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Ore production is usually affected by multiple influencing inputs at open-pit mines. Nevertheless, the
complex nonlinear relationships between these inputs and ore production remain unclear. This becomes
even more challenging when training data (e.g. truck haulage information and weather conditions) are
massive. In machine learning (ML) algorithms, deep neural network (DNN) is a superior method for
processing nonlinear and massive data by adjusting the amount of neurons and hidden layers. This study
adopted DNN to forecast ore production using truck haulage information and weather conditions at
open-pit mines as training data. Before the prediction models were built, principal component analysis
(PCA) was employed to reduce the data dimensionality and eliminate the multicollinearity among highly
correlated input variables. To verify the superiority of DNN, three ANNs containing only one hidden layer
and six traditional ML models were established as benchmark models. The DNN model with multiple
hidden layers performed better than the ANN models with a single hidden layer. The DNN model out-
performed the extensively applied benchmark models in predicting ore production. This can provide
engineers and researchers with an accurate method to forecast ore production, which helps make sound
budgetary decisions and mine planning at open-pit mines.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Oil sands mining is a vital pillar of Canada’s national economy
(Stringham, 2012). By 2035, it will provide more than 905,000 jobs
and contribute $2.1 trillion to federal revenues (Honarvar et al.,
2011). In oil sands mining, off-the-highway truck haulage is the
predominant way for ore (e.g. oil sands) transportation from
loading sites to dumping sites (Ma et al., 2021). Ore production by
truck haulage (the total amount of ores transported by trucks) is
directly associated with the overall production of mines (Baek and
Choi, 2020). Accurate forecasting of ore production by truck haul-
age will facilitate better mine planning (e.g. optimizing the fleet
size and truck-shovel scheduling) and reasonable budgetary de-
cisions for mining companies (Fan et al., 2023a).
ock and Soil Mechanics, Chi-
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In order to forecast ore production at mine sites, many scholars
proposed simulation models and algorithms to calculate the
amount of ores that can be hauled based on the sequential opera-
tions of trucks (Baek and Choi, 2019; Fan et al., 2023b). For example,
Jung et al. (2021) forecasted the ore production of underground
limestone mines using a discrete-event simulation method. They
proposed a simulation model based on various probability density
distributions of truck travel times for the truck haulage system at
mine sites. Other methods estimate ore production mainly by
optimizing truck dispatchings or truck-shovel scheduling, such as
linear programming (Benlaajili et al., 2020), integer programming
(Mai et al., 2019), and stochastic optimization (Bakhtavar and
Mahmoudi, 2020). Nevertheless, these methods can be problem-
atic due to unforeseen events at mine sites, such as work shifts,
reduced equipment availability, and extreme weather conditions
(e.g. rainfall and snowfall), thus affecting the prediction accuracy
(Fan et al., 2023b).

To address the limitations in simulation methods, researchers
have attempted to use historical datasets for constructing re-
lationships (i.e. prediction models) between ore production and its
influencing parameters (i.e. input variables) (Baek and Choi, 2020;
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Overview of the research framework.
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Choi et al., 2021; Jung and Choi, 2021). These parameters include,
but are not limited to, the number of dispatched trucks, time, speed,
and distance-related variables at mine sites (Choi et al., 2021). For
instance, Baek and Choi (2020) considered the number of trucks,
the start and end time of truck haulage, the average wait time at
dumping sites, and the average haul time to forecast ore production
at an open-pit mine in South Korea. The same input variables were
involved in estimating the ore production of a limestone mine in
the research by Choi et al. (2021). The accuracy (e.g. the coefficient
of determination, R2) of the prediction models in these studies
attained 93%e98% (Choi et al., 2022). In addition, in our previous
studies (Fan et al., 2022, 2023a), input variables such as truck speed,
haul distance, ambient temperature, and precipitation were adop-
ted to forecast the productivity of truck haulage (a parameter
directly relates to ore production), where the R2 of the prediction
models exceeded 86%. Each of these input variables played a crucial
role in contributing to the model’s accuracy (Fan et al., 2023a).
However, studies on prediction of ore production by incorporating
truck haulage information and weather conditions are still scarce
due to the high dimensional and nonlinear relationships between
these numerous variables that need to be addressed.

Machine learning (ML) has garnered widespread attention in
recent years for its capacity to establish complex relationships
between numerous input and output variables (Farrell et al., 2019).
ML is a collection of computational algorithms that model complex
input-output relationships by automatically learning information
from massive amounts of data (Fan et al., 2023a). ML usually in-
cludes deep neural network (DNN) and artificial neural networks
(ANNs) (Oreshkin et al., 2021), support vector regression (SVR)
(Khandelwal, 2010), decision tree (DT) (Krzywinski and Altman,
2017), random forest (RF) (Fan et al., 2023a), gradient boosting
regression (GBR) (Friedman, 2001), Gaussian process regression
(GPR) (Zare Farjoudi and Alizadeh, 2021), and k-nearest neighbors
(KNN) (McRoberts, 2012). Of these, DNN also belongs to deep
learning, which is a more advanced concept based on traditional
ANNs (Janiesch et al., 2021). DNN trains prediction models by
adding multiple hidden layers (two or more) in the basic ANN
structure (only one hidden layer) to achieve higher predictability
(Baek and Choi, 2020). For example, Li et al. (2022) constructed two
prediction models (DNN and ANN) for detecting CO2 concentration.
The results presented that the R2 of DNN (99.89%) with three hid-
den layers was greater than that of ANN (98.20%) with a single
hidden layer. Moreover, the literature review shows that DNN
usually outperforms the typical ML algorithms (Park and Park,
2021). For example, Mahmoodzadeh et al. (2021) compared four
typical MLmodels (SVR, DT, GPR, and KNN)with the DNNmodel for
evaluating tunnel water inflow. The research showed that the
prediction error (e.g. root mean square error, RMSE) of DNN was
4.67, whereas that of SVR, DT, GPR, and KNN was 12.96, 17.99, 5.77,
and 16.64, respectively. Therefore, it is promising to apply DNN to
build prediction models. However, according to the literature re-
view, there is a lack of research on using the DNN algorithm to
predict ore production by considering multiple input variables such
as truck haulage information and weather conditions.

