted in Fig. 6d,
the undisturbed slopes and the slopes subjected to a single factor
account for a relatively large proportion, and a few landslides are
affected by two or three factors.

3. Methodology
3.1. XGBoost

The XGBoost uses a gradient boosting framework and is also a
decision-tree-based ensemble method (Chen and Guestrin, 2016),
which has been widely used in the renowned Kaggle competitions
due to its high efficiency and sufficient flexibility. The core principle
of this method is that it builds classification or regression trees
(RTs) one by one, and then the residuals of the previous trees are
used to train the subsequent model. It integrates the values
calculated from the previously trained trees to achieve a better
outcome in the training process. To avoid overfitting, the pruning
procedure is necessary, which reduces the size of a decision tree by
removing nodes that contribute little to target values. The predic-
tion is calculated as follows (Chen and Guestrin, 2016):

t
¥ =3 flx) = 3 + i) (1)
k=1
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Fig. 4. Aspect map of the investigated area.

where 371@ denotes the final tree model, y;‘*” is the previous tree
model, x; represents the features corresponding to the sample i,
ft(x;) is the newly generated tree model, and t is the total number of
base tree models.

It is important to select appropriate values of depth and number
of trees for achieving optimal performance. Accordingly, the
objective function Obj®) can be given by

t t
0bj® = > 1(yi,37) + > Q) (2)

i=1 i=1

where y; is the actual value, l(y,-,?lgt)) is the loss function describing
how well the model fit with training data, and Q(f;) is the penalty
term for regularization to avoid overfitting.

Following Chen and Guestrin (2016), the objective function can
be transformed into

t

0bj*) = Z[gift(xo%hifrz(xi) +Q(f) 3)

i=1

where g = 09, I(y;,3,“"") and h; = 05, Vi, 3,“7") are
the first and second-order partial derivatives of the loss function,
respectively. The penalty term Q(f;) is used to reduce complexity of
model, avoid overfitting, and further enhance the generalization
capacity. It is evaluated by
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where T is the number of leaves; w is the corresponding weight of
the leaf; and A and v are the coefficients, whose default values are 1

and 0, respectively.

3.2. RF

RF is a tree-based ensemble learning algorithm based on eval-
uations of several decision trees (Ho, 1995; Breiman, 2001). The
main function of RF is to combine the predicted results of many
decision trees to provide an ensemble result. In other words, the
final prediction can be obtained by averaging the results from all
decision trees, which may be more reliable and convincing in many
applications compared with a single decision tree. It uses random
sampling and construction of tree nodes to improve generalization
capacity and avoid overfitting (Guo et al., 2021). In this study, the
base evaluator of several RTs can be further specified. For every
branch of an RT, the mean of the data from the leaf nodes will be
calculated. The RTs will continue growing until the mean square
error (MSE) between each sample reaches the minimum or no
more features are available. To obtain an ideal RF model, two key
parameters should be optimized, i.e.

(4)
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(n_estimators) and the maximum depth of the RT (max_depth).
The RF can be applied to tackling classification and regression

problems, which has been widely used in geotechnical engineering

d).

with satisfactory performance (Guo et al., 2021; Zhang et al., 2021c,

3.3. Data preprocessing and performance measurement

Data preprocessing is an essential procedure for building a

model, because the original database may have missing values,
duplicate values, and outliers. In this study, the main steps for data
preprocessing are summarized as follows:

(1) Determine the factors influencing the slope stability, in

which the continuous and categorical variables should be
distinguished and the text-descriptive variables need to be
coded. Among the influencing factors selected in this study,
there are seven continuous variables, i.e. front edge and back
edge elevations, slope height, slope angle, inclination angle,
dip direction, and landslide volume. In addition, there are
five categorical variables, i.e. lithological property, structure
type, plane morphology, profile shape, and influence degree
of human activities. For the continuous variables, they are
not further coded as the established model can distinguish
their magnitude. For the categorical variables, since the
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Fig. 6. Distributions of slope features: (a) Plane morphology, (b) Profile shape, (c) Landslide volume, and (d) Influence degree of human activities.

model is not distinguishable for the text-descriptive features,
each categorical variable will be numbered, i.e. each cate-
gorical variable is represented by a number.

(2) Filter the original data. In this study, the missing values in the
database mainly exist in the feature of profile shape.
Considering that the strategy of filling missing values does
not necessarily conform to reality and has an impact on the
true statistical characteristics of the sample, we directly
deleted them. There are no repeated data in this new data-
base. At last, there are 786 sample data.

