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a b s t r a c t

The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from
boreholes or exposed surfaces. Recently, the universal elliptical disc (UED) model was developed to
represent natural fractures, where the fracture is assumed to be an elliptical disc and the fracture
orientation, rotation angle, length of the long axis and ratio of short-long axis lengths are considered as
variables. This paper aims to estimate the fracture size- and azimuth-related parameters in the UED
model based on the trace information from sampling windows. The stereological relationship between
the trace length, size- and azimuth-related parameters of the UED model was established, and the
formulae of the mean value and standard deviation of trace length were proposed. The proposed
formulae were validated via the Monte Carlo simulations with less than 5% of error rate between the
calculated and true values. With respect to the estimation of the size- and azimuth-related parameters
using the trace length, an optimization method was developed based on the pre-assumed size and az-
imuth distribution forms. A hypothetical case study was designed to illustrate and verify the parameter
estimation method, where three combinations of the sampling windows were used to estimate the
parameters, and the results showed that the estimated values could agree well with the true values.
Furthermore, a hypothetical three-dimensional (3D) elliptical fracture network was constructed, and the
circular disc, non-UED and UED models were used to represent it. The simulated trace information from
different models was compared, and the results clearly illustrated the superiority of the proposed UED
model over the existing circular disc and non-UED models.
� 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Rock engineering is closely related to geological disaster pre-
vention (Dershowitz and Einstein, 1988; Zheng et al., 2014a; Ma
and Liu, 2022), civil and hydraulic engineering construction
(Cacas et al., 1990; Kulatilake et al., 1997; Baghbanan and Jing, 2007;
Pan et al., 2016; Zhang et al., 2021), mineral development (Ajayi and
Schatzel, 2020; Chen et al., 2021), and underground oil storage
construction (Li et al., 2016; Shaunik and Singh, 2020; Fan et al.,
2021). The main reason for the complex rock mass properties, i.e.
discontinuity, heterogeneity and anisotropy, is the existence of
numerous fractures in a rock mass (ISRM, 1978; Priest, 1993). How
.
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
y-nc-nd/4.0/).
to describe the geometric characteristics of fractures accurately by
rock mass structure models is critical for the quantitative analysis
on rock mass behaviors. At present, it is recognized that the most
effective way to quantitatively characterize the geometries of dis-
continuities is to construct a three-dimensional (3D) discrete
fracture network (DFN) (Chilès, 1988; Dershowitz and Einstein,
1988; Kulatilake et al., 1993; Zhang et al., 2020; Zheng et al.,
2020; Guo et al., 2021). Since most fractures are within the rock
mass, it is widely accepted to infer the 3D geometric characteristics
of fractures from one-dimensional (1D) measurements sampled
along scanlines or in boreholes and/or two-dimensional (2D)
measurements sampled on tunnel walls or natural outcrops. Based
on the measurements, the 3D DFN models can be developed
(Warburton, 1980a, b; Kulatilake et al., 1990; Villaescusa and
Brown, 1992; Kulatilake et al., 1993; Kemeny and Post, 2003;
Priest, 2004; Song, 2006; Wu et al., 2011; Zheng et al., 2017).

The primary step of constructing DFNs is to describe the fracture
with a defined shape, i.e. circle, ellipse (Baecher et al., 1977; Barton,
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Table 1
Existing research on different fracture models.

Model Basic assumption Size characteristic parameter Reference

Circular disc Fractures are planar Diameter Warburton (1980a); Villaescusa and Brown (1992);
Zhang and Einstein (2000); Song (2006)

Similar parallelogram Fractures are planar and parallel; a
constant ratio of long to short sides

Length of the sides Warburton (1980b)

Non-UED Fractures are planar and parallel; a constant
ratio of long-short axis lengths; Constant
direction of the long axis

Length of the long axis Zhang et al. (2002)

Fractures are planar; a constant ratio of
long-short axis lengths; Constant direction
of the long axis

Jin et al. (2014); Gao et al. (2016)

UED Fractures are planar Length of the long axis, ratio of short-long
axis lengths, direction of the long axis

This study

J. Guo et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 1391e14051392
1978), parallelogram (Warburton, 1980b) and polygon (Ivanova,
1998). Owing to its mathematical simplicity, the circular disc
model has become the most widely used one (Warburton, 1980a;
Priest, 2004). With respect to the real shape of fracture, Petit et al.
(1994) studied the fully exposed fracture plane and found that its
shape is more likely to be an ellipse than a circle. Zhang and
Einstein (2010) concluded that fractures usually tend to be rect-
angular under the circumstances of intersecting geological struc-
tures and elliptical with no affecting factor. Hence, the applicability
of the circular disk model is limited. Recently, the elliptical fracture
model has been modified to approximately represent circles or
polygons (Zhang et al., 2002; Jin et al., 2014). Since the elliptical disc
model has more than one size- or azimuth-related parameters, for
simplicity, the ratio of short-long axis length (defined as the ratio of
short to long axis length of the ellipse) and the direction of the long
axis are set to be constant. This type of elliptical disc model can only
be applied to rock masses, and hence it is called the non-universal
elliptical disc (non-UED) model. For this, Zheng et al. (2022) have
developed a UED model, considering the variances of the direction
of the long axis and ratio of short-long axis lengths. In addition,
Zheng et al. (2022) concluded that the accuracy representation
index (ARI) of the UED model was approximately 20% higher than
that of the non-UED model (Guo et al., 2020). Therefore, the UED
model is worth being considered and applied to engineering.

To construct DFN using UED model, it is essential to infer the
characteristic geometric parameters of the UED model based on 1D
or 2D measurements. With respect to the trace exposure, the
relevant studies on estimating the size- or azimuth-related pa-
rameters based on the trace information are summarized in Table 1.
In this study, the elliptical fracture size- and azimuth-related pa-
rameters are inferred from the trace length on different sampling
windows, while the UED model is used to describe the fractures.
Fig. 1. Parameters of the UED model (after Zheng et al., 2022).
2. A brief introduction of the UED model

The UED model has been developed by Zheng et al. (2022), and
the following geometric characteristics are regarded as variables in
this model: (1) the central point; (2) the azimuth including the dip
direction, dip angle, and direction of the long axis; and (3) the size-
related parameters including the length of the long axis and the
ratio of short-long axis lengths. The fundamental assumptions are:
(1) all fractures are planar, (2) the central point of the fractures has
a Poisson distribution with the 3D density of P30, and (3) the pa-
rameters related to the center, azimuth and size are independent.

