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ABSTRACT

Rock failure process as a natural response to mining activities is associated with seismic events, which
can pose a potential hazard to mine operators, equipment and infrastructures. Mining-induced seismicity
has been found to be internally correlated in both time and space domains as a result of rock fracturing
during progressive mining activities. Understanding the spatio-temporal (ST) correlation of mining-
induced seismic events is an essential step to use seismic data for further analysis, such as rockburst
prediction and caving assessment. However, there are no established methods to perform this critical
task. Input parameters used for the prediction of seismic hazards, such as the time window of past data
and effective prediction distance, are determined based on site-specific experience without statistical or
physical reasons to support. Therefore, the accuracy of current seismic prediction methods is largely
constrained, which can only be addressed by quantitively assessing the ST correlations of mining-
induced seismicity. In this research, the ST correlation of seismic event energy collected from a study
mine is quantitatively analysed using various statistical methods, including autocorrelation function
(ACF), semivariogram and Moran’s | analysis. In addition, based on the integrated ST correlation
assessment, seismic events are further classified into seven clusters, so as to assess the correlations
within individual clusters. The correlation of seismic events is found to be quantitatively assessable, and
their correlations may vary throughout the mineral extraction process.
© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

(Bosch et al., 2010). For instance, the temporal variation of geo-
mechanical properties of rock material can be inferred by the

Mining-induced seismicity is the response of rock mass to
continuous mineral extraction. It represents either the initiation
and propagation of new fractures or the slippage of pre-existing
weak planes in rock mass induced by stress redistribution during
mining. Mining-induced seismicity is usually controlled by the
mining depth, mining speed, excavation geometry and geological
discontinuities. Also, one or the combination of the above factors
would lead to different seismic behaviours (Guha, 2000). Corre-
spondingly, the inversion of seismic data collected at mine sites can
reflect the characteristics of the above parameters to some extent
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analysis of seismic data (Zhao et al., 2018). A clustering of seismic
events could indicate local rock instability or/and substantial stress
changes (Mendecki, 1999). Therefore, seismic monitoring has been
used to optimise rock failure-related engineering designs (hy-
draulic fracturing) (Schultz et al., 2020) and predict potential rock
failure and the induced seismic hazards (coal/rock bursts and gas
outburst) (Zhao et al., 2018).

Based on the distribution of seismic events, seismic monitoring
may contribute to predicting mining-induced seismic hazards.
Mining induced seismicity does not distribute uniformly in space or
time. In the space domain, most of the explosive types of seismic
events caused by mining activities are energetically weak. In
contrast, the events with high energy commonly occur in tectonic
regions and are presumably caused by the interaction between
tectonic stresses and mining-induced stresses (Stec, 2007). While
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in the time domain, the seismic events tend to form nests, swarms
and sequences (Gibowicz, 2009). Previous research indicates that
seismic hazards are related to high-energy events near mine
openings (Lesniak and Isakow, 2009; Cai et al., 2019). The occur-
rence of the rockburst is a result of a high energy storage within
brittle-hard rocks under high stress, part of the energy will release
as seismic energy and monitored by seismic waves (W. Cai et al.,
2021). A direct relationship between seismicity and gas emission
rate has been reported by Si et al. (2015), which can be used to
provide early warning for uncontrolled gas emissions. Fault slip and
seismic activities can be numerically simulated to comprehensively
explore seismicity induced by mine extraction (Cao et al., 2018).

The difficulty of using a large amount of seismic data collected
from mining operations for prediction purposes lies in the lack of
understanding of the internal correlation between seismic events, as
mining-induced seismicity is not a random process (Gibowicz, 2009)
but has a high correlation with mining activities both spatially and
temporally (Arabasz et al., 2005). The number and the released en-
ergy of the seismic events can directly indicate microfractures
induced by mining activities (Song et al., 2019). Invalid prediction
results or misleading data interpretation can be derived if the cor-
relation is not well understood. For instance, during seismic data
analysis, questions need to be addressed beforehand, such as how
much past data (time window) are required to predict future events
and the maximum distance that can be effectively predicted with
confidence (grid size). The time window and grid size are essential
parameters for investigating spatio-temporal (ST) evolutions of
seismic events. An undersized time window may not be enough to
reflect the general pattern of seismic events. An oversized time
window may include unnecessary noisy data that reduce prediction
accuracy (Kijko and Funk, 1996). Acoustic emission laboratory tests
have proven an appropriate time window as the stress drop and the
acoustic quiescence period within 10—30 min of the micro-
fracturing process (Zhang and Zhou, 2020a; b; Zhou and Zhang,
2021) However, this paper seeks a correlated time window of a
broader range that would contain seismic events from a large
number of microfractures. Also, a too large grid may significantly
reduce the resolution/accuracy of seismic hazard prediction in space
(Kisilevich et al., 2010). A too small grid can increase computational
time and cause overfitting issues. Therefore, determination of time
window and grid size for the ST prediction of seismic hazard,
respectively, remains a significant challenge using historical seismic
data. In order to determine the appropriate time window and grid
size, a correlation assessment on seismic data would be required in
both the time and space domains.

The correlation analysis of mining-induced seismicity, including
its randomness, stationary and memoryless, would provide an un-
derstanding of the past seismic data (Bischoff et al., 2010; Gonzélez
etal.,, 2016). Additionally, vital work has been conducted to prove the
memory and the inter-relation of the seismic events information and
discussed the importance of the correlation seismic data (Gibowicz
and Lasocki, 2001; Lasocki, 2008; Olszewska et al., 2017). However,
this paper mainly focuses on the quantitively assessment of the
spatial, temporal and ST correlations of mining-induced seismicity in
a systematic manner so far. The knowledge gap has largely affected
the accuracy of using seismic data for dynamic hazard prediction in
mines, e.g. rockbursts and outbursts (Cai et al., 2020; Cao et al., 2020;
Si et al., 2020; Wang et al., 2021a), as well as the interpretation of
mining-induced seismicity (X. Cai et al., 2021; Wang et al., 2021b;
Duan et al.,, 2022). To address above research gap, we apply three
statistical methods to quantitively assessing the correlation of
seismic data in a case study mine:

(1) The autocorrelation function (ACF) has been proven to be a
reliable indicator of the self-correlation of seismic

parameters (seismic trace, seismic event location, time and
magnitude), and it was used to obtain the degree of simi-
larity of seismicity in time or space with itself (Weglarczyk
and Lasocki, 2009). This paper will apply ACF to calculating
the correlation with a delayed copy of the data itself, and
equidistant data are required.