To this end, this study aimed to build a DNN model for fore-
casting ore production at open-pit mines using massive truck
haulage information and weather conditions as training data. Un-
like previous studies that directly built DNNmodels (Baek and Choi,
2020), this study combined a dimensionality reduction technique
(PCA) to preprocess massive data. PCA has been proven an efficient
method to remove the multicollinearity between input variables
and reduce the data dimensionality, thusmaking predictionmodels
more reliable (Sulaiman et al., 2021). After that, DNN was used to
handle numerous input variables and build complex nonlinear
prediction models for ore production. Moreover, Bayesian
regularized neural network (BRNN), back propagation neural
network (BPNN), quantile regression neural network (QRNN), DT,
RF, GBR, SVR, GPR, and KNN as benchmark models were built to be
compared with the DNN model.

The novelty of this study resides in three points. First, unique
data covering truck haulage information and weather conditions
from open-pit mines were analyzed in depth. Second, this study
adopted DNN for the first time to construct complex and nonlinear
regression relationships by considering numerous input variables
from truck haulage and local weather. Third, this study is the first
one that combined PCA and DNN to deal with massive amounts of
data and multicollinearity problems. The contribution of this paper
is to build a DNN model based on PCA using truck haulage infor-
mation and weather condition. This provides a more accurate
method for mining companies to predict ore production, which
helps make sound budgetary decisions and mine planning at open-
pit mines.
2. Methodology

2.1. Overview of the research framework

Fig. 1 displays the research framework. The ore production data,
containing truck haulage information and weather conditions,
were split into training and testing subsets. Next, the variables in
two datasets were scaled using a max-min normalization
(normalized to between 0 and 1) (Arachchilage et al., 2023). After
that, PCA was used to preprocess the input variables with strong
correlations in the training dataset to reduce the data dimension-
ality. The resultant outcomes were applied to the testing dataset.
Then, two types of neural networkswere built based on the training
dataset, including the proposed DNN with three hidden layers and
the other three traditional ANNs (BPNN, BRNN, and QRNN) with
only one hidden layer. In addition, eight commonly usedMLmodels
were constructed as benchmark models to be compared with the
DNN model, including the DT, RF, GBR, linear kernel-based SVR
(SVR (Linear)), polynomial kernel-based SVR (SVR (Poly)), radial
basis function kernel-based SVR (SVR (RBF)), GPR, and KNNmodels.
The hyperparameters established in these benchmark models were
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calibrated using a grid search approach based on five-fold cross-
validation, as this approach is easy to manipulate and has good
optimization results (Erdogan Erten et al., 2021). Finally, three
commonly used metrics were used to estimate the performance of
the models: RMSE, MAE (mean absolute error), and R2 (Wu et al.,
2020). The whole training was conducted in RStudio with an R
programming environment (version 4.1.3).
Fig. 3. Schematic diagrams of the tree-based algorithms.
2.2. Machine learning algorithms

2.2.1. Single-hidden layer ANNs and multiple-hidden layer DNN
The commonly used ANNs that contain one hidden layer include

BPNN (Oreshkin et al., 2021), BRNN (Goodarzi et al., 2010), and
QRNN (Cannon, 2011). They mainly differ in the settings of the
weights and activation functions, resulting in models that exhibit
different performances (Goodarzi et al., 2010;Wang and Syu, 2016).
However, unlike these traditional ANNs, DNN has more than one
hidden layer, usually three or more, as shown in Fig. 2b. This can
add to the nonlinearity of the neural network, thus improving the
generalization ability of prediction models (Li et al., 2022). To
accurately predict the ore production, this study employed DNN
with three hidden layers to build the prediction models and
compared the performance with BPNN, BRNN, and QRNNwith only
one hidden layer. The basic principles of these neural networks are
briefly described below.

In BPNN, input variables (i.e. neurons) are linked to n neurons of
the hidden layer. The links are allocated weights (wij) that are lin-
early combined to produce the output aj of the hidden layer using
an activation function f ð�Þ (Glória et al., 2016):

aj ¼ f

 Xm
i¼1

wijxi þ bj

!
; j ¼ 1;2;.;n (1)

where i indicates the ith input neuron, j denotes the jth hidden
neuron, m is the number of input neurons, and bj represents a bias
term. After that, the output aj is regarded as a new input with new
weights (wij) connected to the output layer. Similarly, the sum of
weights is converted to generate the output (y) of the output layer
using an activation function gð�Þ (Glória et al., 2016):

y ¼ g

0@XJ
j¼1

wjlaj þ bl

�
; l ¼ 1 (2)

where J is the number of neurons in the hidden layer, bl is a bias
term, l is the number of outputs. In order to reduce the prediction
Fig. 2. Schematic diagrams of the fundamental structures of (a) A sta
error, the weights and biases are updated by back-propagating the
final output during the training process (Oreshkin et al., 2021).

BRNN is also an ANN that has only one hidden layer (MacKay,
1992). The major difference between BPNN and BRNN lies in the
choice of weights (Goodarzi et al., 2010). The former presumes that
the weights are constant values, which may cause overfitting
problems throughout the training process, while the latter treats
the weights as arbitrary variables (Goodarzi et al., 2010). In BRNN,
the weights (w) are assigned a prior probability distribution (e.g.
Gaussian distribution), and then their posterior probability distri-
butions are inferred based on Bayesian theory.

QRNN is another ANN algorithm with a single hidden layer
structure proposed by Taylor (2000). It combines quantile regres-
sion and neural networks (Lu et al., 2022). Quantile regression
approximates the model of the conditional median, which makes
the minimumMAE value to estimate the conditional median of the
target variable (Lu et al., 2022). When combined with neural net-
works, the weights in QRNN are transformed from the hidden to
the output layers by applying the hyperbolic tangent to the inner
product between the input and hidden layer weights.

DNN used in this study was constructed based on BPNN, as
shown in Fig. 2b. After processing in the multiple hidden layers,
prediction results are derived through the path from the input layer
to the output layer. The neurons in adjacent layers are concatenated
by weights, and the sum of weights is also converted between the
layers by an activation function. The widely used activation func-
tion in DNN is the rectified linear unit for regression problems
ndard artificial neural network and (b) A deep neural network.
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(Baek and Choi, 2020). In short, DNN increases the complexity of
the prediction model by adding hidden layers and adjusting the
neurons in each hidden layer, thus increasing the model’s nonlin-
earity and predictability.

