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Microseism, acoustic emission and electromagnetic radiation (M-A-E) data are usually used for pre-
dicting rockburst hazards. However, it is a great challenge to realize the prediction of M-A-E data. In this
study, with the aid of a deep learning algorithm, a new method for the prediction of M-A-E data is
proposed. In this method, an M-A-E data prediction model is built based on a variety of neural networks
after analyzing numerous M-A-E data, and then the M-A-E data can be predicted. The predicted results
are highly correlated with the real data collected in the field. Through field verification, the deep
learning-based prediction method of M-A-E data provides quantitative prediction data for rockburst
monitoring.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

With the increase in coal mining depth, the resulting rockburst
hazard is becoming more serious (Jiang et al., 2006; Hirata et al.,
2007; Dou et al., 2018; Keneti and Sainsbury, 2018; Gong et al.,
2021; Di et al., 2023). During the occurrence of rockburst, coal
and rock masses will be violently released, thus causing consider-
able casualties and equipment damage in the working faces or
roadways (Li et al., 2016; Zhao et al., 2018b; Qiu et al., 2020; Dong
et al., 2023). Due to different production conditions and other
factors in various mines, rockburst hazards can hardly be moni-
tored and predicted effectively, which poses amajor risk to the lives
of coal workers and seriously hinders normal production of coal
mines (Liu et al., 2017; Gong et al., 2019a; Song et al., 2019; Wang
et al., 2021; Guo et al., 2022). Therefore, it is essential to study
the rockburst hazards in the working faces of underground mines.
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Various guidelines and criteria for rockburst hazards have been
proposed from multiple perspectives, such as stress waves, elec-
tromagnetic waves, coal strength, and impact energy, based on
monitoring methods including microseismic (MS), acoustic emis-
sion (AE), electromagnetic radiation (EMR), and drilling cutting
weight (Huang and Liu, 2013; Guo et al., 2017; Cai et al., 2018; Kim
and Cho, 2019; Vennes et al., 2020; Di and Wang, 2021a; Johnson
et al., 2021). Early-warning models of rockburst based on MS, AE,
EMR and other monitoring methods have been established through
coordinated monitoring of multiple methods and integration of
several indices (Li et al., 2018; Zhou et al., 2020a; Di and Wang,
2021b). However, the above studies have all been conducted for
rockburst hazards in accordance with various data. Recently, some
scholars have attempted to predict the MS, AE and EMR (M-A-E)
data (Gong et al., 2019b; Zhang et al., 2020; Zhou et al., 2020b; Su
et al., 2021; Agrawal et al., 2022), but there is still a lack of
comprehensive prediction methods for M-A-E data. Rational pre-
diction and quantitative analysis of data in the future will
dramatically improve the timeliness.

Deep learning has unique advantages in processing time-series
data and has achieved fruitful research in terms of time-series
data prediction, such as stock price, subway passenger flow, and
the number of infected people in epidemics. Scholars usually
analyzed the collected drilling cuttings and M-A-E data for
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Continuous Fourier transform results of M-A-E data.
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Fig. 1. (continued).
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Fig. 1. (continued).
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Fig. 2. M-A-E data prediction method.
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monitoring rockburst hazards (Jiang et al., 2010; Humphrey et al.,
2013; LeCun et al., 2015; Mazaira and Konicek, 2015; Ranzato
et al., 2015; He et al., 2016; Zhao et al., 2018a; Kong et al., 2022).
However, prediction of M-A-E data is rarely reported in the
literature.

In this study, an M-A-E data prediction model based onmultiple
neural networks is established by taking the M-A-E monitoring
data of a coal mine as the basis and using a continuous Fourier
transform to investigate the development trend of M-A-E data.
Furthermore, the M-A-E data are predicted with the established
model, and then the prediction results and model performance are
analyzed. This research can provide quantitative prediction data for
rockburst monitoring.

2. Continuous Fourier transform of M-A-E data

The M-A-E data collected from the 5521e24 working face of a
mine from November 1, 2020 to May 1, 2021 were selected as the
original data set. The M-A-E data after continuous Fourier trans-
form are shown in Fig. 1. One can see that after continuous Fourier
transform, the M-A-E data become more stable compared to the
original data. The transformed AE and EMR data intensities of the
coal are weakened, and the microseismic energy mostly ranges
from 5000 J to 10,000 J. The M-A-E data all show a considerable
increase during January 20e31, February 22e28, and March 15e18,
2021, demonstrating a trend of pressure rise in the coal rock body
during these three periods. The records of rockbursts on the site
reveal that rockbursts occurred on January 31, March 1 and March
18, 2021.