(2) The semivariogram is the basic geostatistical tool for
measuring the correlation of a series of spatially regionalized
data (Hohn, 1988). This paper applies semivariogram into
both time and space seismic energy data to calculating the
degree of correlation as a function of distance or time step.

(3) Moran’s [ (MI) is an index to describe the spatial similarity of
a dataset, which is commonly used for cross-comparison and
correlation threshold assessment. Tiefelsdorf and Boots
(1995) suggested that MI is flexible for investigating the
characteristics of the distribution and correlations for
distinct spatial data. In this paper, Ml is used to measure the
correlation of seismic event energy extended in a specific
time window.

These quantitative correlation assessment approaches can be
applied to any parameters of mining-induced seismicity, including
spatial location, onset time, energy, source radius and apparent
stress. This paper will focus on radiated energy, which represents
the total elastic energy radiated by mining activities and is better
reflecting the influence on artificial structures compared to the
magnitude and other parameters (Gibowicz and Kijko, 1994; Zhang
and Zhou, 2020a; Zhou and Zhang, 2021).

Furthermore, many researchers proposed that seismic events
can be divided into clusters due to the spatially distinct rock mass
failure processes associated with the temporally dependent mining
activities (Gibowicz, 1986; Le$niak and Isakow, 2009; Woodward
et al., 2018). The seismic events from different clusters may be in-
dependent, whereas events within one cluster are internally
correlated (Kijko and Funk, 1996). During a mining process, the
overall correlation of the entire seismic dataset may be different
from the correlation within individual clusters because the cluster-
based data can be recognised as being related to a specific area or
time. Thus, it is necessary to re-assess correlation characteristics
within each cluster and between clusters after seismic data being
clustered.

Seismic monitoring data collected from a Chinese coal mine is
used in this study. Firstly, the correlative period and correlative
distance of seismic data are calculated by the ACF and semivario-
gram function, respectively. The Ml is used to evaluate the extent of
the correlation and temporal variability. Using the results obtained
from the above methods, an ST integrated analysis is conducted to
examine the seismic correlation in time and space simultaneously.
Finally, seismic events are divided into multiple clusters to inves-
tigate the local correlation within individual clusters.

2. Quantitative methods of correlation assessment
2.1. ACF

In this paper, the ACF is used to analyse time-series data of
seismic energy. This method normally requires the same time in-
terval between data points (an evenly spaced dataset). A gridding
process is required to pre-process the unevenly spaced seismic data
onset time. Therefore, the raw seismic energy data recorded with
uneven time interval are calculated as cumulative daily energy,
which has the same time interval. Assuming k is the lag in the time
domain, the temporal variability of two seismic data points with a
time difference of k can be calculated based on the autocovariance
¢, and the autocorrelation ACF,. The autocovariance c; is the
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covariance of the two seismic data x; and x;, at the times i and
i + k, respectively:

X = ) Kk — )

Ck N

(1)

where N and yu are the number and the mean of the total studied
data points, respectively. For an array of seismic data with lag k, its
ACF is defined as

N-k
Ck _ Dot (Xi — ) (Xigk — M)
o S (i — w?

where cg is the autocovariance when k = 0, which is the self-
covariance of x;. ACF, ranges from —1 to 1, and it shows the varia-
tion of seismic data correlation along with k. A typical ACF plot is
shown in Fig. 1a. ACF;, equals 1 when k is 0, and it shows a down-
ward trend with the increase of k. The seismic data array is regar-
ded as correlated until the ACF, falls below Bartlett’s limit (Ig),
which is expressed as (Jaksa et al., 1999):

ACF, = (2)

vN

The range of k before ACF, reaching Bartlett’s limit is called the
correlative period. The highest correlative period of seismic data is
presented when ACF; reaches the upper limit of Iz, and the corre-
sponding time lag is called the scale of fluctuation (SOF). For the lag
larger than the SOF, it is considered that seismic data presents no
correlation. Apart from the correlative period calculated using ACF,
SOF can also be used to represent correlative distance, which is
calculated using semivariogram (Onyejekwe et al., 2016) (to be
introduced in Section 2.2).

Ip= + 3)

2.2. Semivariogram function (Vs)

In order to quantitively evaluate the correlation of the unevenly
spaced seismic data, semivariogram function is used here. Semi-
variogram is a graph showing the variation of semivariance with
different lags. For a given lag k in the time or space domain, the
semivariance Vs of a seismic data array is calculated as introduced
by Clark (1979):

S 6 — %1 4 1)

Vs = 2N(k)

(4)

where N(k) is the number of data pairs separated by lag k, x; rep-
resents the ith seismic datum, and x; |  represents the paired
seismic datum of x; with a spatial or temporal interval of k. Semi-
variogram is the curve of the semivariance results at different lags
fitted by selected mathematical models. A typical semivariogram is
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shown in Fig. 1b. The semivariance of the data array increases along
with the lag increase until a maximum is reached at a certain lag.
The increasing of the semivariances indicates the decline of auto-
correlation. Following Three parameters are used to characterise
the correlation of a semivariogram:

(1) Nugget , the semivariance when k = 0;

(2) sill, the maximum semivariance of the data array; and

(3) Range, i.e. SOF, the critical lag length for the semivariance to
reach the sill.

In a semivariogram, lower nugget and sill indicate a higher
correlation. A lower SOF suggests the faster attenuation of corre-
lation along with the lag increase. The calculation of SOF varies
slightly between different mathematical models. Table 1 lists three
fitting models used in this research to calculate SOF.