2.2.2. Other ML algorithms
DT is a hierarchical-shape algorithm that contains a root node,

internal nodes, leaf nodes, and branches between nodes (Breiman
et al., 1984). RF and GBR are ensemble learning algorithms
combining multiple DTs to perform better (Xue et al., 2020), as
shown in Fig. 3. RF uses a bagging technique to generate DTs, which
includes two steps: bootstrapping and aggregation (Xue et al.,
2020). “Bootstrapping” is a sampling method that trains each DT
based on a randomly sampled subgroup (with replacement) from
the original dataset. The final prediction is an average of the de-
cisions made by all DTs, which is referred to as “aggregation”. Un-
like RF, GBR adopts a boosting technique to generate DTs (Friedman,
2001). In the boosting approach, there is learning, improvement,
and correction of the prediction errors of the previous DT for each
DT. This is different from the RF algorithm, where each DT is trained
in an independent and parallel manner.

SVR is a supervised ML algorithm for regression tasks. In Fig. 4,
the space of input variables in SVR is split using optimum bound-
aries, also known as hyperplanes (Khandelwal, 2010). SVR con-
structs the optimal hyperplane by maximizing the margin.
Therefore, the vertical distance between the optimal hyperplane
and the data points is minimized. These data points that are nearest
to the margin are known as support vectors. When the data is
indivisible in SVR, the high-dimensional spacemaps the data points
(Boser et al., 1992). The mapping functions (i.e., kernels), such as
linear, polynomial, and radial basis functions, have been widely
used in previous studies (Onyekwena et al., 2022).

GPR is a nonparametric method consistent with Bayesian theory
for tackling high-dimensional and nonlinear regression problems
(Zhang et al., 2019). Like the Bayesian theory-based methods (e.g.
BRNN), GPR evaluates unseen data and calculates the distribution
of their posterior probabilities instead of finding the best-fit model.
The difference is that GPR not only provides predictions but also has
the ability to perform uncertainty measurements based on the
predictions.

KNN is also a nonparametric technique that extracts information
from the observed data to predict the output variables without
defining a parametric input-output relationship (McRoberts, 2012).
In general, KNN achieves classification and regression in three
steps: searching, calculating, and averaging. First, k samples closest
Fig. 4. Basic principle of support vector regression.
to a new data point are explored in the training dataset. After that,
the separation of each sample from the new target data point is
calculated. Finally, the outputs of the k samples are averaged as the
output of the target new data point.
2.3. Principal component analysis

PCA is a practical and valuable statistical technique that trans-
forms large correlated data into small uncorrelated data using
principal components (PCs) (Shang et al., 2017). PCs can be
expressed as linear combinations of the original input variables,
which retain the complete information of the original data. To
determine PCs, the eigenvalues l (l1 � l2 � l3 � .lm) and ei-
genvectors e of correlation matrix R can be obtained by

jR� lIj ¼ 0 (3)

Re ¼ le (4)

where I is the identity matrix. The eigenvalue indicates the amount
of data variance that is interpreted by each PC (Cangelosi and
Goriely, 2007), which can be calculated by

Variancei ¼ li

,Xm

i¼1
li (5)

According to the calculated variances, PC1 (the first one) cor-
responds to the linear combination of input variables and accounts
for the maximum data variance. Next, PC2 (the second one) in-
dicates the maximum variance, which is not accounted for by PC1.
This process is repeated m times to obtain all PCs (PC3, PC4, .,
PCm). In addition, the commonly used Kaiser rule was chosen to
determine the number of PCs, which states that PCs with eigen-
values greater than one are reserved. In contrast, PCs with eigen-
values smaller than one do not deserve to be retained because they
contain less information. (Coste et al., 2005). In this study, historical
data at operating mine sites are observed with solid linear corre-
lations among the input variables (explained in Section 3.1 in
detail), leading to multicollinearity problems and decreasing the
reliability of prediction models (Chan et al., 2022). PCA can control
multicollinearity by analyzing the behavioral properties between
variables, thus potentially improving model predictability (Baggie
et al., 2018; Sulaiman et al., 2021). This provided the rationale for
selecting PCA in this study.
2.4. Evaluation indexes

Correction indexes (i.e. performance metrics) are usually uti-
lized to assess the model performance. These indexes are adopted
to determine how well a prediction model can predict output
variables on an unseen dataset. For regression tasks, the commonly
used indexes include, but are not limited to, RMSE, MAE, and R2,
which have been widely used in numerous application areas of
mining engineering, such as rock strength (Hu et al., 2022),
resource exploitation (Radwan et al., 2022), ground settlement
(Tang and Na, 2021), and cement material (Arachchilage et al.,
2023). These three indexes are listed below (Huo et al., 2021):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

ðyn � bynÞ2
vuut (6)
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MAE ¼ 1
N

XN
n¼1

��yn � byn�� (7)

R2 ¼ 1�
PN
n
ðyn � bynÞ2PN

n
ðyn � ynÞ2

(8)

where RMSE is the standard deviation of the residuals, MAE is the
mean of the absolute errors, yn is the measured ore production, byn
is the forecasted ore production, yn is the measured ore production
mean. This study selected these indexes mainly because they can
easily and quantitatively calculate the absolute or relative errors
(residuals) between the measured and forecasted values, which
displays an intuitive evaluation of model performance (Huo et al.,
2021). Among these indexes, In general, the models that have a
higher R2 and lower MAE and RMSE perform better in prediction.

3. Data description and scaling

3.1. Data description

In this study, the dataset was collected from major production
areas of oil sands in Alberta, Canada. It was derived from two main
categories: truck haulage information and weather conditions,
which reflected the hourly ore production of the oil sands mines for
an entire year. The dataset contained a total of 8682 data points and
was separated into a training subset (80%) and a testing subset
(20%). This ratio was determined by investigating the effect of split
proportions on PCA results and the model’s prediction accuracy,
which will be discussed in detail in Section 4.1. The training dataset
had 18 input variables and ore production (y, tonne); the testing
dataset contained only 18 input variables because the testing
dataset was used as a validation dataset. These 18 input variables
were haul distance (x1, km), empty distance (x2, km), haul time (x3,
min), empty time (x4, min), dump time (x5, min), wait time at
shovel (x6, min), wait time at dump (x7, min), spot time (x8, min),
haul speed (x9, km/h), empty speed (x10, km/h), number of trucks
(x11), number of shovels (x12), ambient temperature (x13, �C), snow
Table 1
A detailed description of 18 input variables (xi).