As shown in Fig. 1, the effective M-A-E data generally develop
smoothly at low intensities or increase slowly, but they rarely
experience a high-intensity sudden increase in the short term. After
continuous Fourier transform, the overall M-A-E data become even
smoother. After continuous Fourier transform, the M-A-E data for
the short-time high-intensity rockburst are eliminated. In addition,
the transformed curve can reflect the development trends of M-A-E
data, which is conducive to subsequent research on the quantitative
prediction of M-A-E data.

3. M-A-E data prediction models based on deep neural
networks

3.1. Introduction to prediction models

3.1.1. Autoregressive integrated moving average (ARIMA) prediction
model

The ARIMA model is a classic time-series prediction method.
The principle of this model is to consider the time-dependent data
generated by monitoring events as a series of random sequential
events and analyze the autocorrelation therein. In this way, a spe-
cific mathematical model is developed to describe this autocorre-
lation pattern of the serial data as well as to optimize the model.
After optimization, it is possible to predict future time data from the
collected time-series data.

3.1.2. Recurrent neural network (RNN) prediction model
The hidden state of RNN can preserve the historical data input to

the RNN and better capture the correlation between data with a
long time span. Therefore, the RNN has a natural advantage for
processing time-series data. In addition, with the development of
RNN, long short term memory recurrent neural network (LSTM-
RNN) introduces the structures such as memory cells, which makes
LSTM-RNN superior to the conventional neural networks in terms
of data prediction. The input of LSTM-RNN is string data that
experience recursion through the hidden state at each time point.
The network records historical data by memory cells and controls
the flowof data by gating design. The network uses all the historical
data. Such a design is more favorable for the prediction of time-
series data.
3.1.3. Convolutional neural network (CNN) prediction model
The CNN, which is often applied to the processing of image data,

convolution computes the data in the whole input area (receptive
field) to obtain the output. The CNN also employs all the historical
time-series data to obtain the output. Compared with the con-
ventional neural networks, it can offer better prediction results. In
addition, CNN prediction is faster than RNN prediction because the
characteristics of CNN make it possible to perform operations such
as multiple inputs and multiple outputs.
3.2. Deep neural network-based M-A-E data prediction model

TheM-A-E data predictionmethod consists of M-A-E data input,
M-A-E data prediction model, and model analysis and evaluation,
as illustrated in Fig. 2.
3.2.1. M-A-E data input
First, the M-A-E data are input into the M-A-E data prediction

method. Since the M-A-E data after continuous Fourier transform
can reflect the development trends of M-A-E data, the transformed
data are also input into the M-A-E data prediction method, which
increases the data samples for M-A-E data prediction and is thus
conducive to the training and optimization of the M-A-E data
prediction model afterwards.
3.2.2. M-A-E data prediction
The models selected for the M-A-E data prediction method

include ARIMA, RNN and CNN. These models predict the M-A-E
data by analyzing the development pattern of massive M-A-E data.
The ARIMAmodel is created by the Python data analysis technique,
and the RNN and CNN models are created by MXNet.
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3.2.3. Production of data sets
In the M-A-E data subjected to continuous Fourier transform

and the M-A-E original data set, 50% are taken as the training set,
25% as the validation set, and the remaining 25% as the test set. In
the completed data sets, there are 17,280 AE training samples,
17,280 EMR training samples, 6520 MS training samples, 2880 AE
validation samples, 2880 EMR validation samples, 1085 MS vali-
dation samples, 2880 AE test samples, 2880 EMR test samples and
1085 MS test samples.
3.2.4. Creation, training and testing of models
The ARIMA predictionmodel is created (Fig. 3). The training data

set is input into the ARIMA model, and then the model will
differentially process the input data, calculate the autocorrelation
coefficients, and estimate the parameters. After the completion of
model creation, the model is validated and optimized by inputting
the validation data set. Finally, the prediction is carried out with the
test data set.

Amethod inwhich the input is single-index (e.g. MS, AE or EMR)
data and the single-index data are predicted is called a single-input
time-series prediction method. This method learns a mapping that
can link historical time-series data to future ones by analyzing a
large amount of data. The implementation process is demonstrated
in Fig. 4. In the first input, the input is n consecutive historical time-
series data, and the output is the predicted value of the first time-
series data. The second input is the n �1 consecutive data after the
first input, which is spliced with the first output. Then, the output is
the predicted value of the second time-series data after the his-
torical data, i.e. the future data are predicted based on the historical
data.