2.3. MI

Ml is an index to describe the spatial similarity of a dataset. For a
seismic data array with N seismic events, its MI is defined as
(Tiefelsdorf and Boots, 1995):

_ N
D> Wi

ZJWU (Xi — )_C) (X] — X)

i S %)

(5)

where X is the mean of the seismic data array; x; and x; are the
seismic data of events i and j, respectively; and wj; is a matrix of
spatial weights. In this equation, spatial weights are calculated
based on the inverse distance weighting of k-nearest points (10
points are selected in this paper).

MI can also be calculated graphically using MI scatter plot
shown in Fig. 1c. In this figure, the horizontal axis is (x; — x) for all
events. The vertical axis shows the difference between the average
of the above 10 nearest seismic data (x;) and X. MI is then calculated
as the linearly fitted line slope for all data points across the origin,
which is shown as the red line. As the calculation of the slope in this
figure is essentially the same as Eq. (5), identical MI results will be
achieved using this graphic method or Eq. (5). In Fig. 1c, the four
quadrants demonstrate different correlation conditions of seismic

Table 1
Mathematical models available for semivariogram fitting.
Model Fitting function SOF, ¢
Gaussian Gx) = C(1 — e ®/*y ;¢ 0 = m03q
Spherical 3k k3 0 = 3a/4
. -t !
G(x) = C(Za 203> +C (k<a)
Gx) = C+C (k> a)
Exponential Gx) = C(1 —eMay; 0 = 2a

Note: a, C and C’ are the fitting parameters.

' Range(SOF) % w0 .
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Fig. 1. An example plot of (a) ACF, (b) semivariogram, and (c) ML
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events. The first quadrant indicates that high energy seismic events
are clustered with high energy neighbouring events, and the third
quadrant indicates that low energy seismic events are clustered
with low energy neighbours. Seismic events in the second and
fourth quadrants show that low energy events are sitting close to
high energy neighbours and high energy events are close to low
energy neighbours, respectively.

3. Background of the study mine site

Hujiahe Coal Mine is located in the west of Shaanxi Province,
China. The studied panel, longwall (LW) 102 is about 700 m in
depth, 1493 m in length and 180 m in width. The target coal seam
has a thickness varying from 13 m to 22.5 m, and the maximum dip
angle is 9°. A fully mechanised longwall top coal caving method is
adopted, with 3.5 m mined by shearer and the remaining coal at the
top extracted by gravity caving. The coal seam is sequentially
overlaid with a 5.95 m thick sandy mudstone layer, a 23.7 m thick
siltstone, a 4.65 m thick mudstone, and a 4.8 m thick siltstone.

The 16-channel “ARAMIS MJ/E” seismic monitoring system
developed by EMAG in Poland was installed in the mine in
September 2013. For more information about this monitoring sys-
tem, please refer to Cai et al. (2019). LW102 started to retreat in May
2014 and completed in July 2015. Although the seismic monitoring
system was installed before the start of the panel, due to the cali-
bration delay in the early stage, the system was only available to
record reliable seismic activities in the panel from September 2014.
Therefore, seismic data from September 2014 to July 2015, a total of
293 d, were used for the ST correlation analysis in this research.

In this paper, the seismic dataset contains 14,024 seismic events,
and each seismic event is a five-dimensional array including the
three-dimensional spatial location (longitude, latitude and depth),
onset time and recorded seismic energy. For longwall coal mining,
the majority of geophones are deployed on a horizontal planar
surface as constrained by the tabular orebody. This yields a rela-
tively high accuracy for locating seismic events in the horizontal
direction (x and y coordinates), which is within 5—10 m in this
research given the coverage of geophones. On the other hand, for
the vertical direction, due to limit access to install geophones at
large vertical variations, the accuracy for the z coordinate is esti-
mated at 25 m. Monitoring results show that most of seismic events
were recorded within 40 m above the mining level, which also
suggested low vertical variation of seismic events. Due to the lower
accuracy and variance compared to the longitude and latitude, the
depth of each seismic event is not considered in this research.

4. Exploratory analysis of seismic data

To ensure the completeness of the seismic data array during the
study period, the magnitude of completeness (m.) is applied to
determining the lowest energy magnitude of seismic events that the
seismic monitoring system can fully detect. Only seismic events with
energy magnitudes larger than m. are regarded as complete and used
for further analysis. Fig. 2 shows the probability density function of
recorded seismic events over the monitoring period in LW102, where
the mc is found to be at logioE = 2.3. Thus, a total of 8024 seismic
events with logioE > 2.3 are selected for the ST correlation analysis.

Fig. 3a shows the spatial distribution of the selected seismic
events in LW102. Note that only 7 out of 16 geophones are shown
here. The rest of geophones are far away from the study longwall
panel and did not receive high quality data for further analysis. A
large number of events with higher energy magnitudes are located
around Fault 5—6. Also, in Fig. 3b, the contour map of seismic event
probability density indicates that intensive seismic activities were
reported at the tailgate side of the panel due to the nearby goaf
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Fig. 2. Probability density plot of logyoE for all recorded seismic events.

zone. The detailed monthly evolution of seismic data over the
monitoring period can be found in Appendix A.

5. Assessment of ST correlations of seismic energy during
longwall mining

5.1. Temporal correlations

In this section, both ACF and semivariogram are used to inves-
tigate the temporal correlation of the seismic data in LW102. ACF is
used to assess the temporal correlation of an evenly spaced seismic
data array (cumulative daily seismic energy). Semivariogram is
used to investigate the temporal correlation of non-evenly spaced
seismic data (seismic energy per event). The SOF in the time
domain (SOF-time) is determined for both ACF and semivariogram
to quantify the correlative period of the seismic data.

5.1.1. ACF

As mentioned in Section 2.1, the ACF analysis is applied to the
evenly spaced data with the same interval. The raw seismic events
are pre-processed into daily cumulative data. A total of 293 data
points representing the cumulative energy within 293 monitoring
days are applied to calculate ACF;, by Egs. (1) and (2), where x is
substituted by log;oE, in which E. is the cumulative daily energy.
The Bartlett’s limit is calculated by Eq. (3).