Input variable Abbreviation Type Description

Haul distance (x1, km) HD Continuous The sum of haul distances of all
Empty distance (x2, km) ED Continuous The sum of empty distances of a
Haul time (x3, min) HT Continuous The sum of haul times of all truc
Empty time (x4, min) ET Continuous The sum of empty times of all tr
Dump time (x5, min) DP Continuous The sum of dump times of all tru
Wait time at shovel (x6,

min)
WS Continuous The sum of wait times at a shov

Wait time at dump (x7,
min)

WD Continuous The sum of wait times at a dump

Spot time (x8, min) ST Continuous The sum of spot times of all truc
Haul speed (x9, km/h) HS Continuous The average haul speeds of all tr
Empty speed (x10, km/h) ES Continuous The average empty speeds of all
Number of trucks (x11) NT Continuous The number of trucks allocated p
Number of shovels (x12) NS Continuous The number of shovels allocated
Ambient temperature (x13,

�C)
AT Continuous The ambient temperature per ho

Snow depth (x14, cm) SD Continuous The snow depth per hour at min
Month (x15) MO Categorical 12 labels (1, 2, 3, 4, 5, 6, 7, 8, 9, 1
Shift ID (x16) SI Categorical Two labels (1 and 2): daytime sh
Wind power (x17) WP Categorical Six labels (1, 2, 3, 4, 5, and 6): calm

breeze (6)
Rainfall (x18) RA Categorical Three labels (1, 2, and 3): light r
depth (x14, cm), month (x15), shift ID (x16), wind power (x17), and
rainfall (x18). They were chosen mainly because of practicing en-
gineers’ experience and data availability at mine sites. Furthermore,
distance, time, and speed-related variables of truck cycles have
been considered influential parameters affecting ore production in
previous studies (Choi et al., 2021). Moreover, hourly weather
conditions (e.g. hourly ambient temperature) have been proven to
be associated with the productivity of truck haulage, thus affecting
ore production (Fan et al., 2023a). It is noted that the current
dataset only involves hourlyweather conditions. This is because the
hourly data contain more data points (8682) and richer real-world
information at mine sites than other time intervals (e.g. a daily
dataset has up to 366 data points in an entire year).

Detailed information on the input variables is presented in
Table 1. The first 14 inputs were numerical (or continuous), while
the last four inputs were categorical. This represents the first 14
input variables had numerical values, while each categorical vari-
able was composed of several labels. For example, the wind power
and rainfall data were obtained from the local weather observatory
(MEP, 2019). According to the Beaufort Wind Scale (Wheeler and
Wilkinson, 2004), the wind power (i.e., wind speed in our data-
set) can be classified into six labels: (1) calm (0�1 km/h), (2) light
air (1�5 km/h), (3) light breeze (6�11 km/h), (4) gentle breeze
(12�19 km/h), (5) moderate breeze (20�28 km/h), and (6) fresh
breeze (29�38 km/h). Similarly, according to the Manual of Surface
Weather Observation Standards (MANOBS, 2021), the rainfall in our
dataset can be classified into three labels: (1) light rain (<2.5 mm/
h), (2) moderate rain (2.6�7.5 mm/h), and (3) heavy rain
(7.6�50 mm/h). In addition, the linear correlation was determined
between every two variables by means of the commonly used
Pearson correlation coefficient (r) (Baek and Choi, 2020):

r ¼
Pðxm � xmÞðxn � xnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxm � xmÞ2

Pðxn � xnÞ2
q (9)

where xm is the m th input, xm is the mean of the xm, xn is the n th
input variable, and xn is the mean of the xn. Table 2 lists the r be-
tween these input variables. According to Ratner (2009), when
0.7< r < 1 (or�1< r <�0.7), two variables are strongly correlated;
when 0.3 < r < 0.7 (or �0.7 < r < �0.3), two variables are
truck cycles per hour
ll truck cycles per hour
k cycles per hour
uck cycles per hour
ck cycles per hour
el of all truck cycles per hour

site of all truck cycles per hour

k cycles per hour
uck cycles per hour
truck cycles per hour
er hour
per hour
ur at mine sites

e sites
0, 11, and 12): 12 months of the year
ift (1) and nighttime shift (2)
(1), light air (2), light breeze (3), gentle breeze (4), moderate breeze (5), and fresh

ain (1), moderate rain (2), and heavy rain (3)



Table 2
Correlation coefficients (r) between the input variables.