For the categorical variables, the numbers are simply used as a
label for denoting different categories. Accordingly, it may be un-
necessary to normalize these categorical variables, and thus
normalization procedure is not performed in this study. When the
number of features is relatively large, the feature selection gener-
ally needs to be taken into consideration. In this study, through
analyzing the influencing factors and data availability, 12 influ-
encing factors are used for establishing models and further
assessing the slope stability. To facilitate the coding and analysis,
these factors are numbered as listed in Table 1.

The database consists of 786 landslide sample data in Yunyang
County, which are randomly divided into two groups of data with
the ratio of 8:2, and accordingly, 628 of them are grouped into
training data and 158 into the testing data (Table 2). The training
and testing data are distinguished using different colors, which are
visualized in the regional map, as plotted in Fig. 7. It can be

Table 1

The number of influencing factors.
Influencing factor Number
Elevation of front edge F1
Elevation of back edge F2
Slope height F3
Slope angle F4
Lithological property F5
Inclination angle F6
Dip direction F7
Structure type F8
Plane morphology F9
Profile shape F10
Landslide volume F11
Influence degree of human activities F12

Table 2

Landslide dataset partition.
State Training data Testing data Total
Stable 34 5 39
Basically stable 543 140 683
Less stable 51 13 64
Sum 628 158 786

observed that these two groups of data are successfully randomly
divided, and in other words, these two groups of data meet the
requirement of uniform distribution.
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In the evaluation of model accuracy, the correct rate and error
rate are generally considered to assess the model performance.
However, these two indicators are not enough to comprehensively
describe the model accuracy. Thus, the confusion matrix is neces-
sary to be adopted to judge the correct rate and error rate of models
for each situation. The confusion matrix is a table used for evalu-
ating the good or poor performance of a classification model, where
its columns are the actual conditions of classification, and its rows
are the corresponding predicted conditions of classification. Based
on the confusion matrix, the indices of recall rate, precision, and
accuracy can be conveniently calculated for evaluating the perfor-
mance of the established models. Accuracy is the ratio of correct

Predicted class

Basically Less

Stable stable  stable Recall

Stable 0 34 0 0.000
2 Basically
E stable 0 543 0 1.000
D)
g L

ess
; stable 0 51 0 0.000

Precision| 0.000 | 0.865

(@

predictions to the total number of dataset. Precision describes the
ratio of correctly predicted positive data to all the predicted posi-
tive ones. Recall rate represents the proportion of correctly pre-
dicted positive data to the total number of positive ones. These
three indices are widely used in geotechnical engineering (e.g. Hu
and Liu, 2019; Chen et al., 2021).

In this study, a comparative study is conducted to compare the
predictive performance of RF, XGBoost, SVM, and LR in the slope
stability of Yunyang County. For more detailed information about
the SVM and LR algorithms, interested readers can refer to Goh
et al. (2017) and Zhu et al. (2021). During the establishment of
the model, 12 influencing factors are regarded as the input, and the
target output is the slope stability state which can be categorized
into three groups, i.e. stable, basically stable, and less stable. Based
on the constructed models, the predictive performance of the four
machine learning methods is systematically investigated and
compared.

4. Results and discussion
4.1. Predictive performance of different machine learning methods

The Gaussian radial basis kernel function is adopted in the
construction of SVM model, and the weight parameter, i.e.
class_weight = 1:10, was used. Fig. 8 summarized the confusion
matrix calculated from the SVM model. Results show that the recall
rates of the basically stable state in the training and testing data are
the same (i.e. 1), and the overall accuracies of them are 0.865 and
0.886, respectively. However, for the stable and less stable states,
both of them are predicted to be basically stable when using the
SVM model. Accordingly, the recall rates of these two cases are 0.
This means that although the SVM model can classify the majority
of data correctly, there are shortcomings in classify the minority,
which may be attributed to the deficiency in tackling the imbal-
anced data problem.

For the RF model, N_estimators and Max_depth are the two
important parameters. In this study, the grid search method was
used to determine the optimal values of these parameters, i.e.
N_estimators = 16 and Max_depth = 15. Fig. 9 lists the confusion
matrix evaluated from the RF model. The overall accuracy of the
model reaches 0.99 in the training data, and the recall rates for the
stable, basically stable, and less stable states are 0.853, 1, and 0.98,
respectively. In the testing data, the overall accuracy of is 0.911. In
terms of the recall rate, that of the basically stable state is 1. For
stable state, all of them are incorrectly predicted to be basically
stable. For less stable state, nine of them are mistakenly identified
to be basically stable. It can be observed that the prediction results
of the RF model on the training data are relatively satisfactory. The
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,:3 stable 0 140 0 1.000
<
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Precision| 0.000 | 0.886

(®)

Fig. 8. Confusion matrix of SVM algorithm prediction value: (a) Training and (b) Testing data.
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Fig. 9. Confusion matrix of RF algorithm prediction value: (a) Training and (b) Testing data.
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Fig. 10. Confusion matrix of XGBoost algorithm prediction value: (a) Training and (b) Testing data.