As shown in Fig. 1, an elliptical fracture can be described by the
following geometric parameters (Zheng et al., 2022): (1) location of
its center, O; (2) length of the long axis, a; (3) ratio of short-long
axis lengths, k; (4) dip angle, d; (5) dip direction, q; and (6) rota-
tion angle, g. It should be noted that g is the angle between the
direction of the downward long axis (le) and that of the downward
maximum slope line (msle) on the fracture plane, which is used to
describe the direction of the long axis (Zheng et al., 2022). The
range of g is fromep/2 to p/2. Whenmsle rotates counterclockwise
to le, g is positive and negative otherwise.
3. Derivation and validation of trace length of UED model

Based on the aforementioned descriptions and assumptions of
the UED model, the forward derivation and inverse estimation of
the analysis is shown in Fig. 2. To solve the inverse problem, we
need to make a forward derivation first, i.e. we estimate the rela-
tionship between the trace length and the geometric parameters of
a 3D discrete universal elliptical fracture network. The following
forward derivation is made based on stereology.
3.1. Derivation

As shown in Fig. 3a, considering a unit area of the sampling
window plane with a dip direction of qs and a dip angle of ds, an
elliptical facture labeled as E with a dip direction of q and a dip
angle of d is intersected by the sampling window plane, and the
dihedral angle between the sampling window and the elliptical
fracture plane is denoted as ε. It should be noted that ε is an acute
dihedral angle and ranges from 0 to p/2. Since q, d, qs and ds are in
the geological coordinate system, they are converted into the polar
coordinate system labeled as a, b, as and bs, respectively by the
following equations (Zheng et al., 2014b):

b ¼ d (1a)



Fig. 2. Forward derivation and inverse estimation of the UED model.

Fig. 3. Parameters of the elliptical fracture plane that is intersected by the sampling
window: (a) Dihedral angle ε between the elliptical fracture plane and the sampling
window, and (b) Parameters of the trace line and the elliptical fracture.
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The normal vectors of E and sampling window plane labeled as
ne and ns can be calculated as

ne ¼ ½sin b cos a sin b sin a cos b� (2)

ns ¼ ½sin bs cos as sin bs sin as cos bs� (3)

and then ε can be obtained by the dot product of ne and ns as

ε ¼ arccosðjsin b cos a sin bs cos as þ sin b sin a sin bs sin as

þ cos b cos bsjÞ
(4)

As shown in Fig. 3b, a trace line of length l exists at the
intersection between fracture E and the sampling window. l is
related to the length of the long axis a, the ratio of short-long axis
lengths k, the distance h between the fracture center to the trace
line, and the angle u between the trace line and the long axis. Due
to symmetry, u ranges from 0 to p. The calculation of l can be
expressed as (modified after Zhang et al., 2002):

l ¼
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=2Þ2

�
tan 2 uþ k2

�
� h2

�
tan 2 uþ 1

�r
tan 2 uþ k2

(5)

It is worth noting that the definition of k is different from that
given by Zhang et al. (2002). When the trace line is tangent to the
edge of the ellipse, i.e. l ¼ 0, h reaches the maximum value of h0 as

h0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p (6)

As shown in Fig. 4, a parallelepiped was constructed using the
unit sampling window and fracture E. The front and back surfaces
of the parallelepiped need to bound the fracture E, with the dis-
tance defined as 2h0cosj, where j is the angle between the ellip-
tical fracture plane and the plane perpendicular to the sampling
window, which is equal to p/2�ε. The significance of constructing
the parallelepiped is that a trace line with a midpoint in the unit
sampling window can be produced only when the centers of frac-
tures with the same size and azimuth characteristics are located in
the parallelepiped. Hence, the number of the midpoints within the
unit sampling window (Nt) equals the total number of the fracture
centers in the parallelepiped, as

Nt ¼ P30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p a cos j (7)

A fraction g(a)dag(k)dkg(u)duf(a, b)dadb of fractures with a, k,
u, a, b in the ranges of aeaþda, kekþdk, ueuþdu, aeaþda, be
bþdb is considered to be typical elliptical fractures, where g(a) is
the probability density function (PDF) of a, g(k) is the PDF of k, g(u)
is the PDF of u, and f(a, b) is the 2D PDF of a and b. The average
number Na of trace midpoints per unit area equals the average
number of such elliptical fractures with the centers located in the
parallelepipeds, as

Na ¼ P30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p a cos jgðaÞdagðkÞdkgðuÞduf ða; bÞdadb

(8)

Integrating Eq. (8) over the ranges of all possible a, k, u, a and b,
the average total number of tracemidpoints per unit area labeled as
P20 is given by



Fig. 4. Schematic diagram of the relationship between the elliptical fracture plane and the sampling window plane (revised after Zhang et al., 2002).
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P20 ¼
ZþN

0

Z1
0

Zp
0

Z2p
0

Zp
0

P30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p a cos jgðaÞdagðkÞ$

dkgðuÞduf ða; bÞdadb
(9)

For simplicity, l, s and ma are defined as

l ¼
Z2p
0

Zp
0

cos jf ða; bÞdadb (10)

s ¼
Zp
0

Z1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p gðkÞdkgðuÞdu (11)

ma ¼
ZþN

0

agðaÞda (12)

where l and s are the codes with no practical significance; and ma
represents the mean value of the length of the long axis. Hence, Eq.
(9) can be rewritten as

P20 ¼ P30lsma (13)

Dividing Eq. (8) by Eq. (13), the fraction of traces produced by
elliptical fractures labeled as Pt is obtained as

Pt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p
lsma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p agðaÞdagðkÞdkgðuÞdu cos jf ða; bÞdadb

(14)

As shown in Fig. 3b, the trace line is located at a distance of h
from the fracture center. Since the fracture centers are randomly
and uniformly distributed in the volume, the distance h is uni-
formly distributed in the range of 0eh0. The elliptical fractures with
the ranges of aeaþda, kek þ dk, ueuþdu, aeaþda, bebþdb
intersected by the sampling plane have a constant density as r,
expressed as

r ¼ 1
h0

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p (15)

The fraction of fracture centers located at a distance of hehþdh
from their intersections with the sampling plane, which is labeled
as Ph, is given by

Ph ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ k2

p dh (16)

Combining Eqs. (14) and (16), the fraction of traces produced by
fractures in the ranges of aeaþda, kekþdk, ueuþdu, aeaþda, be
bþdb, as well as central locations in the range of hehþdh, which is
labeled as Pth, is as follows:

Pth ¼ 2gðaÞdagðkÞdkgðuÞdu cos jf ða; bÞdadbdh
slma

(17)

According to the relationship between l and h in Eq. (5), it can be
transformed into a new equation with l as the variable. The deriv-
ative of h over l can be expressed as follows:

dh ¼
�
�
tan 2 uþ k2

�
ldl

2k
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r (18)

where the minus sign in the numerator means that h decreases
with the increase of l and the minus sign can be omitted.