r HD ED HT ET DP WS WD ST HS ES NT NS AT SD MO SI WP RA

HD 1.00 0.96 0.93 0.91 0.36 0.27 0.11 0.50 �0.04 �0.08 0.84 0.57 0.17 �0.14 0.10 0.04 �0.02 0.00
ED 0.96 1.00 0.89 0.93 0.36 0.28 0.12 0.51 �0.04 0.00 0.84 0.58 0.12 �0.05 0.11 0.04 �0.03 0.01
HT 0.93 0.89 1.00 0.94 0.31 0.27 0.09 0.52 �0.38 �0.32 0.88 0.57 0.35 �0.17 �0.03 0.05 0.01 0.03
ET 0.91 0.93 0.94 1.00 0.31 0.32 0.11 0.54 �0.28 �0.35 0.89 0.58 0.23 �0.16 0.00 0.08 �0.02 0.06
DP 0.36 0.36 0.31 0.31 1.00 �0.01 0.71 0.29 0.04 0.01 0.43 0.41 �0.18 0.24 �0.19 0.02 0.00 0.00
WS 0.27 0.28 0.27 0.32 �0.01 1.00 �0.04 0.70 �0.08 �0.12 0.47 0.23 �0.17 0.17 �0.25 �0.01 �0.02 0.00
WD 0.11 0.12 0.09 0.11 0.71 �0.04 1.00 0.16 0.05 �0.02 0.27 0.26 �0.17 0.23 �0.19 �0.01 �0.03 0.00
ST 0.50 0.51 0.52 0.54 0.29 0.70 0.16 1.00 �0.21 �0.18 0.76 0.53 �0.14 0.26 �0.40 0.02 �0.02 0.01
HS �0.04 �0.04 �0.38 �0.28 0.04 �0.08 0.05 �0.21 1.00 0.71 �0.30 �0.16 �0.56 0.35 0.40 �0.04 �0.08 �0.07
ES �0.08 0.00 �0.32 �0.35 0.01 �0.12 �0.02 �0.18 0.71 1.00 �0.31 �0.14 �0.35 0.31 0.28 �0.14 �0.03 �0.09
NT 0.84 0.84 0.88 0.89 0.43 0.47 0.27 0.76 �0.30 �0.31 1.00 0.70 0.14 �0.03 �0.18 0.03 �0.02 0.04
NS 0.57 0.58 0.57 0.58 0.41 0.23 0.26 0.53 �0.16 �0.14 0.70 1.00 �0.07 0.22 �0.28 0.01 �0.05 0.01
AT 0.17 0.12 0.35 0.23 �0.18 �0.17 �0.17 �0.14 �0.56 �0.35 0.14 �0.07 1.00 �0.63 0.18 �0.14 0.12 0.05
SD �0.14 �0.05 �0.17 �0.16 0.24 0.17 0.23 0.26 0.35 0.31 �0.03 0.22 �0.63 1.00 �0.46 0.00 �0.04 �0.04
MO 0.10 0.11 �0.03 0.00 �0.19 �0.25 �0.19 �0.40 0.40 0.28 �0.18 �0.28 0.18 �0.46 1.00 0.00 �0.09 0.01
SI 0.04 0.04 0.05 0.08 0.02 �0.01 �0.01 0.02 �0.04 �0.14 0.03 0.01 �0.14 0.00 0.00 1.00 �0.23 �0.03
WP �0.02 �0.03 0.01 �0.02 0.00 �0.02 �0.03 �0.02 �0.08 �0.03 �0.02 �0.05 0.12 �0.04 �0.09 �0.23 1.00 0.03
RA 0.00 0.01 0.03 0.06 0.00 0.00 0.00 0.01 �0.07 �0.09 0.04 0.01 0.05 �0.04 0.01 �0.03 0.03 1.00
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intermediately relevant; otherwise, they are weakly relevant. As
shown in Table 2, the first 12 variables all have at least one set of
two-by-two correlations above 0.7 or below �0.7, which indicates
strong correlations among these variables. When these input var-
iables are involved in a regression model, strong linear correlations
between two and more variables can lead to multicollinearity
problems, which may reduce the accuracy of the regression model
(Chan et al., 2022). According to previous studies (Baggie et al.,
2018; Sulaiman et al., 2021), PCA can control multicollinearity
because it can analyze the behavioral properties between
numerous variables, reduce the data dimensionality, and extract
essential information. This provided the rationale for the choice of
PCA to pretreat the highly correlated input variables in this study.
The results of PCA will be explained and discussed in Section 4.1. It
is worth mentioning that some studies using ML methods to
forecast ore production have not considered the problem of high
linearity and multicollinearity in the data (Choi et al., 2021, 2022).
For instance, in the study by Choi et al. (2021), some correlations
between input variables were above 0.7 (e.g. 0.73 between x7 and
x11) or below �0.7 (�0.92 between x7 and x8), but all of themwere
included in the modeling, which may make the model less reliable.
3.2. Data scaling

In this study, the input variables were measured at different
scales. For instance, the range of the haul distance was between
2.7 km and 306.1 km, whereas that of the number of shovels was
between 1 and 6. As a result, the statistical distributions of these
variables varied significantly in their ranges, which may lead to
some particular values (e.g. those in the upper range) playing a
more critical role in model training, thus affecting the model ac-
curacy (Arachchilage et al., 2023). Data scaling is a vital step in
processing data because it can ensure that all variables are equal in
relevance before building ML models (Ozsahin et al., 2022).
Therefore, this study adopted commonly used min-max data
scaling to normalize the statistical distribution of each variable
(Arachchilage et al., 2023). Each continuous variable with numer-
ical values was readjusted to be on the scale of zero to one using Eq.
(10):

x0 ¼ x� xmin
xmax � xmin

(10)
where x0 means the normalized value, x refers to the actual value,
xmin indicates the minimum of the x-variable, and xmax is the
maximum of the x-variable. Fig. 5 presents the statistical distribu-
tions for all 14 inputs in the training dataset after data scaling.
4. Results and discussion

4.1. Data preprocessing using principal component analysis

In this study, the input variables with strong correlations were
analyzed by PCA to reduce the dimensionality andmulticollinearity
in the training dataset. These input variables were haul distance (x1,
km), empty distance (x2, km), haul time (x3, min), empty time (x4,
min), dump time (x5, min), wait time at shovel (x6, min), wait time
at dump (x7, min), spot time (x8, min), haul speed (x9, km/h), empty
speed (x10, km/h), number of trucks (x11), and number of shovels
(x12). These data were then fed into PCA to construct PCs, as shown
in Table 3. Each PC has an eigenvalue that indicates the amount of
variance being interpreted in the data (Cangelosi and Goriely,
2007). The contribution rate is the percentage of variance inter-
preted by each PC; the cumulative rate of contribution is the cu-
mulative percentage of variance interpreted from the first PC to the
last PC (Holland, 2008). According to Kaiser’s rule (Coste et al.,
2005), PCs with eigenvalues larger than one are maintained,
while PCs with eigenvalues smaller than one are not worth keeping
because they contain less information. Therefore, the first four PCs
(PC1, PC2, PC3, and PC4) were retained in this study, which
explained 86.97% of the total variance, as shown in Fig. 6a. More-
over, the correlation between these PCs was zero (Fig. 6b), indi-
cating that the multicollinearity was removed. This study is
analogous to that of Li et al. (2015), who employed PCA to construct
four PCs from four environmental input variables before estab-
lishing prediction models of the building’s electricity consumption.
Through PCA, the first two PCs that interpreted 82.39% of the
overall variance were kept, thus reducing the dimensionality of the
original training dataset. In short, PCA eliminated redundant in-
formation in the data and identified essential input variables for
building prediction models.