Fig. 4 shows the ACF results of cumulative daily seismic energy
in LW102 with different lags. In this figure, the Ip is +0.1145 shown
as the red dashed lines, and the SOF-time is calculated as 6 d, which
indicates a relatively strong correlation of cumulative daily energy
in 6 d. In other words, the future daily seismic energy in LW102 is
likely to be dependent on the recorded seismic energy in the past
6 d. It will be independent with any data beyond that period. The
ACF of daily seismic energy drops to 0.44 when the lag is only 1 d,
which shows the increase of randomness.

Besides, the value of cumulative daily energy is also affected by
the number of events that occurred during the day and face
advance distance on that day. Therefore, the daily average energy
and energy per meter of face advance are also applied in the ACF
analysis. The average daily energy can be calculated as log 1¢(Ec /N),
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where N is the number of seismic events that occurred on that day.
The average energy per metre can be calculated as log 1o (Ec /F),
where F is the face advance distance on that day.

The ACF values of the above two parameters are presented in Fig. 5.
The SOF-time of average daily energy decreases to 4 d, and the SOF-
time of average energy per metre remains at 6 d compared to Fig. 4.
The similar SOF-time calculated from Figs. 4 and 5 indicates that the
number of events and the face advance rate only have a marginal

effect on the autocorrelation of cumulative energy. One possible
reason could be that log 1¢(Ec /N) is equal to log 1¢Ec — log 19 N, and
comparing with E., the value of N is much smaller in orders of
magnitude. The same reason also applies to the face advance rate F. In
other words, if one seismic event has a very high energy release in a
typical production day, it will significantly increase the average value
and decrease the correlation of cumulative energy.

Therefore, the correlation of cumulative energy analysed via ACF
provides an approach to quantitively assess the correlation of seismic
event energy. The event number and face rate can also be considered
and analysed. But the result is sensitive to high energy events. The
method in this section is suitable for a zone with similar size of frac-
tures that can trigger seismic events with comparable energy levels.

Apart from the daily cumulative seismic energy, the daily
seismic event number can also be analysed via ACF. Fig. 6 shows the
ACF results of the daily event number. It indicates that the SOF-time
of the daily event number is 26 d, given the Ig at +0.1145, repre-
senting a strong correlation of daily seismic event number within
26 d. Also, the ACF of the daily event number is larger than 0.5
when the lag is lower than 4 d. It indicates that the daily event
number is significantly influenced by those event numbers recor-
ded in the past 4 d. Due to the strong correlation in the low lag of
seismic event number, seismic event number prediction would
yield more reliable results than that of cumulative energy.

5.1.2. Semivariogram function
(1) Overall semivariogram evaluation
Unlike ACF dealing with evenly spaced seismic data (cumulative

daily energy), the semivariogram function is applied to assessing
the temporal correlation of the unevenly spaced seismic data, such
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as the onset time of individual seismic events. The algorithm of this
method can be referred to as Section 2.2. The semivariances of
seismic energy based on time lag are calculated and presented in
Fig. 7 as red circles. To obtain the semivariogram function, a
goodness-of-fit test is conducted to select the best-fit model from
three mathematical models, i.e. Gaussian, spherical and exponen-
tial. The fitting performance of each model is evaluated by root-
mean-square (RMS) and coefficient of determination (R?). These
results are summarised in Table 2, indicating that the exponential
model best fits the semivariances of the studied seismic data
because of the lowest RMS and the highest R2. It should be noted
that the exponential fitting is the best-fit model when analysing the
temporal correlation using all seismic energy data. The best-fit
model may vary depending on the type and amount of seismic
data inputted in this method.

The black line in Fig. 7 shows the semivariogram of the
seismic energy of the studied events in LW102. The SOF-time of
about 12 d indicates that the seismic energy of individual events
is becoming less correlated along with the lag increase within
12 d. The difference between the sill and nugget is 0.025, which

Fig. 7. Semivariogram of seismic energy. The red circles are the semivariance values at
each time lag, and they are fitted by the exponential function as presented in the black
curve.

Table 2
Comparison of three fitting models for the temporal semivariogram of seismic
energy.

Model RMS R?
Gaussian 0.00642483 0.362562
Spherical 0.00641485 0.364542
Exponential 0.00635507 0.37633

is significantly lower than the nugget, which implies a rapid
decline of the correlation and high variability of seismic energy in
a short time range.

It should be noted that the SOF-time of 12 d correlative period is
calculated based on the unevenly spaced seismic energy data. In
comparison, the SOF-time of 6 d correlative period obtained by ACF
is based on the daily cumulative seismic energy data. Compared
with the semivariogram method, ACF requires pre-processing un-
evenly spaced seismic energy as cumulative daily energy, which
may introduce an artificial effect or bias to the correlation analysis.
Thus, it is believed that SOF-time calculated by the semivariogram
function can better reflect the correlation nature of raw seismic
data. An application of the 12 d SOF-time will be presented in
Section 5.2.
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(2) The maximum correlative

semivariance

period determined by

The SOF-time calculated by semivariogram is the average correl-
ative period of all seismic energy data in the study period, which
means that if the correlative period of partial data is assessed, the
result could fluctuate around 12 d. Besides the average correlative
period of the overall data, the maximum correlative period is critical
to be evaluated. This could be achieved by the semivariances calcu-
lation based on all the seismic data with a time difference smaller than
the lag k, rather than using the paired seismic data x; , x in Eq. (4).

This specific semivariance is called the cumulative semivariance,
which represents the evolution of semivariance along with the
increasing of input data. Fig. 8 shows the cumulative semivariance
of the studied seismic data (marked as red crosses), which increases
rapidly at the beginning and then flattens. The first-order derivative
of the cumulative semivariance (marked as blue dots) is also
calculated. The derivative has a gradual downward trend and tends
to reach the elbow point when lag k is at around 40 d. The slope
drops to around O for the first time at this elbow point. It suggests
that 40 d is the maximum correlative period of studied seismic
energy data. When lag k is larger than 40 d, most of the first-order
derivative is close to 0 due to the slow increase of the cumulative
semivariance. It means that little difference can be made if the
semivariance considers the data with more than 40 d. Therefore,
the correlation analysis of seismic data within 40 d can capture the
general correlation characteristics over the period.