Stable stable  stable Recall
Stable 29 5 0 0.853
A Basically
E stable 0 543 0 1.000
B
g L
ess
; stable 0 1 50 0.980
Precision| 1.000 | 0.989 | 1.000 .
(a)
Predicted class
Basically Less §
Stable stable  stable Recall
Stable 34 0 0 1.000
@ Basically
E stable 0 543 0 1.000
5]
g L
ess
; stable 0 0 5 1.000
Precision| 1.000 | 1.000 | 1.000 .
(a)
Predicted class
Basically Less
b stable  stable Recall
Stable 0 34 0 0.000
(A Basically
E stable 0 543 0 1.000
D)
g L
ess
; stable 0 50 1 0.020
Precision| 0.000 | 0.866 | 0.000

()

Predicted class

Basically Less

Stable stable  stable Recall

Stable 0 5) 0 0.000
@2 Basically
E stable 0 140 0 1.000
B
g L

ess
; stable 0 112} 0 0.000

Precision| 0.000 | 0.886

(b)

Fig. 11. Confusion matrix of LR algorithm prediction value: (a) Training and (b) Testing data.

predictive performance of the RF model is better than that of the
SVM model.

Fig. 10 shows the confusion matrix calculated from the XGBoost
model. It is shown that the overall accuracies and recall rates of the
three cases of stable state, basically stable state, and less stable state
are all 1 in the training data. In the testing data, the overall accuracy
of the XGBoost model is 0.905, and the recall rate of the basically
stable state is 1. All the stable state cases are mistakenly judged to
be basically stable, and the proportion of correct judgment for the
less stable state case is 0.231. In general, both ensemble learning
models (i.e. XGBoost and RF) outperform the SVM model.

Furthermore, Fig. 11 summarizes the confusion matrix obtained
from the LR model. The overall accuracy of the LR model is 0.866 in
the training data, and the recall rate for the basically stable state

cases is 1. However, all the stable state cases are mistakenly judged
to be basically stable, and only one less stable case is correctly
identified. In the testing data, the overall accuracy of the LR model
is 0.886, and the recall rate of the basically stable state is 1. In
contrast, both the recall rates of the stable and less stable states are
0. In brief, the performance of LR model is similar with that of SVM
model in the slope stability prediction. Both of them lag behind the
two ensemble learning models (i.e. XGBoost and RF).

Table 3 summarizes the predictive performance of the four
models. In general, the XGBoost and RF perform better than SVM and
LR in the slope stability prediction of Yunyang County. The main
advantage of ensemble learning models over the SVM and LR models
is their capacity to make full use of multiple predictors to form a
better one with high accuracy. Overfitting is a tricky issue frequently
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Table 3
Predictive performance of the four models.

Model Accuracy |Atrain — Atest|
Training data (Atrain) Testing data (Atest)

SVM 0.865 0.886 0.021

RF 0.99 0.911 0.079

XGBoost 1 0.905 0.095

LR 0.866 0.886 0.02

encountered in the process of model training, which means the
predictive performance on the training data is much better than that
on the testing data and will weaken the generalization capacity of
models (Cawley and Talbot, 2010). In other words, overfitting may
occur if there is a significant difference between the prediction ac-
curacies of the training and testing data. As tabulated in the last
column of Table 3, the absolute differences between the prediction
accuracies of the training (Atrain) and testing data (Atest) for the four
models are less than 0.1. Although there is still no explicit rule about
how much difference between the prediction accuracies of the
training and testing data belongs to overfitting in engineering
practice (Hou et al., 2021), the values of |Atrain — Atest| for the four
models are relatively small (i.e. less than 0.1) in this study.

4.2. Feature importance analysis

The feature importance is an important aspect that should be
considered in feature selection and model interpretability in ma-
chine learning. The feature importance of the 12 influencing factors
for the XGBoost model is ranked in Fig. 12. It can be seen that the
profile shape is the most important variable, accounting for more
than 0.1. This implies that the profile shape plays a vital role in the
slope stability prediction of Yunyang County.