The single-index time-series prediction method can employ the
ARIMA model, the RNN model, or the CNN model. All of these
models work by learning a mapping out of the data, where the
inputs are all a continuous string of historical data and the outputs
are all the prediction data for the next time step. The single-input
RNN model is shown in Fig. 5. This is followed by the first LSTM
layer. The input is passed to obtain the hidden state and the output.
Meanwhile, the hidden state continues to be passed backward until
it is passed to the last LSTM module in this layer. The parameters
continue to be passed until the last LSTM layer. The model is
optimized by continuously reducing errors according to the loss
Fig. 3. ARIMA model.
function. After that, the model is validated with the validation data
set. Finally, the prediction results are tested by the test data set.

The single-input CNN model is shown in Fig. 6. The input is
historical data (8 data points shown in Fig. 6). Next, the convolu-
tional layer is connected, which can connect multiple convolution
layers to extract higher-dimensional and more global features.
Subsequently, the maximum pooling layer is connected, and the
number of parameters as well as the sensitivity of themodel to data
location is reduced. The final output is obtained after connecting
the fully connected layer, i.e. the prediction data.

Multiple single-input prediction models can be used for the
prediction of multi-index time-series data, but they require more
computing power and correspond to poor timeliness. In addition, a
multi-input predictionmodel (Fig. 7) is widely used. This model can
input multiple sets of original data to obtain multiple sets of pre-
diction data. Taking Fig. 7 as an example, the first input has two
strings, and each string contains n continuous time-series data. The
output has two strings, and each string contains two predictions.
The input data of the second time contain the output data of the
first time, and the input data of the third time contain the output
data of the first and second times, thus the output of the last time is
all forecast data.

Because CNN can better deal with multi-dimensional input
problems, it is often used to build a multi-input and multi-output
model, as shown in Fig. 8. The input of the multi-input and multi-
output CNN model is a two-dimensional data set with a size of
2 � 8. After that, the model extracts data features through the
convolution layer and is adjusted to 64 channels. The model is
prevented from overfitting by the pooling layer and discarding
method. Finally, the prediction data with a size of 2 � 2 are ob-
tained through the fully connected layer.

The input and output of the optimized single-input prediction
model both have 72 continuous data points. Since the multi-input
and multi-output CNN model inputs M-A-E data simultaneously,
the input and output sizes of the CNN model are 3 � 72.

After each model is verified and optimized, the hyper-
parameters are obtained as follows: single-input RNN has 3 LSTM
layers, single-input CNN has 12 convolutional layers, and multi-
input and multi-output CNN has 14 convolutional layers. For all
the models, the learning rate is 0.01, the optimization algorithm is
Adam, and the loss function is MSE. All the model training losses
and validation losses drop below 0.02 after 300 epochs.
3.2.5. Analysis and evaluation of model prediction results
The prediction results of M-A-E data by single-input and multi-

input prediction models are analyzed and evaluated
comprehensively.
4. Prediction results and model performance analysis

4.1. Analysis and evaluation of model prediction results

The prediction results of the model are usually evaluated qual-
itatively by plotting the curves of the test and prediction data from
various models in the corresponding time periods on a graph and
then comparing the curve trends and correlations between the test
and prediction data. If the curves exhibit the same trend and high
correlations or even overlap in large sections, it indicates that the
prediction results fit well with the test data, further suggesting that
the model yields good prediction results. Otherwise, the model
produces poor prediction results. The evaluation indices arewritten
as follows:



Fig. 4. Single-index prediction model.

Fig. 5. Single-input RNN prediction model.
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Fig. 6. Single-input CNN prediction model.

Fig. 7. Multi-input prediction model.
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MAPE ¼ 100%
n

Xn
i¼1
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���� (3)
R2 ¼ 1�

Pn
i¼1
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(4)

where MAE is the mean value of the absolute error between the
predicted and true values, RMSE is the square root of the ratio of the
square of the error between the predicted and true values to the



Fig. 8. Multi-input CNN prediction model.
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number of samples, MAPE is the mean of the absolute percentage
error between the predicted and true values, and R2 is the degree of
fitting between the predicted and true values. The smaller the
values of MAE and RMSE are, the more accurate the model pre-
diction is. MAPE, on the other hand, shows the relative error be-
tween the predicted and true values, and the smaller the value is,
the more accurate the model prediction is. MAPE is employed to
evaluate the performance of different models. R2 reflects the reli-
ability of the prediction results; when its value is closer to 1, the
predicted value is closer to the true value, and thus the model fits
better.