(3) The evolution of seismic data correlation in the time domain

Besides the average correlative period and the maximum correl-
ative period, an attempt has been made to analyse the evolution of the
temporal correlation of the studied seismic data over the 10 months of
the monitoring period, the semivariogram function is used to assess
the correlation of seismic data recorded within sequential periods. A
moving time window based on the maximum correlative period is
defined here, which can sequentially select seismic data within that
time window. The moving window is large enough to capture the
inherent correlation of seismic data within the selected period. Still, it
should not be too large to ensure enough sequential periods to reflect
the temporal variation of seismic data correlation.

According to the maximum correlative period calculated above,
semivariogram analysis can be applied to every moving time win-
dow with 40 d of seismic data. The moving step is set as 1 d. The SOF-
time, nugget and sill are sequentially calculated by the best-fit from

Gaussian, exponential and spherical models for each time window.
The variations of SOF-time selected by the best-fit and its RMS are
shown in Fig. 9. It should be noted that the trend of how SOF changes
at a different time is more critical than the exact magnitude of SOF
because of the variability of fitting quality in each period. As ex-
pected, the temporal correlation of seismic energy is not a constant
value but varies with time. The trend of the correlative period evo-
lution shows a periodic distribution during the whole process of the
coal extraction, and it tends to form seven peaks with different sizes.
It should also be noted that before March 2015, the SOF shows a
significant variance with a relatively high RMS, indicating the low
quality of the semivariogram fitting. After March 2015, a more reli-
able SOF can be derived due to the lower RMS.

5.2. Spatial correlations

MI and the semivariogram are used to investigate the spatial
correlation characteristics of the seismic energy. The degree of
spatial dependence between seismic events is quantified. Only the
horizontal locations of the studied seismic events are used here due
to the location errors in the vertical direction of seismic data
recorded in tabulate coal deposits. The SOF in the space domain
(SOF-space) is determined based on semivariogram to quantify the
correlative area of the seismic data.

521 MI

MI is applied to assessing the extent of spatial correlation and
identifying a strong spatial correlative period based on a moving time
window method. As mentioned in the previous section, the correla-
tive period of the studied seismic data is about 12 d, which is the
average SOF-time of unevenly spaced seismic energy data calculated
in Section 5.1. Therefore, the time window of MI calculation is set as
12 d. The reason for not using the maximum correlative period is that
MI does not require the moving time window to be large enough to
reflect the general correlation characteristics over a long period. The
variation of the spatial correlation is more critical in this section. Also,
since the analysis should be based on randomisation assumption and
conduct null hypothesis testing, the MI results are further stand-
ardised as the Z-value (Eq. (6)). A P-value less than 5% is considered
significant (reject the null hypothesis), suggesting that seismic events
are spatially autocorrelated on the global scale.

7 MI — E(MI) (6)
var(MI)

0.550 N -
N * Cumulative semivariance} g.30
0.545 e First order derivative
& L0.25
S 0,540 -
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= F0.20
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E s
& 0.530 - F0.15G
[} E
= [
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Fig. 8. Cumulative semivariance (marked as red cross) and its first-order derivative (marked as blue dot). The green arrow represents the elbow point. The green dashed line

represents its lag of 40 d and cumulative semivariance of 0.514.
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where E(MI) means the expectation of the MI, and var(MI) means
the variance of MI.

Fig. 10 shows the plot of MI and Z for seismic events recorded
over the monitoring period. The MI value is calculated by both the
mathematic equation (Eq. (5)) and the graphic method mentioned
in Section 2.3. These two methods show identical MI values. The
evolution of MI value indicates various correlation degrees of
seismic events in space when LW102 is retreating. Except for one
date below the confidence limit, most of the Z-values are higher
than the 5% confidence interval limit, indicating that seismic energy
are spatially correlated at various degrees, which supports the
concept of seismic event prediction in space.

To examine the spatial energy distribution when different MI
values are detected, the seismic event distributions at two typical
periods (Period I and Period II) with MI > 0 and MI = 0,

respectively, are presented in Fig. 11. Fig. 11a and b shows the
scatter plot of MI values calculated using the graphic method for
Period I and Period II. Fig. 11c and d illustrates the spatial dis-
tributions of the seismic events at these two periods. According
to Fig. 11a and ¢, from 31 October 2014 to 12 November 2014
(Period I), the MI reaches the maximum of the entire monitoring
period. The seismic events have a clear trend of high energy
events clustered together in space, and so as the low energy
events. From 9 February 2015 to 21 February 2015 (Period II) as
Fig. 11b and d shows, MI is close to O, which means no spatial
correlation of seismic energy among these events. By visually
inspecting the plot of the seismic event distribution in Period II in
Fig. 11c and d, the same conclusion can be achieved: the high
energy events and low energy events are distributed randomly in
this two-dimensional (2D) horizontal space.

0.25 3
p . — MI from mathematic equation
0.20 <~~~ Period | ~== MI from graphic method ,
0.15
Frl
0.10 A
s F0
0.05 A
F-1
0.001 - -~ Period Il
005 T L 5
~== 5% P-value Z=-1.96
-0.10 =
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Fig. 10. MI values calculated from two different methods (in the left axis) and Z-value (in the right axis) over the monitoring period. A 5% P-value of Z is drawn as the blue dashed

line.
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5.2.2. 2D spatial semivariogram

In order to obtain the correlative distance (radius), the method
used here to measure the correlation from point to point is the 2D
spatial semivariogram, which can quantify the degree of spatial
dependence between samples in a specific orientation and assess
the degree of attribute’s continuity. The algorithm of the semi-
variogram can be referred to as Section 2.2.