5. Discussion

As one of the popular and powerful machine learning algo-
rithms, ensemble learning techniques make full use of multiple
predictors to form a superior one for improving the predictive
performance and generalization capacity. It converts the compo-
sition models into a stronger learner in bagging, boosting, or

stacking manner, allowing it to achieve a better predictive perfor-
mance compared to a single model (Pan and Zhang, 2020; Hou
et al., 2021). This study developed the RF- and XGBoost-based
method to predict the slope stability, and the obtained results
revealed their superiority over the conventional method (i.e. SVM
and LR) in the slope stability prediction of Yunyang County. This
may be attributed to the powerful learning capacity that inherits
from multiple individual learners, allowing ensemble learning
models to approximate the implicit high-dimensional relationship
between the various influencing factors and slope stability status in
this study. It provides an effective way to rationally predict the
stability status of slopes in geotechnical and geological engineering
practice.

Besides the 12 influencing factors considered in this study, the
slope stability may also be affected by water level fluctuation and
rainfall (e.g. Tang et al., 2019; Wang et al., 2020c; Xing et al., 2021).
Since the information about the groundwater table and rainfall is
missed, thus these two factors were not considered in this study.
This may be the weakness of this study. It is worth noting that
although 12 influencing factors are considered in this study, the
proposed approach is also applicable to taking into account more
influencing factors, including groundwater table and rainfall, pro-
vided that the relevant data are available. If more influencing fac-
tors are considered, geotechnical practitioners simply need to
change the number of input features and recalibrate the ensemble
learning models. Increasing the number of inputs does not change
the methodology and implementation framework of the proposed
approach.

Furthermore, imbalanced data problem is frequently encoun-
tered in geotechnical engineering practice, which can be addressed
by ensemble learning techniques and specially designed sampling
algorithms (Hou et al., 2021). Previous studies have confirmed that
ensemble learning algorithms performed better in tackling imbal-
anced data problems due to their powerful generalization capacity
(e.g. Feng et al., 2020). Concerning the specially designed sampling
algorithms, it contains the oversampling and undersampling al-
gorithms (Elrahman and Abraham, 2013). It aims to finely tune the
number of data with different classes for achieving a rational pro-
portion. In other words, the oversampling algorithm increases the
number of minority class data, while the undersampling algorithm
is to decrease the number of majority class data. In this study,
random sampling and construction of tree nodes are used in RF to
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F11-Landslide volume
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Fig. 12. Feature importance of influencing factors.
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improve generalization capacity and avoid overfitting (Guo et al.,
2021). For the XGBoost, a penalty term Q(f;) was added to
penalize complicated models and avoid overfitting, as presented in
Eq. (2) (Chen and Guestrin, 2016). The combination of ensemble
learning techniques and oversampling algorithm is worthy of
further research.

6. Conclusions

This study combined two promising ensemble learning tech-
niques called RF and XGBoost to predict the slope stability, which
produces the RF-based method and XGBoost-based method. For
illustration, the proposed approach was applied to the stability
prediction of 786 landslide cases in Yunyang County. A comparative
study was conducted to compare the predictive performance of RF,
XGBoost, SVM, and LR. Furthermore, the feature importance of the
12 influencing variables (i.e. elevations of front edge and back edge,
slope height, slope angle, lithological property, inclination angle,
dip direction, structure type, plane morphology, profile shape,
landslide volume, and influence degree of human activities) was
also explored using the results obtained from the XGBoost model.

Results showed that the accuracy of the XGBoost, RF, LR, and
SVM on the training data was 1, 0.99, 0.866, and 0.865, respectively,
and the accuracy of those on the testing data was 0.905, 0.911,
0.886, and 0.886, respectively. The obtained results revealed the
superiority of ensemble learning models (i.e. the XGBoost and RF)
over the conventional SVM and LR models in the slope stability
prediction of Yunyang County. The main advantage of ensemble
learning models over the SVM and LR models is their capacity to
make full use of several predictors to form a better one with high
accuracy. It provides a possibility of integrating ensemble learning
techniques into slope stability prediction for rationally predict the
slope stability in geotechnical and geological engineering practice.
Among the 12 influencing factors, the profile shape was the most
influencing one in the slope stability prediction. Last but not least, it
is worth pointing out that Yunyang County was used in this study
for illustration. The proposed ensemble learning-based method
may also be applied to other landslide-prone areas provided that
the database for model calibration is available.
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