4.2. Analysis of model test results

After being trained and validated, the single-input RNN pre-
diction model is tested several times by inputting the M-A-E test
data set. The test results in January 2021 are shown in Fig. 9. In
Fig. 9, the black and red lines represent the true values of the data in
the test set and the predicted values of the model, respectively.
From Fig. 9aec, it can be observed that themodel achieves excellent
predictions of M-A-E data. In addition, the errors between the
predicted and true values are small, which means that the model
fits well. The trends of the predicted and true values and their
correlation are qualitatively shown in Fig. 9. On January 29, the RNN
predicted large fluctuations in the M-A-E data for the following
three days. The AE prediction data first decreased and then
increased. The EMR prediction data increased in fluctuation. The
MS prediction data increased abruptly several times, all of which
are the responses to rockburst hazards. The quantitative evaluation
method is utilized for better evaluation of the model.

The quantitative evaluation results are given in Tables 1e3.
Through calculation, the single-input RNN model has relatively
small MAE, RMSE and MAPE values for AE amplitude, EMR
amplitude and MS energy prediction results, and the R2 values of
the model are 0.82, 0.74 and 0.79, respectively, thus the prediction
is relatively accurate.

The prediction results of multiple single-input models in
January 2021 are shown in Fig. 10. Fig. 10aec qualitatively reflects
that the predictions of the ARIMA, CNN and LSTM-RNN models are
excellent for AE amplitude, EMR amplitude and MS energy, and the
predicted and true values are well correlated with small errors.
These models fit well. Furthermore, the models are evaluated with
the quantitative evaluation method, and the evaluation results are
shown in Tables 4e6.

The calculated MAE, RMSE and MAPE values of multiple single-
input models are small for the prediction results of M-A-E data, and
the R2 values of the CNN and LSTM-RNN models are above 0.7,
which illustrates the remarkable prediction results of the models.
The prediction results of multiple single-input models in February
and March 2021 are shown in Figs. 11 and 12. Similar to those in
January 2021, the quantitative evaluation results in these two
months are also excellent.

Tables 4e6 show the quantitative evaluation results of the three
single-input models ARIMA, CNN and LSTM-RNN. In terms of the
prediction performance of M-A-E data, the ARIMAmodel shows the
worst prediction performance for two reasons: first, it is incapable
of capturing the relationship between the data in a long time-span
data; second, its mapping between the predicted and true values is
simpler. Compared with the ARIMAmodel, the CNN and LSTM-RNN
models are notably improved in the prediction evaluation indices
MAE, RMSE, MAPE and R2. The LSTM-RNN model shows the best
prediction performance in all the evaluation indices. In conclusion,
the CNN and LSTM-RNN models have good prediction results for
single-input time series and can predict the M-A-E data in advance.
The above findings are crucial for the prediction of rockburst haz-
ards. After the training and validation of the multi-input CNN



Fig. 9. Prediction results of the single-input RNN model in January 2021.

Table 1
Evaluation of AE prediction results of the single-input RNN model.

MAE RMSE MAPE (%) R2

3.36 3.59 12.83 0.82

Table 2
Evaluation of the EMR prediction results of the single-input RNN model.

MAE RMSE MAPE (%) R2

3.72 4.51 19.1 0.74

Table 3
Evaluation of the MS prediction results of the single-input RNN model.

MAE RMSE MAPE (%) R2

1048.4 1427.3 26.7 0.79
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prediction model are completed, the model is tested by inputting
the M-A-E test data set at one time. The prediction results are
depicted in Fig. 13. In Fig. 13, the black and gray lines represent the
true values of the test data set, while the red, green and blue lines
represent the M-A-E prediction values of the model. From Fig. 13ae
c, it can be qualitatively seen that the predictions for AE amplitude,
EMR amplitude andMS energy are excellent, and the error between
the predicted and true values is small. The model fits well. The
quantitative evaluation method is selected for better evaluation of
the model. The quantitative evaluation results are listed in
Tables 7e9.

One can see from Tables 7e9 that the MAE, RMSE and MAPE
values are all small, and the R2 values are above 0.7. The model
prediction results are effective. According to the prediction per-
formance of M-A-E data, the multi-input CNN prediction model
corresponds to slightly larger errors in the prediction evaluation
indices MAE, RMSE, MAPE and R2 in comparison with the single-
input CNN and LSTM-RNN models. However, it is superior to the
single-input models in prediction timeliness, as its prediction time
is substantially reduced, as listed in Table 10 (20 min less than the
single-input models on average). In summary, considering its better
timeliness and remarkable prediction effect on M-A-E data, the
CNNmodel is selected for the prediction of multi-input time series.
5. Discussion

The conventional methods of M-A-E prediction for rockburst are
based on manual analysis of the collected M-A-E data. However,
these methods lack timeliness and accuracy and depend highly on
experience. There is a lack of integrated prediction method of M-A-
E data based on deep neural networks.