Furthermore, the effect of the split proportions of training and
testing datasets on PCA results and model accuracy was investi-
gated. The split proportions included 70%:30%, 75%:25%, 80%:20%,
and 90%:10%, which are four proportions extensively applied in
previous studies (Hou et al., 2022; Arachchilage et al., 2023). Table 4
lists the PCA results and the prediction accuracy of multiple linear



Fig. 5. Distribution and statistics of inputs (Min: minimum, Max: maximum, Avg: average, and Mdn: median): (a)e(n) The histograms of 14 continuous input variables and (o)e(r)
The boxplots for categorical inputs.
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Table 3
PCA results.

PC Eigenvalue Contribution rate (%) Cumulative contribution rate (%)

PC1 5.98 49.80 49.80
PC2 1.86 15.48 65.28
PC3 1.48 12.31 77.59
PC4 1.13 9.38 86.97
PC5 0.54 4.52 91.49
PC6 0.34 2.85 94.34
PC7 0.28 2.33 96.67
PC8 0.24 2.03 98.69
PC9 0.07 0.59 99.28
PC10 0.07 0.57 99.85
PC11 0.01 0.12 99.97
PC12 0.004 0.03 100.00

Table 4
Effect of split proportion on PCA and model accuracy.

Split proportion Representative
eigenvalue

Accuracy on testing
dataset and score

Sum of
score

Training Testing PC1-PC5 RMSE MAE R2

70% 30% 5.96, 1.85, 1.47, 1.14,
0.55

5.44%
(2)

4.21%
(3)

91.62%
(2)

7

75% 25% 5.97, 1.85, 1.47, 1.13,
0.54

5.42%
(3)

4.20%
(4)

91.77%
(3)

10

80% 20% 5.98, 1.86, 1.48, 1.13,
0.54

5.41%
(4)

4.21%
(3)

91.87%
(4)

11

90% 10% 5.98, 1.87, 1.46, 1.13,
0.54

5.46%
(1)

4.22%
(2)

91.55%
(1)

4
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regression (MLR) models based on four split proportions. MLR was
adopted because of its ease of implementation, low computational
effort, and less susceptibility to overfitting (Fan et al., 2022). As can
be seen from Table 4, representative eigenvalues (PC1-PC5) of all
four PCA results show that only the first four eigenvalues are larger
than one. Therefore, PC1, PC2, PC3, and PC4 were preserved in each
PCA with different split proportions. This indicates that the PCA
results were not affected by the split proportions. In addition,
Table 4 lists the performance comparison of the MLR models built
based on four training datasets. The accuracy of each model was
evaluated by three metrics and scored for each metric (ranging
from one to four). The larger the RMSE and MAE, the low the score;
conversely, the higher the R2, the greater the score. When the split
proportion was 80%:20%, the model had the maximum sum of
scores, indicating its highest prediction accuracy. Kumar et al.
(2020) conducted similar work to investigate the effect of split
proportion on the prediction accuracy of diabetes mellitus. They
built DNN models based on three training datasets with different
ratios and demonstrated that 80%:20% was the best ratio, with the
DNN model achieving the highest accuracy of 98.16%. As a result,
80%:20% was selected as the best-split proportion and utilized to
construct more complex prediction models in this study.
4.2. Development of deep neural network models

To establish DNN models, the four PCs retained in Section 4.1
were combined with the remaining six input variables from the
Fig. 6. Results of PCA and correlation analysis: (a) Scree plot: the cumulative contribution p
PC1, PC2, PC3, and PC4.
original training dataset to create a new training dataset. The new
training dataset involved ten input variables: PC1, PC2, PC3, PC4,
shift ID (label), month (label), ambient temperature (�C), snow
depth (cm), wind power (label), and rainfall (label). In this study, all
the DNN models included three hidden layers for constructing
complex and nonlinear relationships between multiple inputs (ten
input variables) and a single output (ore production). As a result,
the structure of DNN models can be expressed as 10-n1-n2-n3-1,
where nj denotes the amount of hidden neurons within the j th
hidden layer. In addition, the number of neurons in each hidden
layer varied between 3 and 30. To determine the optimal combi-
nation of the number of neurons, Table 5 summarizes part of the
DNN models with different neural structures and their prediction
performance evaluated based on the testing dataset.

In Table 5, when the number of neurons increased in a parallel
manner in each hidden layer, the DNN model showed the highest
performance with the neural structure of 10-4-4-4-1, where the
RMSE, MAE, and R2 were 4.61%, 3.57%, and 94.02%. After that, the
number of neurons was tuned separately in different hidden layers
to investigate the changes in the DNN models’ performance. From
Table 5, when the number of neurons approached 25 alone in the
first hidden layer, the RMSE value was reduced from 4.61% to 4.41%.
However, when the number reached 30, it increased to 4.67%. Thus,
the optimal number of neurons was 25 for the first hidden layer.
Likewise, the optimal number of neurons was decided to be 4 and 4
for the second and third hidden layers when the minimum RMSE
(4.41%), MAE (3.35%), and maximum R2 (94.52%) were attained.
Hence, the final proposed DNNmodel’s structure was 10e25-4-4-1,
roportion of PCs; and (b) Heatmap: the correlation between the retained PCs, including



Table 5
Part of the DNN models with different structures and their performance on the
testing dataset.

Number (n1, n2, n3) RMSE (%) MAE (%) R2 (%)

1 (3, 3, 3) 4.85 3.73 93.39
2 (4, 4, 4) 4.61 3.57 94.02
3 (5, 5, 5) 4.77 3.59 93.61
4 (8, 4, 4) 4.57 3.48 94.12
5 (12, 4, 4) 4.667 3.52 93.89
6 (15, 4, 4) 4.57 3.45 94.14
7 (18, 4, 4) 4.49 3.39 94.34
8 (25, 4, 4) 4.41 3.35 94.52
9 (28, 4, 4) 4.52 3.43 94.26
10 (30, 4, 4) 4.67 3.52 93.86
11 (25, 5, 4) 4.62 3.48 94.00
12 (25, 10, 4) 4.68 3.52 93.86
13 (25, 15, 4) 5.05 3.70 92.82
14 (25, 20, 4) 6.61 3.95 87.73
15 (25, 25, 4) 5.14 3.75 92.58
16 (25, 4, 5) 4.56 3.44 94.15
17 (25, 4, 10) 4.64 3.49 93.94
18 (25, 4, 15) 4.63 3.48 93.99
19 (25, 4, 20) 4.63 3.51 93.99
20 (25, 4, 25) 4.62 3.48 93.99

Table 6
Effects of truck haulage information and weather conditions on prediction accuracy.