Combining Eqs. (17) and (18), the fraction of total traces that
have lengths between l and lþdl produced by elliptical fractures in
the ranges from aeaþda, kekþdk, ueuþdu, aeaþda, bebþdb,
which is labeled as Pl, can be obtained by
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Pl ¼
�
tan 2 uþ k2

�
ldlgðaÞdagðkÞdkgðuÞdu cos jf ða; bÞdadb

lsmak
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r
(19)

In Eq. (5), when h ¼ 0, l reaches its maximum value by

lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�
tan 2 uþ 1

�
tan 2 uþ k2

s
a (20)

It can be seen that only when the length of the long axis a is
larger than l/[k2(tan2uþ1)/(tan2uþk2)]1/2, the elliptical fractures
will produce traces of length between l and lþ dl. The total number
of traces (Nl) that have lengths between l and lþ dl can be obtained
by integrating Eq. (19) with a, k, u, a, b in the ranges of [l/
[k2(tan2uþ1)/(tan2uþk2)]1/2, þN), [0, 1], [0, p], [0, 2p], [0, p],
respectively, as
Nl ¼
ldl
lsma

Z1
0

gðkÞdk
Zp
0

gðuÞdu
ZþN

l

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

q

�
tan 2 uþ k2

�
gðaÞda

k
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r Z2p
0

Zp
0

cos jf ða; bÞdadb (21)
Combining Eqs. (10) and (21), Nl can be rewritten as

Nl ¼
ldl
sma

Z1
0

gðkÞdk
Zp
0

gðuÞdu$

ZþN

l

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

q

�
tan 2 uþ k2

�
gðaÞda

k
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r (22)

Hence, the PDF f(l) of trace length l can be obtained by
f ðlÞ ¼ l
sma

Z1
0

gðkÞdk
Zp
0

gðuÞdu
ZþN

l

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

q

�
tan 2 uþ k2

�
g

k
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2

tan 2

r

Note that when k and u are constant, Eq. (23) can be simplified
as

f ðlÞ ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

r
ma

ZþN

l

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

q
gðaÞdaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r

0
@l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

�
tan 2 uþ 1

�
tan 2 uþ k2

s
a

1
A

(24)

This is consistent with that derived by Zhang et al. (2002) when
k is also defined as the ratio of short-long axis lengths.

According to the PDF of trace line l, themth moment of the trace
length of E(l) can be expressed as
E
�
lm
� ¼

ZþN

0

lmf ðlÞdl (25)

where E($) represents the expected value of the functionwithin the
parentheses.

Combining Eqs. (23) and (25), we can obtain

E
�
lm
� ¼ 1

sma

ZþN

0

lmdl
Z1
0

gðkÞdk
Zp
0

gðuÞdu$

ZþN

l

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

q

�
tan 2 uþ k2

�
lgðaÞda

k
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r (26)
ðaÞdaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ1Þ

uþk2 a2 � l2

0
@l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
�
tan 2 uþ 1

�
tan 2 uþ k2

s
a

1
A (23)
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Reversing the order of integration in Eq. (26) and integrating
over l gives
E
�
lm
� ¼ 1

sma

ZþN

0

gðaÞda
Z1
0

gðkÞdk
Zp
0

gðuÞdu
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2

q
a

0

�
tan 2 uþ k2

�
lmþ1dl

k
�
tan 2 uþ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðtan 2 uþ1Þ
tan 2 uþk2 a2 � l2

r ¼ Jmþ1
sma

ZþN

0

amþ1gðaÞda:

Z1
0

Zp
0

km

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1
tan 2 uþ k2

s 1
Am�1

gðkÞgðuÞdkdu

(27)

Table 3
The orientation (ds/qs) of the sampling windows (SW).

SW No. ds (�)/qs (�) SW No. ds (�)/qs (�)

1 15/0 16 15/180
2 30/0 17 30/180
3 45/0 18 45/180
4 60/0 19 60/180
5 75/0 20 75/180
6 15/60 21 15/240
7 30/60 22 30/240
8 45/60 23 45/240
9 60/60 24 60/240
10 75/60 25 75/240
11 15/120 26 15/300
12 30/120 27 30/300
13 45/120 28 45/300
14 60/120 29 60/300
15 75/120 30 75/300
where

Jmþ1 ¼

8>>><
>>>:

1� 3� $$$�m
2� 4� $$$� ðmþ 1Þ

p
2

ðm is oddÞ

2� 4� $$$�m
3� 5� $$$� ðmþ 1Þ ðm is evenÞ

(28)

Furthermore, the (mþ1)th moment of a can be given by

E
�
amþ1

�
¼

ZþN

0

amþ1gðaÞda (29)

Hence, Eq. (27) can be further expressed as

E
�
lm
� ¼ Jmþ1

sma
E
�
amþ1

�Z1
0

Zp
0

km

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1
tan 2 uþ k2

s 1
Am�1

:

gðkÞgðuÞdkdu

(30)

For m ¼ 1 and m ¼ 2, we can obtain

EðlÞ ¼ pE
�
a2

�
EðkÞ

4sma
(31)

E
�
l2
�
¼ 2E

�
a3

�
3sma

Z1
0

Zp
0

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1
tan 2 uþ k2

s
gðkÞgðuÞdkdu (32)

where

EðkÞ ¼
Z1
0

kgðkÞdk (33)

The mean value and standard deviation of the trace length, the
Table 2
The geometric characteristics of the UED model.

Geometric characteristic Geometric parameter Distribution form

Central point Location Poisson distributio
3D Density P30 (m�3)

Size Length of the long axis (m) Gamma distributio
Ratio of short-long axis lengths Normal distributio

Azimuth Orientation Fisher distribution
Rotation angle Von Mises distribu
mean value and standard deviation of the length of the long axis
can be denoted as ml, sl, ma and sa, respectively. Substituting
E(l) ¼ ml, E(l2) ¼ ml
2þsl

2, E(a2) ¼ ma
2þsa

2 into Eqs. (31) and (32), ml and
sl
2 can be expressed as

ml ¼
p
�
ma

2 þ s2a
�
EðkÞ

4sma
(34)

s2l ¼ 2E
�
a3

�
3sma

Z1
0

Zp
0

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2 uþ 1
tan 2 uþ k2

s
gðkÞgðuÞdkdu

� p2�m2a þ s2a
�2
m2k

16s2m2a
(35)

where ml and sl are the mean value and standard deviation of the
trace length, respectively; and sa is the standard deviation of the
length of the long axis.

The expressions of u (the angle between the long axis line and
trace line) and g(u) are essential to the calculation of ml and sl

2. The
derivation of u and g(u) can be found in Appendix A. For simplicity,
Distribution parameter

n 2

n Shape parameter: 1.5; Inverse scale parameter: 0.5
n Mean value ¼ 0.5; Standard deviation ¼ 0.1

Mean dip direction ¼ 300�; Mean dip angle ¼ 55�; Fisher constant: 15
tion Mean rotation angle: 30�; Von Mises constant: 15



Fig. 5. The mean value and standard deviation of trace length and the ERs in 30
sampling windows: (a) Mean trace length, and (b) Standard deviation of trace length.

Table 4
The known and unknown parameters in the parameter estimation of the UED
model.