In Eq. (4), x; indicates the ith seismic event energy and lag k
represents the radius of the searching circle in the calculation of
spatial semivariogram. Table 3 shows the evaluation results of three
fitting methods and the best-fit method is the exponential function.
Fig. 12 presents the spatial semivariogram plot for the LW102
working face, in which the calculated semivariance is shown in red
circles and the fitted exponential model in black curve. The
correlative distance is defined as the SOF-space, which is 23 m in
this case. The released energy of a seismic event has a gradually
decreasing correlation along with the increase of the distance from

Table 3

Comparison of three fitting models for the spatial semivariogram of seismic energy.
Model RMS R?
Gaussian 0.018912 0.615597
Spherical 0.017715 0.662701
Exponential 0.017561 0.668547

its hypocentre within 23 m radius, and no correlation presents
beyond this radius. The difference between the sill and nugget is
0.127, which is relatively higher than the temporal semivariogram
but still much smaller than the nugget and sill. It implies a rapid
decline of the correlation and high variability of seismic energy in a
short distance.

6. ST correlation assessment using reference seismic events

To simultaneously investigate the ST correlation around a
reference location and time registered by the occurrence of a
reference seismic event in LW102, the distance and time differ-
ences between the reference event and other seismic events need
to be considered together. The calculation of distance only con-
siders longitude and latitude coordinates for the same reason
mentioned in Section 3. Three seismic events were selected as the
reference events in this research. These selected seismic events all
have relatively high energy and are located close to the longwall
panel because the high energy events in the coal extraction process
always represent a large formation of discontinuities and massive
energy release. It is worth noting that the method proposed in this
section could be used in any reference events with a specific onset
time and location. The selected Event A has the seismic energy of
2.6 MJ, which is located around Fault 5—6. Event B is located near
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the tailgate (goaf side) with seismic energy of 1.4 M]. Event C is a
seismic event with an energy of 280 k] located near the maingate
(solid coal side). The locations of these three events, as well as their
occurring time, are highlighted in Fig. 3.

Based on Events A, B and C, the time difference and distance
between all other events and the reference events are calculated,
which are shown as scatter plots in Fig. 13a. The y-axis shows the
Euclidean distance difference, while the x-axis shows the time dif-
ference. Based on the data in Fig. 134, to calculate the semivariogram
for both time and distance simultaneously, a unity-based normal-
isation needs to be applied to these two parameters. The maximum
distance is taken as 800 m, and the maximum time difference is
taken as 300 d. The corresponding semivariogram is calculated and
presented in Fig. 13b, following the method introduced in Section
2.2.Herein, the property x; represents the event energy, and lag k is a
unity-based normalisation of the time difference and distance. The
exponential function is used because it is proved in Section 5.2.2 as
the best-fit method when dealing with all studied seismic data. The
lag k in the semivariogram plots in Fig. 13b contains the information
conveyed in both the time and space domains.

The distance-time difference plots in Fig. 13a show that a linear
relationship between distance and time differences can be
observed for the reference events. The semivariogram plots in
Fig. 13b all show an upward trend before levelling off. The param-
eters of the three semivariogram plots are also similar, with nugget
at around 0.4 and sill at 0.54. The similarity of the nugget and sill for
all three reference events indicates that the extent of ST correlation
close to or far from the reference events is similar and less affected
by the specific location or onset time of the reference events.

Based on the semivariogram plot, the SOF of time difference and
distance can be obtained by inverting the process of the unity-
based normalisation. The SOF-time for the three reference events
A, B,and Care 2 d, 4 d and 2 d, respectively, and the SOF-space are
4.9 m, 9.2 m and 3.9 m, respectively. Compared to the SOF-time of
12 d in Section 5.1.2 and SOF-space of 23 m in Section 5.2.2, the SOF
obtained by ST correlation analysis is much smaller in both the time
and space domains. This is because it is less likely to have seismic
events with strong ST correlation at the same time.

Compared with the SOF-time and the SOF-space in Section 5, The
SOF in ST correlation gives relatively stable correlation results when
assessing the correlation characteristics around the three reference
events, representing a local correlation rather than an overall value.
Thus, more holistic results were derived by the SOF in ST correlation,
which considers the correlation both in time and space. The nugget

and sill are very similar, and the SOF only has a marginal difference.
This conclusion seems to be the opposite of the conclusion that the
correlation is variational in the time and space domains, as discussed
before. But in fact, the ST correlation assessments are designed to
detect the overall correlation trend. In contrast, ST correlation chooses
three reference points and assesses the correlation by taking the three
points as a basis. The correlation near the reference points (nugget)
and the correlation far from the reference points (sill) are purely based
on the location and onset time of three reference events. The three
points all have relatively high energy, which indicates that they might
be induced by the slipping of pre-existing fractures. Besides, the three
locations all have a similar event density, energy distribution, and
even seismicity source mechanism.

7. ST correlation of seismic events in individual clusters
7.1. ST cluster based on face advances

The ST correlation analysis in Section 5 demonstrates the overall
correlation of all seismic events in LW102. However, as seismic events
from similar sources are more likely to be clustered in time and space,
the correlation result of seismic events in one cluster may be interfered
by events in other clusters. A seismic event in a cluster commonly
presents a significant correlation with other seismic events in that
cluster but shows independence to the evens that belong to other
clusters (Kijko and Sciocatti, 1995). To remove the interference be-
tween different seismic event clusters and explore the correlation
within individual clusters, a ST-based clustering method is used.

According to the data of LW102 face position at each production
date, the distances of individual seismic events to the longwall face at
the time of being recorded can be calculated (hereafter referred to as
face-eventdistance). Fig. 14 shows the boxplot of face-event distances
on each production date over the monitoring period in LW102. In this
figure, each box shows the face-event distance distribution within the
day. The coloured box ranges from the 25th percentile and 75th
percentile, and the transverse line within the box indicates the me-
dian of the face-event distance.