DNN
model

Category Number of input
variables

Accuracy on testing
dataset

RMSE
(%)

MAE
(%)

R2

(%)

1 With PCA (the proposed) 10 4.41 3.35 94.52
2 With PCA and without

weather conditions
6 7.28 4.69 80.73

3 With weather conditions 4 14.66 12.98 10.32
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which refers to Fig. 7 for a graphical demonstration. Akin to the
study by Ly et al. (2021), they proposed a three-hidden layers DNN
model to estimate the compressive strength of rubber concrete.
According to their research, the DNN model had the highest accu-
racy with the number of neurons in the three hidden layers of 16,
14, and 3, respectively, where R2 reached 97.50%.

Furthermore, this study investigated the influence of truck
haulage-related inputs and weather-related inputs on the predic-
tion accuracy of DNN models, as shown in Table 6. Table 6 presents
three scenarios: (1) considering all input variables (four PCs and the
remaining six inputs), (2) excluding weather-related inputs, and (3)
excluding truck haulage-related inputs. It can be noted that the
accuracy of the DNN model dropped when input variables were
continuously excluded. For example, the R2 of the DNN model
reached 80.73% when only trucking-related inputs were involved,
Fig. 7. Schematic diagrams of the fundamen
compared to 10.32% for the DNNmodel that included only weather-
related inputs. This suggests that the truck haulage-related inputs
played a more critical role in predicting ore production than the
weather-related inputs. The same results were found in our pre-
vious study, where the contribution of haul distance (43.51%) was
more significant than that of ambient temperature (12.71%).
Despite this, the weather-related inputs contributed to the model
to some extent (10.32%). Sun et al. (2018) also reported a 5.13%
improvement in the accuracy of the prediction model after taking
weather factors into account.
4.3. Determination of optimal hyperparameters

In this study, hyperparameters in 11 benchmark models were
adjusted by a grid search approach based on five-fold cross-vali-
dation to control the complexity of the models. These benchmark
models were BPNN, BRNN, QRNN, DT, RF, GBR, SVR (with three
kernels), GPR, and KNN. To evaluate the effect of using this
approach, the prediction error (e.g. RMSE as a metric) of these
prediction models was calculated for each combination of hyper-
parameters within a predetermined search range. Table 7 lists the
determined optimal hyperparameters for these models. With these
optimal values, the benchmark models can avoid the risk of over-
fitting, thus exhibiting better prediction performance (Moayedi
et al., 2019). This is compatible with the study of Arachchilage
et al. (2023), who established four prediction models (i.e. ANN,
tal structures of the best DNN model.



Table 7
Determination of hyperparameters for the benchmark models based on five-fold
cross-validation.

Model Hyperparameter Range, step Value

BPNN size [5e25], 5 15
decay [0.1e1.0], 0.1 0.5

BRNN neuron [5e15], 1 9
QRNN n.hidden [5e15], 1 10

penalty Default 0
bag Default FALSE

DT cp [0.001, 0.005, 0.01, 0.05] 0.001
RF num.trees [500, 1000, 1500, 2000] 1500

mtry [1e10], 2 10
splitrule Variance, extratrees, maxstat Variance
min.node.size [10e30], 5 20

GBR n.trees [500, 1000, 1500, 2000] 1000
interaction.depth [2e10], 2 4
shrinkage [0.005, 0.01, 0.05, 0.1] 0.01
n.minobsinnode [5e15], 1 11

SVR (Linear) c [20, 30], 1 28
SVR (Poly) degree [2e5], 1 3

scale [0.0001e0.0005], 0.0001 0.0003
c [20, 30], 1 30

SVR (RBF) sigma [0.01e0.1], 0.01 0.02
c [100, 1000], 100 800

GPR degree [2e5], 1 3
scale [0.1e0.5], 0.1 0.2

KNN kmax [10e100], 10 70
kernel Biweight, triweight, inv, Biweight
distance [1e5], 1 3
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RF, GBR, and SVR models) to forecast the uniaxial compressive
strength of alkali-activated slag-based cemented materials.
Compared with the preliminary models, the RMSE values of the
ANN, RF, SVR, and GBRmodels reduced by 9.29%, 1.45%, 39.24%, and
39.81% after tuning hyperparameters, indicating that the model
performance was improved.

4.4. Performance of the proposed model

4.4.1. Comparison of DNN, BPNN, BRNN, and QRNN models
In this study, the proposed three-hidden layers DNN model and

three single-hidden layer ANN models were used to predict ore
production. Fig. 8 presents the scatter points of the normalized
expected ore production (vertical) from these models and the
normalized measured ore production (horizontal). The diagonal
line is an ideal line, indicating that the forecasted and measured
values are equal. The minor deviation between the forecasted and
measured values, the more uniformly the scatters are distributed
along the diagonal (Fan et al., 2022). As shown in Fig. 8, the points
generated by these four models based on the training and testing
datasets are closely dispersed along both sides of the diagonal. This
indicated that these four models performed well in predicting ore
production. In addition, Table 8 lists the quantitative performance
metrics of these four models verified using training and testing
datasets. From Table 8, the RMSE, MAE, and R2 were 4.41%, 3.35%,
and 94.52% for the DNN model based on the testing dataset.
Accordingly, these indicators were 4.88%, 3.74%, and 93.29% for the
BPNNmodel, 4.7%, 3.6%, and 93.78% for the BRNNmodel, and 4.83%,
3.65%, and 93.44% for the QRNN model. Regarding the R2 alone, the
predictability of these four models was ranked as DNN
(94.52%) > BRNN (93.78%) > QRNN (93.44%) > BPNN (93.29%). The
same finding was seen by Maldonado et al. (2020), who developed
two models to predict complex traits for genomic selection using
DNN and BRNN. The results demonstrated that the predictability of
the DNN (0.78) model was higher than that of the BRNN (0.71)
model. Similarly, Lu et al. (2022) and Oreshkin et al. (2021) both
demonstrated that DNN models performed better than QRNN and
BPNN models in electricity load forecasting. In summary, the pro-
posed DNN model with multiple hidden layers outperformed the
traditional ANN models (having a single hidden layer) when pre-
dicting ore production at open pit mine sites.