Characteristic parameter Statistical parameter State

Orientation of the sampling window as, bs Known
Trace length ml, sl Known
Orientation of fractures in UED am, bm, k1 Known
Length of the long axis in UED ma, sa Unknown
Ratio of short-long axis lengths in UED mk, sk Unknown
Rotation angle in UED k2, gm Unknown
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u(a, b, g, bs, as) is used to represent the complex expression of u.
Hence, ml and sl

2 can be rewritten as

ml ¼
p
�
m2a þ s2a

�
EðkÞ

4sma
(36)

s2l ¼ 2hE
�
a3

�
3sma

� m2l (37)

where

s ¼
Z2p
0

Zp
0

Zp=2
�p=2

Z1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as; bsÞ� þ k2

tan 2½uða;b;g;as; bsÞ� þ 1

s
f ða; bÞ$

dadbf ðgÞdggðkÞdk

(38)

h ¼
Z2p
0

Zp
0

Zp=2
�p=2

Z1
0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða; b;g;as; bsÞ� þ 1
tan 2½uða;b;g;as; bsÞ� þ k2

s
f ða; bÞ$

dadbf ðgÞdggðkÞdk
(39)

3.2. Validation by Monte Carlo simulation

In order to validate Eqs. (36) and (37), a set of hypothetical 3D
elliptical DFN was constructed in a block based on Monte Carlo
simulation. The geometric characteristics of the UED model are
listed in Table 2. The block size is 50 m � 50 m � 50 m
(length � width � height), and 250,000 elliptical fractures were
generated in the block.

Thirty infinite sampling windows were used to collect the trace
information. The orientations are listed in Table 3. The mean value
and standard deviation of the trace length by Monte Carlo simu-
lation were viewed as the true values. The calculated values of the
mean and standard deviation of the trace length are calculated by
Eqs. (36) and (37).

In order to compare the differences between the true and
calculated values, the error rate (ER) is defined as

ER ¼ jTV � CV j
TV

� 100% (40)

where TV is the true value of the mean value or standard deviation
of the trace length; and CV is the calculated value of the mean value
or standard deviation of the trace length based on Eqs. (36) and
(37).

The calculated and true values of the mean trace length and
their ERs are shown in Fig. 5a, while the calculated and true values
of the standard deviation of mean trace lengths and their ERs are
shown in Fig. 5b. The results show that the calculated values are in
good agreement with the true ones, and the ERs of the mean value
and standard deviation of trace length are less than 5%. The good
match between the true and calculated values verified the cor-
rectness of Eqs. (36) and (37).

4. Estimation of the size- and azimuth-related parameters in
the UED model based on the trace length

According to the above-mentioned derivation, the distribution
of trace length depends on the distributions of the length of the
long axis, ratio of short-long axis lengths, orientation and rotation
angle. It is not easy to obtain distributions of the size and azimuth
in the UED model via the trace information only. With respect to
the size inference of the non-UED model, Zhang et al. (2002)
inferred the fracture size distribution from the trace length distri-
bution by assuming that the length of the long axis obeys certain
distributions including log-normal distribution, negative expo-
nential and gamma distributions. Jin et al. (2014) built up the
relationship between the size and trace distributions by assuming
that the trace length obeys certain distributions including uniform,
fractal, exponential, and polynomial distributions. In this paper, we
first assume that the length of the long axis, ratio of short-long axis
lengths, orientation, and rotation angle obey certain distribution
patterns, and then estimate the corresponding statistical parame-
ters based on the trace information from multiple sampling
windows.

4.1. Assumption of size and azimuth distributions

The PDF that can describe the fracture orientations includes
Fisher distribution (Zheng et al., 2014b), Bingham distribution
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(Bingham, 1974), and Bivariate normal distribution (Kulatilake,
1986). Among these distributions, the Fisher distribution is the
most commonly used one since it only has one parameter (Fisher
et al., 1987). Its general PDF is defined as

f ðb;aÞ ¼ k1 sin bek1½sin b sin bm cosða�amÞþcos b cos bm�

4psinh k1
(41)

where k1 is a parameter quantifying the degree of clustering; and
bm and am are the location parameters. In this study, the Fisher
distribution is adopted to describe the orientation of fractures. For
one rock mass, the values of bm, am and k1 can be estimated ac-
cording to the plunge and trend of the trace (Kemey and Post,
2003).

As fractures are the product of geological tectonic movement, its
propagation may follow a preferred direction in a homogeneous
region of the rock mass, which is related to the direction of the long
axis of the elliptical fracture. According to this property, the rota-
tion angle would tend to align with a preferred direction, and the
direction of the long axis can be described by the von Mises dis-
tribution (Zheng et al., 2022) as

f ðgÞ ¼ C�1ek2 cosðg�gmÞ ð0�g�2pÞ (42a)

C ¼ 2pI0ðk2Þ (42b)

I0ðk2Þ ¼ 1þ
�k2
2

�2
1!2

þ
�k2
2

�4
2!2

þ
�k2
2

�6
3!2

þ $ $ $ (42c)

where gm is the location parameter, k2 is the concentration
parameter, and C is a code without practical significance.

For the rotation angle ranging from ep/2 to p/2, the von Mises
distribution pattern needs to be used in a truncated form. In other
words, the variable g is truncated as in the range of �p/2�ge

gm�p/2, and the probability functions are corrected with a
normalizing coefficient of C1, which can be calculated by

Zgmþp=2

gm�p=2

C�1
1 ek2 cosðg�gmÞ ¼ 1 (43a)

C1 ¼ pI0ðk2Þ þ I1ðk2Þ (43b)

I1ðk2Þ ¼ ð2k2Þþ
1!2ð2k2Þ3

3!2
þ2!2ð2k2Þ5

5!2
þ3!2ð2k2Þ7

7!2
þ $ $ $

(43c)

Furthermore, numerical tests show that when k2 is larger than 6,
the value of C1 is close to that of C. This means that Eq. (42) can be
directly used to describe the distribution of rotation angle without
correcting the coefficient C.

For the size distribution, the length of the long axis may follow
the negative exponential distribution, log-normal distribution, and
gamma distribution. The ratio of short-long axis lengthsmay follow
the uniform distribution, normal distribution, gamma distribution.
Since the range of the ratio of short-long axis lengths ranges from
0 to 1, it can be characterized by truncated forms. We assume the
length of the long axis to be in the negative exponential distribu-
tion and the ratio of short-long axis lengths in the normal distri-
bution to illustrate the process of parameter estimation. The PDF of
the ratio of short-long axis lengths can be given by
gðkÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
sk

exp

"
� ðk� mkÞ2

2s2k

#
(44)

where mk and sk are the mean value and standard deviation of k,
respectively.

According to the above distribution assumptions, s and h, E(k)
can be rewritten as

s¼
Z2p
0

Zp
0

Zp2þgm

�p
2þgm

Z1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as;bsÞ�þk2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as;bsÞ�þ1

p $

k1 sinbek1ðsin b sin bm cosða�amÞþcos b cos bmÞ

4psinh k1

ek2 cosðg�gmÞ

pI0ðk2Þþ I1ðk2Þ
1ffiffiffiffiffiffiffi
2p

p
sk
$

exp

"
�ðk�mkÞ2

2s2k

#
dadbdgdk

(45)

h¼
Z2p
0

Zp
0

Zp2þgm

�p
2þgm

Z1
0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as;bsÞ�þ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as;bsÞ�þk2

p $

k1 sinbek1½sin b sin bm cosða�amÞþcos b cos bm�

4psinh k1

ek2 cosðg�gmÞ

pI0ðk2Þþ I1ðk2Þ
1ffiffiffiffiffiffiffi
2p

p
sk
$

exp

"
�ðk�mkÞ2

2s2k

#
dadbdgdk

(46)

EðkÞ ¼
Z1
0

1ffiffiffiffiffiffiffi
2p

p
sk

exp

"
� ðk� mkÞ2

2s2k

#
dk (47)

It should be noted that k ranges from 0 to 1, and E(k) is not
necessarily equal to the mean value of k.