Fig. 14 shows that seismic events generally first presented at
around 200—300 m ahead of the face, and as the progressive
advance of the face, the face-event distance reduced to about 50 m.
As shown in Fig. 14, each cluster of seismic events was initiated far
away from the face, indicating that the regional abutment stress
change caused by coal extraction can disturb far-field stress. Within
each cluster, the repeated decline trend of face-event distance
shows that the abutment stress triggered more seismic events near
the longwall opening as the face continued retreating, until a new
cluster started with the presence of predominantly far away
seismic events. This has the similar result with Koztowska (2013),
as a result of the destressing blasting and static stress transfer
caused by the seismic activity (Orlecka-Sikora et al., 2012). This
trend repeated seven times over the monitoring period, repre-
senting the cyclical change of mining-induced stress, which forms
the basis of clustering. This is also synchronised with the periodical
weighting of the site, showing seismic events are highly correlated
with the mining activities. Therefore, seven clusters of seismic
events are determined based on the cyclical tendency of the me-
dian face-event distance in Fig. 14. The identified clusters are listed
in Table 4, and the spatial distribution of seismic events in seven
clusters can be seen in Fig. 15. As recorded in Table 4, the face
advance distance and the number of seismic events that occurred
within each cluster generally follow a positive linear relationship
(except Cluster #1 due to the slow start-up of the monitoring
scheme), which indicates a direct correlation between longwall
coal extraction and the amount of induced seismicity.
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Fig. 13. (a) 2D distribution of time difference and distance between reference events and all other seismic events, and (b) Semivariograms for the three reference events.

7.2. Temporal correlation assessment of seismic events within
individual clusters

Based on the clustering result in Section 6.2, temporal correla-
tions within individual clusters can be explored using both ACF and
the semivariogram function, similar to the procedure introduced in
Section 5.1. Fig. 16 shows the ACF of the identified seven seismic
clusters. According to this figure, for most of the seismic clusters,
the SOF-time of cumulative daily energy is 2—4 d. Furthermore, the
cumulative daily energy shows a lower SOF-time when investi-
gating the ACF for the clustered data. The possible reason is that in
the plot of ACF such as Fig. 1a, the ACF value for total seismic data at
a specific lag k is approximately the average of the ACF values for
individual clusters. For the ACF of each cluster, the ACF value with
smaller k tends to be lower. The SOF-time only depends on the first
point when the ACF value is lower than Bartlett’s limit. Therefore,
for a cluster, if the ACF value at a small k is occasionally lower than
Bartlett’s limit, its SOF-time would be low.

Fig. 17a shows the semivariogram result of the identified seismic
clusters. Exponential fitting is used as determined in Section 5.1.2.
According to Fig. 17a, seismic clusters show different fitting curves
and parameters, indicating various correlations between clusters.
The SOF-time, nugget and sill of the seismic event energy for each
cluster are summarised in Fig. 17b. Compared to the SOF-time using
cumulative daily energy, a higher SOF-time is presented when us-
ing the non-evenly spaced seismic energy data. It suggests that
converting the non-evenly spaced seismic energy data to the cu-
mulative daily energy data may weaken its temporal correlation.

As discussed in Section 2.2, in order to compare the correlation
between clusters, the SOF-time is not the only assessment mea-
sure; the nugget and sill can also reflect vital information. A rela-
tively strong correlation cluster should have a large difference
between sill and nugget with an appropriate SOF-time. In addition,
the small nugget indicates a strong correlation of the events within
a short period, and the small sill indicates a strong correlation of the
events with a large time difference.
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Table 4
The details of seven clusters of seismic events.

Cluster Start date End time  Face advance Number of seismic

No. (YY-MM-DD) distance (m) events with log;oE > 2.3
1 2014-9-18 2014-11-12 220.9 952

2 2014-11-13 2014-11-29 65.15 402

3 2014-11-30 2015-1-17 14535 1395

4 2015-1-18 2015-2-17 114.87 1436

5 2015-2-18 2015-4-21 177.18 1568

6 2015-4-22 2015-6-6  133.05 1716

7 2015-6-7 2015-7-8 884 751

7.3. Spatial correlation assessment of seismic events within clusters

Apart from the temporal correlation, the spatial correlation can
also be investigated based on the identified clusters. The spatial
correlation of different seismic clusters can be represented by the
evolution of MI over the monitoring period. Fig. 18a shows the MI
result of seismic data in LW102 during the monitoring period,
separated by different clusters. For most clusters, such as Clusters 1,
3, 5, 6 and 7, there will be one or more peaks of MI located in the
middle of each cluster period, and MI values at the start and end of
the cluster are lower than the peak value. It illustrates the con-
centration and transfer of the high-density seismic activity area
from one cluster to another as a response to progressive coal
extraction in the longwall face. The reason could be that the seismic
events tend to assemble in the centre of clusters. Still, with the
advance of the longwall face, the seismic events transfer from one
centre to another, which positively increases the randomness of the
event location and decreases the MI value. Furthermore, the peak
value, the range of MI, and the evolutionary process show different
patterns among the identified seven seismic clusters, which is
mainly because of the varying spatial correlation of seismic events
during the panel retreating.

To investigate the MI characteristics within one cluster, three typical
MI at the start, the highest MI and the end of Cluster 5 are used for
analysis. Usually, the transformation of seismic events between clusters
leads to a relatively low MI value. However, at the start of Cluster 5, MI
may present a higher value if the events are concentrated in more than
one centre. Also, in Fig. 18b and d, the semivariogram at the start shows
a higher nugget and a lower SOF-space, indicating a low spatial cor-
relation and a low radius of the correlative area. In contrast, in Fig. 18c,
the peak MI point presented a lower nugget and higher SOF-space due
to a large and concentrated seismic events area. Due to limited seismic
data available within each week, discrete semivariance points and poor
semivariogram fitting were encountered. This may introduce an error
in the correlative radius estimation. Therefore, a certain amount of data
that can be used in semivariogram analysis should be required.

The cluster-based correlation analysis did not include the ST cor-
relation since the ST correlation in this paper is based on reference
points instead of the total time period. The result of ST method is
mainly affected by the reference point selected, which will provide a
similar result whether applying ST correlation in cluster-based analysis.