MS monitoring is of lower frequency and collects fewer data,
while AE and EMR monitoring is of higher frequency and collects
richer data. The latter is more suitable for the analysis and pre-
diction of data. Considering this fact, this paper performs the in-
tegrated prediction of M-A-E data. RNN, single-input CNN and
multi-input CNN models have advantages in rockburst data pre-
diction. Since RNN, single-input CNN and multi-input CNN models
have more hidden layers, which gives them larger capacities, they
can learn deep and relatively complex features more easily. The
deep neural network is also more inclusive of non-optimal



Fig. 10. Prediction results of multiple single-input models in January 2021.

Table 4
Evaluation of AE prediction results of multiple single-input models.

Model MAE RMSE MAPE (%) R2

ARIMA 7.85 8.34 27.63 0.62
CNN 6.87 8.05 25.97 0.77
LSTM-RNN 3.36 3.59 12.83 0.82

Table 5
Evaluation of the EMR prediction results of multiple single-input models.

Model MAE RMSE MAPE (%) R2

ARIMA 7.81 8.23 28.44 0.61
CNN 5.96 7.69 22.35 0.72
LSTM-RNN 3.72 4.51 19.1 0.74

Table 6
Evaluation of MS prediction results of multiple single-input models.

Model MAE RMSE MAPE (%) R2

ARIMA 2436.6 3359.8 41.52 0.58
CNN 1562.8 1968.5 35.21 0.74
LSTM-RNN 1048.4 1427.3 26.7 0.79
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solutions and optimizes the use of nonconvex nonlinearities.
Consequently, it provides better results in processing a large
amount of rockburst M-A-E data.

The trained RNN, single-input CNN andmulti-input CNNmodels
can automatically (without parameter adjustment) and efficiently
predict the data on a GPU. In comparison with the conventional
ARIMA method, RNN, single-input CNN and multi-input CNN
models achieve a R2 value of above 0.7 and correspond to better
timeliness. In particular, the multi-input CNN model makes the
fastest prediction, requiring only 30 min to predict the M-A-E data
for the next three days. The method of predicting the M-A-E data of
rockbursts, which quickly and accurately provides quantitative data
for monitoring, is of significance for the prediction of rockbursts in
the coal mines. The analysis was carried out only in the coal field,
where M-A-E data were simultaneously monitored, which is
conducive to the comprehensive prediction. For other fields where
M-A-E monitoring systems are not arranged at the same time, it is
difficult to carry out analysis in other fields. However, with the
application of the M-A-E monitoring system in other fields, the
prediction method proposed in this study will have universality.
6. Conclusions

In this study, a deep learning-based prediction method for M-A-
E data is proposed. Meanwhile, several models are employed for
the prediction of M-A-E data. The following conclusions are drawn:

(1) TheM-A-E data after continuous Fourier transform are added
to the prediction training set. Then, various M-A-E data
prediction models (single-input and multi-input time-series
prediction models) based on deep learning are established,
optimized by training and validation, and evaluated for their
performance effects in the test set.

(2) By calculating evaluation indices including MAE, RMSE,
MAPE and R2, the prediction results of the ARIMA, CNN and



Fig. 11. Prediction results of multiple single-input models in February 2021.
Fig. 12. Prediction results of multiple single-input models in March 2021.
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LSTM-RNN models in the M-A-E data prediction task are
analyzed qualitatively and quantitatively. The results show
that both single-input and multi-input prediction models
can predict M-A-E datawell. The CNN and LSTM-RNNmodels
both have R2 values above 0.7, and they can predict M-A-E
data in advance.



Fig. 13. Prediction results of the multi-input CNN model.

Table 7
Evaluation of the prediction results of the multi-input CNN model in January 2021.

Model MAE RMSE MAPE (%) R2

AE 7.25 8.12 16.56 0.81
EMR 7.81 8.51 21.28 0.76
MS 1215 1963 29.64 0.73

Table 8
Evaluation of the prediction results of the multi-input CNN model in February 2021.

Model MAE RMSE MAPE (%) R2

AE 7.37 8.18 17.11 0.77
EMR 7.88 8.61 22.64 0.75
MS 1428 2034 32.54 0.71

Table 9
Evaluation of the prediction results of the multi-input CNN model in March 2021.

Model MAE RMSE MAPE (%) R2

AE 7.29 8.01 15.29 0.78
EMR 7.72 8.42 20.67 0.77
MS 1358 2141 31.05 0.71

Table 10
Prediction speed of the models.

Model Average prediction speed (min)

RNN 60
Single-input CNN 50
Multi-input CNN 30
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