Eqs. (45)-(47) are the expressions of s and h, E(k) of the trace
length of the UED model whose parameters can be given as a
specific distribution on one sampling window. All related param-
eters are summarized in Table 4. As shown in the table, six un-
known parameters, i.e. gm, k2, ma, sa, mk, sk, should be estimated. At
least three sampling windows are required to estimate these pa-
rameters according to the number of unknown parameters.

Eqs. (45) and (46) are complex, and it is difficult to derive an
analytical solution. Therefore, Monte Carlo simulation is proposed
to solve the integral (Evans and Swartz, 2000). The basic principle
can be found in Appendix B. Hence, the approximate values of s and
h in Eqs. (45) and (46), which are labeled as sj and hj under one
sampling window of j, respectively, can be given by

sj ¼
2p3

N

XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2

h
u
�
ai;bi;gi;asj;bsj

�i
þk2i

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2

h
u
�
ai;bi;gi;asj;bsj

�i
þ1

r $

k1 sinbie
k1ðsin bi sin bm cosðai�amÞþcos bi cos bmÞ

4psinh k1

ek2 cos½2ðgi�gmÞ�

2pI0ðk2Þ
1ffiffiffiffiffiffiffi
2p

p
sk
$

exp

"
�ðki�mkÞ2

2s2k

#

(48)
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hj ¼
2p3

N

XN
i ¼ 1

k2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2

h
u
�
ai;bi;gi;asj;bsj

�i
þ1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2

h
u
�
ai;bi;gi;asj;bsj

�i
þk2i

r $

k1 sinbie
k1½sin bi sin bm cosðai�amÞþcos bi cos bm�

4psinh k1

ek2 cos½2ðgi�gmÞ�

2pI0ðk2Þ
1ffiffiffiffiffiffiffi
2p

p
sk
$

exp

"
�ðki�mkÞ2

2s2k

#

(49)

where N is the total number of the random number sequence
generated by Monte Calo simulation; asj and bsj are the dip direc-
tion and dip angle of sampling window j, respectively; ai, bi, gi and
ki are the ith random dip direction, dip angle, rotation angle, and
ratio of the short-long axis lengths, respectively, and their ranges
are 0 � ai � 2p, 0 � bi � p, ep � gi � p and 0 < ki � 1, respectively.
4.2. Estimate parameters by optimization algorithm

According to the number of unknown parameters, at least three
sampling windows are required. Thus, this paper uses the following
example to show the process of parameter estimation. The mean
value and standard deviation of the trace length based on Eqs. (36)
and (37) can be given by

ml1 ¼ p
�
m2a þ s2a

�
EðkÞ

4s1ma

ml2 ¼ p
�
m2a þ s2a

�
EðkÞ

4s2ma

ml3 ¼ p
�
m2a þ s2a

�
EðkÞ

4s3ma

9>>>>>>>>>>=
>>>>>>>>>>;

(50)

s2l1 ¼
2h1E

�
a3

�
3s1ma

� m2l1

s2l2 ¼
2h2E

�
a3

�
3s2ma

� m2l2

s2l3 ¼
2h3E

�
a3

�
3s3ma

� m2l3

9>>>>>>>>>>=
>>>>>>>>>>;

(51)

where ml1, sl1, s1 and h1 are obtained from Sampling Window 1; ml2,
sl2, s2 and h2 are obtained from Sampling Window 2; and ml3, sl3, s3
and h3 are obtained from Sampling Window 3.

Obviously, the difference in the mean value and standard de-
viation of the trace length between sampling windows depends
mainly on the differences of s and h. To simplify these equations,
the combination of any two of the three sampling windows can
eliminate some common unknown parameters, and hence Eqs. (50)
and (51) can be rearranged as

ml1
ml2

¼ s2
s1

ml1
ml3

¼ s3
s1

ml2
ml3

¼ s3
s2

9>>>>>>>=
>>>>>>>;

(52)
s2l1 þ m2l1
s2l2 þ m2l2

s1
s2

¼ h1
h2

s2l1 þ m2l1
s2l3 þ m2l3

s1
s3

¼ h1
h3

s2l2 þ m2l2
s2l3 þ m2l3

s2
s3

¼ h2
h3

9>>>>>>>>>>>=
>>>>>>>>>>>;

(53)

Substituting Eq. (52) into Eq. (53), we can obtain

s2l1 þ m2l1
s2l2 þ m2l2

ml2
ml1

¼ h1
h2

s2l1 þ m2l1
s2l3 þ m2l3

ml3
ml1

¼ h1
h3

s2l2 þ m2l2
s2l3 þ m2l3

ml3
ml2

¼ h2
h3

9>>>>>>>>>>>=
>>>>>>>>>>>;

(54)

Eqs. (52) and (54) are the corresponding relationship between
the trace length, s and h of the three sampling windows. Combining
with the Monte Carlo integrals in Eqs. (48) and (49), Eqs. (52) and
(54) can be rewritten as

s2
s1
z

ml1
ml2

s3
s1
z

ml1
ml3

s3
s2
z

ml2
ml3

9>>>>>>>=
>>>>>>>;

(55)

h1
h2

z
s2l1 þ m2l1
s2l2 þ m2l2

ml2
ml1

h1
h3

z
s2l1 þ m2l1
s2l3 þ m2l3

ml3
ml1

h2
h3

z
s2l2 þ m2l2
s2l3 þ m2l3

ml3
ml2

9>>>>>>>>>>>=
>>>>>>>>>>>;

(56)

where s1, h1, s2, h2, s3 and h3 are the Monte Carlo integrals of s1, h1,
s2, h2, s3 and h3, respectively.

It is still difficult to solve Eqs. (55) and (56) directly, hence we
estimate the parameters by constructing the optimization function.
For the parameters ml1, sl1, ml2, sl2, s1, h1, s2 and h2 from the Sampling
Windows 1 and 2, the following inequality equations can be ob-
tained based on Eqs. (55) and (56):

����s2s1 �
ml1
ml2

���� � 0

�����h1h2 �
s2l1 þ m2l1
s2l2 þ m2l2

ml2
ml1

����� � 0

9>>>=
>>>;

(57)

js1ml1 � s2ml2j � 0���h2ml2�s2l1 þ m2l1

�
� h1ml1

�
s2l2 þ m2l2

���� � 0

9=
; (58)

According to Eqs. (57) and (58), two optimization functions
E12(1) and E12(2) can be formulated as



Table 5
The parameters and distributions of the characteristics of the UED model.