8. Discussion and conclusions

In this study, quantitative approaches were applied for tempo-
ral, spatial and ST correlation analysis of a set of seismic data in the
longwall mining process.

ACF was used to evaluate the correlation of evenly spaced seismic
data and in combination with semivariogram, whereby the temporal
correlation of unevenly spaced seismic energy was also assessed.
The SOF-time is applied to representing the period that a notable
correlation of seismic data shows within. The SOF-time is calculated
as 6 d for cumulative daily energy and 12 d for unevenly spaced
seismic energy data, representing a potential reference period that
seismic events within this period can contribute to further
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Fig. 15. Spatial distribution of seismic events in different clusters in LW102.

evaluation and prediction. A semivariances assessment detects the
maximum correlative period as 40 d, and the temporal correlation
within this period can represent a universal correlation of a period
larger than 40 d. With the maximum correlative period as a moving
time window, and on account of the long-term mining operation and
the variability of the temporal correlation at different mining stages,
the evolution of the temporal correlation is determined.

The spatial correlation of the seismic data was estimated using
MI. Based on the Z-value, most of the monitoring periods present a
strong spatial correlation. To determine the radius of the correlative
area (SOF-space), the spatial semivariogram assessment was
applied. The seismic data show a strong spatial correlation within
23 m area, which can be explained as the seismic response to
mining abutment stress or a set of localised discontinuities. The
correlative period and distance scale can be used as the critical
input parameters for seismic/rockburst hazard prediction, seismic
attributes inversion, and mining-induced fracture characterisation.

The ST correlation has been assessed by investigating the dis-
tance and time differences with respect to three reference points.
The quantitative assessment shows similarity on all three points
and can be explained by the fracture behaviour during coal
extraction. The proposed method introduced in Sections 5 and 6
improved the understanding of correlation for various purposes
and multiple data types. It provides a rational approach to quan-
titatively assess the seismic data correlations in longwall mining.

7 4 WEm SOF of cumulative energy 7.0

Correlative period (d)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Fig. 16. Bar chart of SOF-time result of each cluster calculated by ACF using the cu-
mulative daily energy.

To assess the ST correlation between different clusters, clear
clustering characteristics have been observed by investigating
distance distribution to working face versus time distributions.
Within each cluster, the evaluation of correlation can have variable
patterns. More parameters such as nugget and sills need to be
applied when assessing the correlation between or within clusters.
The investigation of correlations within clusters provides an un-
derstanding of the correlation within a specific period of mine ac-
tivities or an area of rock mass discontinuities. The SOF-time and
SOF-space of each cluster offer references to select a more accu-
rate time window and grid size for other seismic data-driven pre-
diction tasks. The ACF value, MI value, the nugget and sill in the
semivariogram all contribute to evaluating the reliability of the SOF.

The correlation analysis methods (ACF, semivariogram and MI)
introduced in this research are universal and can be easily transferred
to other mine sites. However, the correlation results in time and space
can be site-specific. This is because the variety of geological settings
and mining conditions can easily change seismic responses during
mining, as well as the associated correlation results. Nevertheless,
given the proposed correlation analysis methods are easy to apply to
various mines with processed seismic data as input, site-specific
correlation results can be quickly obtained to select a proper time-
space window for seismic hazard assessment. In addition, it is also
possible to explore the correlation within seismic source mecha-
nisms, e.g. fracture pattern or mining rate. This may yield more uni-
versal correlation results that are not banded to a specific site, and the
seismic spatial/temporal correlation can be estimated once a fracture
pattern/mining rate is known. However, this is out of the scope of the
current paper and will be investigated in the future.

Nevertheless, the correlation analysis methods proposed in this
research are a bold attempt to scientifically guide the selection of time
or space windows for seismic hazard forecasts. This answers the
following fundamental questions regarding using past seismic data to
predict the future: (1) future seismic risk assessment or hazard pre-
diction is possible only if past seismic data are correlated, and the
stronger correlation can result in the better prediction results; (2) the
ST correlation in seismic data can be quantitively measured, and then
fed to hazard prediction algorithms to select a proper window of past
seismic data as input; and (3) the correlation window is not a constant
number and may vary over the monitoring period, which increases the
difficult of seismic hazard prediction. This research also made several
assumptions that need to be discussed: (1) the seismic location and
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Fig. 18. (a) MI separated by clusters of seismic events and semivariogram for the (b) start, (c) peak and (d) end of Cluster 5.

energy calculation are relatively accurate; (2) as the seismic data with assumption requires relative high accuracy of seismic event location
energy magnitude lower than 2.3 were not completed recorded, they with a dense monitoring array of geophones. Only seismic events that
were not used in the correlation study; and (3) the seismic events are are well-enclosed by the geophone array can be used for correlation
only induced by either the mine extraction of LW102 or the failure of analysis. In the second assumption, the selection of the completed
the geological structures. These assumptions may limit the application energy magnitude (>2.3 in this research) is difficult since it will filter a
of the proposed correlation analysis methods. For example, the first large amount of low energy seismic data, which may have an inherent
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correlation with the rest of the seismic events. This filtering operation
ensures the quality of input data, but its impact on correlation analysis
needs to be further understood. The last assumption rules out seismic
events that may be incurred by mining equipment movement or
blasting operations at the site. These events do not indicate any natural
correlation of mining-induced seismicity, thus better to be charac-
terised and removed in our future work.
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List of symbols

a Range of influence

Co Autocovariance in lag 0

c,C Fitting coefficients for Gaussian function
Ck Autocovariance

E Energy of seismic events

Ec Cumulative daily energy

G(x) Fitting functions

MI Moran'’s [ value

Iy Bartlett’s limit

k Lag

N Total number of seismic events

Vs Semivariance

u Mean of the total studied data points
wij An element of a matrix of spatial weights
Xi/X; The ith/jth seismic datum

Z Standardised Moran’s |

0 Scale of fluctuation

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jrmge.2022.04.002.
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