Characteristic Orientation Rotation
angle

Short-long axis
length ratio

Long axis
length

Distribution
form

Fisher
distribution

Von Mises
distribution

Normal
distribution

Exponential
distribution

Parameter k1 ¼ 15;
am ¼ 60�;
bm ¼ 150�

k2 ¼ 20;
gm ¼ 60�

mk ¼ 0.4;
sk ¼ 0.2

ma ¼ 2; sa ¼ 2
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E12ð1Þ ¼
����s2s1 �

ml1
ml2

����þ
�����h1h2 �

s2l1 þ m2l1
s2l2 þ m2l2

ml2
ml1

�����
E12ð2Þ ¼ js1ml1 � s2ml2j þ

���h2ml2�s2l1 þ m2l1

�
� h1ml1

�
s2l2 þ m2l2

����

9>>>=
>>>;

(59)

Hence, the estimations of mk, sk, gm and k2 are a problem of
solving the minimum value of the optimization functions. Com-
bined with the trace information in Sampling Window 3, the
optimization functions can be given by

E12ð1Þ ¼
����s2s1 �

ml1
ml2

����þ
�����h1h2 �

s2l1 þ m2l1
s2l2 þ m2l2

$
ml2
ml1

�����
E12ð2Þ ¼ js1ml1 � s2ml2j þ

���h2ml2�s2l1 þ m2l1

�
� h1ml

�
s2l2 þ m2l2

����
E13ð1Þ ¼

����s3s1 �
ml1
ml3

����þ
�����h1h3 �

s2l1 þ m2l1
s2l3 þ m2l3

ml3
ml1

�����
E13ð2Þ ¼ js1ml1 � s3ml3j þ

���h3ml3�s2l1 þ m2l1

�
� h1ml1

�
s2l3 þ m2l3

����
E23ð1Þ ¼

����s3s2 �
ml2
ml3

����þ
�����h2h3 �

s2l2 þ m2l2
s2l3 þ m2l3

ml3
ml2

�����
E23ð2Þ ¼ js2ml2 � s3ml3j þ

���h3ml3�s2l2 þ m2l2

�
� h2ml2

�
s2l3 þ m2l3

����

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

(60)

where Eij(p) represents the optimization function p constructed by
the Sampling Windows i and j. Each optimization function repre-
sents an objective equation, and all objective equations are com-
bined to estimate the parameters. It should be noted that multiple
sets of optimization results can be obtained for the solving process.
When a set of estimated parameters of mk, sk, gm, k2 minimize the
Fig. 6. Flowchart of estimating the size- and azimuth-related parameters of the UED
model.
sum Esum, the result of mk, sk, gm, k2 is the best-estimated value,
where Esum is defined as

Esum ¼ E1 þ E2 þ E3 þ E4 þ E5 þ E6 (61)

Based on the assumption that the length of the long axis follows
an exponential distribution, ma and sa can be obtained by

ma ¼ sa ¼ 2sml
pEðkÞ (62)

s, h and E(k) can be calculated according to Eqs. (45)-(47). For
other distribution patterns of fracture size and azimuth, the
methodology as described above can also be valid.

With respect to one set of fractures, the mean value and stan-
dard deviation of trace length in each sampling window are
determined. If the assumed distributions of the length of the long
axis, ratio of short-long axis lengths are different, we may obtain
different values of ma, sa, mk, sk based on the trace information. In
order to keep uniqueness, similar to Zhang et al. (2002)’s method,
the third moment of the trace length distribution is used to verify
the suitability of the assumed size distribution pattern. According
to Eq. (30), E(l3) can be expressed as

E
�
l3
�
¼ 3p

16sEðaÞ E
�
a4

�
r (63)

where r is defined as

r ¼
Z2p
0

Zp
0

Zp=2þgm

�p=2þgm

Z1
0

k3
tan 2½uða; b;g;as;bsÞ� þ 1
tan 2½uða;b;g;as; bsÞ� þ k2

f ða;bÞdadbf ðgÞdggðkÞdk

(64)

The distributions of the ratio of short-long axis lengths can be
verified by the trace lengths in two different sampling windows as

r1s2
r2s1

¼
E1

�
l3
�

E2
�
l3
� (65)

When the distribution of the ratio of short-long axis lengths is
determined, the distribution of the length of the long axis can be
verified by
Table 6
The mean value and standard deviation of trace length in the three combinations of
sampling windows.

ds (�)/qs (�) of sampling windows Mean value Standard deviation

30/0 1.7006 1.6115
60/30 1.3528 1.3179
45/120 1.4451 1.4162



Table 7
The estimated values of ma, sa, mk, sk, gm, k2 in different combinations of the sampling
windows with different orientations.

Orientation in three combinations (ds (�)/qs
(�))

Rotation
angle

Ratio of
short-long
axis lengths

Length of
the long
axis

k2 gm mk sk ma sa

30/0, 60/30, 45/120 22.3 60.3� 0.409 0.205 1.97 1.97
15/240, 30/240, 60/240 21.5 60.2� 0.398 0.196 2.02 2.02
75/150, 75/210, 75/300 21.7 59.8� 0.402 0.204 1.98 1.98
True value 20 60� 0.4 0.2 2 2
Mean error rate 9.17% 0.17% 0.75% 0.83% 0.5% 0.5%
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E
�
a4

�
EðaÞ ¼

16sE
�
l3
�

3pr
(66)

Fig. 6 summarizes the procedures of estimating the size- and
azimuth-related parameters in the UED model.

5. Model validation and application

In order to validate the above-mentioned estimation method, a
hypothetical case study is performed, and the parameters and
distributions of the UEDmodel are shown in Table 5. The rock block
size is assumed to be 50 m � 50 m � 50 m
(length�width� height), with a 3D density of 2 m�3, and 250,000
elliptical fractures. Firstly, themean value and standard deviation of
the trace length in one sampling window are obtained. Then, the
parameters are deduced based on the trace information. The pa-
rameters to be estimated include the mean ma and standard devi-
ation sa of the length of the long axis, mean mk and standard
deviation sk of the ratio of short-long axis lengths, and location
parameter gm and concentration degree k2 of the rotation angle.

To verify the generality of parameter estimation, three combi-
nations of sampling windows with different orientations have been
used: (1) the dip angles and dip directions of the three sampling
windows are different; (2) the dip directions of the three sampling
windows are the same, while the dip angles are different; and (3)
the dip angles of the three sampling windows are the same, while
the dip directions are different. The first combination is taken as an
example to illustrate the application of parameter estimation.

The orientations of the first combination and the corresponding
mean value and standard deviation of trace length are shown in
Table 6. The right side of Eqs. (55) and (56) can be easily computed
based on the mean value and standard deviation of the trace length
in Table 6. The left side of Eqs. (55) and (56) can be obtained by Eqs.
(48) and (49), respectively, combining the Monte Carlo simulation.
The final optimization function can be obtained by substituting the
right side of Eqs. (55) and (56) and the left side of Eqs. (55) and (56)
to Eq. (60). The parameters mk, sk, gm and k2 can be estimated using
Matlab software (version 2020), and the best-estimated values
were selected according to the minimum value of E. Similar steps
were conducted to estimate the parameters for the other two
combinations. The estimated values of ma, sa, mk, sk, gm, k2 in the
three combinations are shown in Table 7. The estimated values
match well with the true ones, which can verify the effectiveness of
the estimation method. It should be noted that in the calculation
process of left side of Eqs. (55) and (56), 300,000 is assigned to the
number of Monte Carlo simulations (N) based on a series of nu-
merical tests.

Furthermore, the size distribution patterns were also verified. mk
and sk were estimated by assuming that the ratio of short-long axis
lengths follows the normal distribution, gamma distribution, and
uniform distribution, respectively. Taking the trace length on any
two sampling windows as an example, E1(l3)/E2(l3) is a determined
value, and (r1s2)/(r2s1) of the ratio of short-long axis lengths in
three distribution forms can be obtained (Table 8). According to the
results, g(k) can be represented well by the normal distribution,
which is consistent with the actual distribution.

When g(k) is determined, 16sE(l3)/(3pr) can be also determined.
E(a4)/E(a) can be estimated by assuming that the length of the long
axis follows the negative exponential distribution, gamma distri-
bution, and log-normal distribution, respectively (Table 9). Ac-
cording to the results, g(a) can be represented well by the negative
exponential distribution, which is consistent with the actual
distribution.

6. Discussion

6.1. Comparison with the existing non-UED and circular disc models

Eqs. (36) and (37) are the universal expression of themean value
and standard deviation of the trace length in the UED model under
one sampling window. Both non-UED and circular disc models can
be viewed as special forms of the UED model. Hence, the formulae
of the mean value and standard deviation of the trace length of the
UED model can be simplified as the formulae of the non-UED and
circular disc models. The difference between formulae mainly de-
pends on s, h and E(k).

According to the assumption of the non-UED model (Zhang
et al., 2002), the dip direction a, dip angle b, rotation angle g and
ratio of short-long axis lengths k are constant. The angle between
the trace line and the long axis (u) on one sampling windowwith a
dip direction of as and a dip angle of bs is also a constant. Hence, the
formulae of the mean value and standard derivation of trace length
can be given by

ml ¼
p
�
m2a þ s2a

�
EðkÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as;bsÞ�þk2

tan 2 ½uða;b;g;as;bsÞ�þ1

r
ma

(67)

s2l ¼ 2k2
�
tan 2½uða; b;g;as; bsÞ� þ 1

	
E
�
a3

�
3
n
tan 2½uða; b;g;as;bsÞ� þ k2

o
ma

� m2l (68)

The expression of u has not been given in Zhang et al. (2002).
The size- and azimuth-related parameter was estimated by trial
and error. Zhang et al. (2002) transformed the ratio of long-short
axis lengths under different directions of long axis, and then
calculate the length of the long axis. When the mean or standard
deviation of the length of the long axis in different sampling win-
dows intersected at one point, the corresponding parameters of the
point are the desired results. The trial and error method given by
Zhang et al. (2002) is complex and time-consuming. Therefore, the
derivation of u in this paper can be used to improve the estimation
of the size- and azimuth-related parameters of this non-UEDmodel
developed by Zhang et al. (2002) by combing the trace information
of any two different sampling windows.

Jin et al. (2014) considered the variance of orientation in Zhang’s
assumption (Zhang et al., 2002) and concluded that the distribution
of trace length is independent of the orientations of the sampling
windows and fractures. Based on the derivation of u in Appendix A,
the value of u varies with the orientations of the samplingwindows
and fractures. When the orientation of the elliptical disc model is a
variable,u is no longer a constant, and its distribution is also related
to the distribution of orientations. Unfortunately, Jin et al. (2014)
did not establish the relationship between u and fracture orienta-
tions and considered u as a constant. Therefore, based on the



Table 8
The ratio of short-long axis lengths in different distributions.

E1(l3)/E2(l3) (r1s2)/(r2s1)

Normal distribution Gamma distribution Uniform distribution

1.455 1.44 1.49 1.171

Table 9
The length of the long axis in different distributions.

16sE(l3)/
3pr

E(a4)/E(a)

Negative exponential
distribution

Gamma
distribution

Log-normal
distribution

96 95.2 210.4 187.4

Table 10
The parameters and characteristics in the rectangular disc model.

Rectangular fracture Distribution Parameter

Density 1/m3

Location Poisson distribution
Long side length (m) Exponential

distribution
Mean value: 2, standard
deviation: 2

Ratio of the short to long
sides

Normal distributionMean value: 0.4, standard
deviation: 0.1

Orientation Fisher distribution k1 ¼ 15, am ¼ 60� and bm ¼ 150�

Rotation angle Von Mises
distribution

k2 ¼ 10 and bm ¼ 30�

Table 11
The true mean value and standard deviation of trace length in three sampling
windows.

Orientation of sampling windows (ds (�)/qs
(�))

True mean
value

True standard
deviation

30/60 1.528 1.325
15/210 1.746 1.715
60/330 1.622 1.487

Table 12
The estimated parameters of the circular disc, non-UED and UED models.

Model Distributions and parameter

Circular disc
model

Radius (m): Exponential distribution, mean value is 1.04 and
standard deviation is 1.04

Non-UED
model

Length of the long axis (m): Exponential distribution, mean value
is 3.79 and standard deviation is 3.79;
Ratio of short-long axis lengths: Constant value of 0.24
Rotation angle: Constant value of 22.3�

UED model Length of the long axis (m): Exponential distribution, mean value
is 2.45 and standard deviation is 2.45;
Ratio of short-long axis lengths: Normal distribution, mean value
is 0.35 and standard deviation is 0.1;
Rotation angle: Von Mises distribution: k2 ¼ 9.7 and bm ¼ 26.5�

Fig. 7. Mean value and standard deviation of the trace length of 3D DFNs in the four
models: (a) Mean value, and (b) Standard deviation.
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derivations in this study, the formulae of trace length of the non-
UED model considering the variance of fracture orientations in Jin
et al. (2014) can be written as

ml ¼
p
�
ma

2 þ s2a
�
EðkÞ

4sma
(69)

s2l ¼ 2hE
�
a3

�
3sma

� m2l (70)

where
s ¼
Z2p
0

Zp
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða;b;g;as; bsÞ� þ k2

tan 2½uða;b;g;as; bsÞ� þ 1

s
f ða; bÞdadb (71)

h ¼
Z2p
0

Zp
0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 2½uða; b;g;as; bsÞ� þ 1
tan 2½uða;b;g;as; bsÞ� þ k2

s
f ða;bÞdadb (72)

For the circular disc model, the size- and azimuth-related vari-
ables include only diameter and orientation. Since k ¼ 1, the values
of s and h are also equal to 1. The formulae of the mean value and
standard deviation of the circular disc model can be expressed as

ml ¼
p
�
m2d þ s2d

�
4md

(73)

s2l ¼
2E

�
d3

�
3md

� m2l (74)

where d is the diameter in the circular disc model; and md and sd are
the mean and standard deviation of the d, respectively. It is
consistent with the formulae of the circular disc models developed
by Zhang and Einstein (2000).



Fig. 8. Histograms of frequency distributions for the trace length of 3D DFNs in the four models: (a) Actual DFN, (b) Circular disc DFN, (c) Non-UED DFN, and (d) UED DFN.
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To further compare the circular disc, non-UED and UED models,
a hypothetical case study of 3D rectangular DFN was constructed in
a block via Monte Carlo simulations, and its geometric character-
istics are shown in Table 10. The block size is 50 m � 50 m � 50 m
(length � width � height), with 125,000 rectangular fractures.
Three infinite sampling windows with different orientations were
used to collect the trace length, and the results are given in Table 11.

The hypothetical case study is viewed as the actual DFN, which
is represented in the circular disc model, non-UED model and UED
model, respectively. It should be noted that when the fracture
orientation is constant, the traces are parallel, and it is inconsistent
with the actual rockmass. Hence, only the non-UEDmodel with the
variance of orientation has been used. According to the trace in-
formation shown in Table 11, the parameters of the UED model and
non-UED model can be estimated based on the aforementioned
optimization method. The diameter of the circular disc model can
be computed by Eqs. (73) and (74) based on the average of themean
value and standard deviation of the traces in three sampling win-
dows. The estimated parameters of the three models are shown in
Table 12. According to the estimated parameters, the 3D DFNs of
the circular disc, non-UED and UED models can be generated.

Thirty infinite sampling windows were used to collect the trace
lengths of the actual DFN, circular disc DFN, non-UEDDFN, and UED
DFN. The orientations of these thirty sampling windows are
consistent with those listed in Table 3. The mean value and stan-
dard deviation of the trace lengths of DFNs of the four types are
shown in Fig. 7. The results in Fig. 7 clearly show that (1) with
respect to the circular DFN, the mean value and standard deviation
of trace length in different sampling windows are almost the same,
indicating that the circular DFN cannot reflect the trend of mean
value and standard deviation of trace length in different sampling
windows. This is consistent with the results in Eqs. (73) and (74);
(2) the non-UED DFN can reflect the trend of the mean value and
standard deviation of trace length in different sampling windows;
however, the error rates are high, e.g. the maximum error rates of
the mean value and standard deviation of trace length for all
sampling windows are 99.5% and 66.7%, respectively; (3) the UED
model can well reflect the trend of the mean value and standard
deviation of trace length in different sampling windows. The
maximum error rates of the mean of trace length for all sampling
windows are 20.9% and 11.8%, respectively, which are much less
than those of the non-UED DFN; and (4) the simulated traces based
on the UED model are closest to the actual ones. The frequency
distribution histograms of the trace length of DFNs of the four types
in the sampling windowwith a dip direction of 180� and a dip angle
of 45� are shown in Fig. 8. It can be seen that the total number,
mean, standard deviation and frequency distribution histogram of
the trace length in the UED model are closest to those of the actual
rockmass. The comparison results clearly illustrate that UEDmodel
outperforms the circular disc and non-UED models.

6.2. Future work on the UED model

Compared with the formulae of trace length in elliptical disc
models, a significant feature of the circular disc model is that the
mean value and standard deviation of trace length are independent
of sampling windows, i.e. the mean value and standard deviation of
the circular disc model are constant in all sampling windows.
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Hence, the trace length in different sampling windows can be used
as the criterion for model selection. When there are large differ-
ences in trace length in different sampling windows, the fractures
must not be equidimensional discs, and the circular disc model is
inapplicable.

In Section 3.2, the true values of the mean and standard devi-
ation of trace length obtained from theMonte Carlo simulations are
close to the calculated values computed by Eqs. (36) and (37). It
should be noted that the true values of trace length are collected
from the infinite sampling window; while in an actual rock mass, it
was obtained based on a finite sampling window. In a finite sam-
pling window, trace errors may occur due to biases including
orientation, size, truncation and censoring (Kulatilake and Wu,
1984; Zhang and Einstein, 2000). How to obtain the mean value
and standard deviation of the trace length for the UEDmodel based
on a finite sampling window is worth studying in the future.

In Section 3, it can be concluded that the distribution of trace
length depends on the distributions of the orientation, rotation
angle, length of the long axis, and the ratio of short-long axis
lengths of the UED model. The relationship between the trace
length and the size and azimuth distributions has not been inves-
tigated thoroughly. In the future, based on the combination of the
common distributions of size and azimuth, we will study the dis-
tribution of trace length under different sampling windows. Even if
it is impossible to directly estimate the size and orientation dis-
tributions from the trace distribution, it may help eliminate unre-
alistic size and azimuth distributions.

It should be noted that the proposed method of parameter
estimation of the UED model requires three sampling windows.
This method is mainly applied to complicated underground engi-
neering where three sampling windows can be provided, such as
underground power plants or underground coal mines. For a gen-
eral tunnel or a slope, three sampling windows are usually uneasy
to obtain; hence, the proposed method is not applicable. In the
future, the parameter estimation of the UED model will be
improved by combining the data of sampling windows and bore-
holes to improve its adaptability.

7. Conclusions

The stereological relationship between the distributions of trace
length, size (length of the long axis and ratio of short-long axis
lengths) and azimuth (orientation and rotation angle) of the UED
model has been established, and the formulae of mean value and
standard deviation of the trace length of Eqs. (36) and (37) on one
sampling window were proposed. The validation of Eqs. (36) and
(37) was performed, and the results (Fig. 5) show that the calcu-
lated values are in good agreement with the true ones, and the ERs
of the mean value and standard deviation of trace length are less
than 5%. Hence, the proposed formulae are valid. Concerning
parameter estimations, the distributions of the geometric charac-
teristics were first assumed. The method of Monte Carlo simulation
was applied to solving the complex integral, and the optimization
algorithm can be used to estimate the parameters based on the
trace length from multiple sampling windows. With respect to the
suitability of the assumed size distribution forms, the third
moment of the trace length distribution was proposed with the
azimuth distribution fixed. The procedures of estimating the size-
and azimuth-related parameters of the UED model were summa-
rized in Fig. 6.

In order to validate and apply the size- and azimuth-related
parameter estimation, the trace lengths from three different com-
binations of sampling windows were used. The results (Table 7)
showed that the estimated values were close to the true values, and
the mean error rate is less than 9.2%, and hence the proposed
method of parameters estimation is valid. Furthermore, the dis-
tribution forms of the size-related parameters were also checked
based on the third moment of the trace length, and the results
(Tables 8 and 9) showed that the best distribution forms are
consistent with the actual distribution forms of the size-related
parameters.

Compared with the existing non-UED and circular disc models,
the formulae of the trace length of the UED model were discussed.
The formulae of the UEDmodel can be reduced to the non-UED and
circular disc models, which can further validate the proposed
equations of the UEDmodel. A hypothetical 3D rectangular fracture
network was constructed using the circular disc, non-UED and UED
models. The trace information of the three models was compared
with the actual rock mass (Figs. 7 and 8), and the results clearly
illustrate the superiority of the UED model over the circular disc
and non-UED models.
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