4.4.2. Comparison of DNN, DT, RF, GBR, SVR, GPR, and KNN models
To further evaluate the DNN model’s prediction performance,

six commonly applied ML algorithms were adopted to build eight
additional benchmark models. These were the DT, RF, GBR, SVR
(Linear), SVR (Poly), SVR (RBF), GPR, and KNN models. Figs. 9e11
are three radar charts for illustrating the performance evaluation
(using RMSE, MAE, and R2) of these eight benchmark models and
the DNN model based on the testing and training datasets. In each
chart, the vertices of the irregular polygons represent the nine
models. The proximity of the vertices from the center along the
axes is the performance measure for each model. For example, in
Fig. 9, regarding the testing dataset, SVR (RBF) had the lowest RMSE
value (4.7%) among the benchmark models, indicating that it out-
performed the other benchmark models. Despite this, the DNN
(4.41%)model achieved a lower RMSE value comparedwith the SVR
(RBF) (4.70%) model. Therefore, the DNN model performed better
than these benchmark models. This applies to the evaluation
metrics of MAE (Fig. 10) and R2 (Fig. 11) in this study. The same
finding was found by Park and Park (2021): the RMSE value of the
DNN (226.73) model was lower than that of the SVR (380.63), RF
(357.18), GBR (367.11), GPR (372.7), and KNN (363.45) models when
predicting the natural ventilation rate of sustainable buildings. Olu-
Ajayi et al. (2022) also reported that DNN (e.g. RMSE ¼ 1.16) out-
performed other traditional ML models, such as BPNN (1.2), GPR
(1.4), SVR (1.61), RF (1.69), KNN (2.4), and DT (2.55) in predicting
building energy consumption.

Moreover, two additional findings can be concluded from
comparing these benchmark models: (1) the SVR model with the
RBF kernel performed better in predicting the ore production than
the SVR model with the other two kernels (Linear and Poly). For
instance, for the testing accuracy, the R2 of the SVR (RBF) was
93.79%, while those of the SVR (Linear) and SVR (Poly) were 91.62%
and 92.2%. Onyekwena et al. (2022) also proved that the perfor-
mance (R2) of the SVR (RBF) (99.25%) model was higher than the
SVR (Linear) (94.15%) and SVR (Poly) (92.06%) models when pre-
dicting gas diffusion coefficient of biochar-amended soil (2) the
tree-based ensemble models (i.e. GBR and RF); performed better
than the single DT model. For example, for the testing accuracy, the
MAE value of the DT (4.3%) model was more significant than the RF
(3.76%) and GBR (3.67%) models. This is consistent with our pre-
vious study of mine truck productivity using tree-based models
(Fan et al., 2023a). In conclusion, the DNN model had the greatest
predictability through comparative studies, which provides the
resource industry with an accurate method to forecast ore pro-
duction and help to make budgeting decisions and mine planning.

4.5. Advantages, limitations, and future work

In this study, the DNN model with a specific neural structure
was proposed for forecasting ore production by truck haulage at
open-pit mines. Unlike previous studies (Baek and Choi, 2020; Choi
et al., 2021, 2022), this study combined truck haulage information
from oil sands mines and local weather conditions as training data
to construct a more accurate DNN model for predicting ore pro-
duction at mine sites. For example, for the testing accuracy, the R2

of the DNN model was 94.52%, which was higher than that of the
BPNN (93.29%), BRNN (93.78%), QRNN (93.44%), DT (91.24%), RF
(93.14%), GBR (93.58%), SVR (RBF) (93.79%), SVR (Linear) (91.62%),
SVR (Poly) (92.20%), GPR (93.57%), and KNN (89.24%). In addition,
this study preprocessed the input variables with strong correlation



Fig. 8. Scatterplots of the normalized actual ore production and normalized predicted ore production. The evaluation results from the (a) DNN model, (b) BPNN model, (c) BRNN
model, and (d) QRNN model.
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(r > 0.7 or r < �0.7) using PCA before building the prediction
models. The 12 input variables in the original dataset were reduced
to four PCs by PCA. This effectively reduced the dimensionality of
the training data to lower the computational complexity and
resolved the multicollinearity between these input variables,
making the proposed prediction model more reliable (Chan et al.,
2022).

Nevertheless, the proposed DNNmodel had its limitations. More
future work is needed to improve the prediction model. First, other
additional inputs that have not been considered may also influence
ore production, such as tire properties (Ma et al., 2023), loaded
speed (Fan et al., 2023a), pavement elevation (Chanda and
Gardiner, 2010), and driver habits (Sun et al., 2018). For example,
Ma et al. (2021) reported that high tire temperatures could cause
rubber failure of the off-the-road tire at mine sites, thus affecting
the productivity of truck haulage and ore production. These po-
tential influencing inputs may be added to future work to construct
ore production prediction models at open-pit mines. Second, there
are many more advanced methods for data dimensionality reduc-
tion, such as uniform manifold approximation and projection
(UMAP), kernel PCA, autoencoders, and t-distributed stochastic
neighbor embedding (t-SNE) (Gisbrecht et al., 2015; Sidhu et al.,
2012). These advanced techniques may be more effective than
PCA when the data are high-dimensional and present complex
nonlinear relationships between variables (Anowar et al., 2021).
Therefore, more comparative studies between methods are
necessary for efficient dimensionality reduction. Third, the pro-
posed model can forecast the hourly ore production by responding
to the hourly weather conditions. However, the proposed model
has limitations in responding to other temporal characteristics of
weather conditions (e.g. daily, weekly, and monthly rainfall). The
impact of different temporal characteristics may vary on model
prediction accuracy (Wen et al., 2019). For instance, the effect of
daily rainfall on ore production may be greater than the hourly
rainfall because of road conditions. Therefore, more investigations
relating to temporal effects will be conducted in future work.
Finally, this study utilized a grid search approach to tuning the
hyperparameters, but grid search is not the only optimization
method. Other algorithms have been proven helpful in tuning
hyperparameters, such as genetic optimization (Chung and Shin,
2020), whale optimization (Nguyen et al., 2021), and particle
swarm optimization (Bardhan et al., 2022) algorithms. Therefore,
these optimization algorithms will be utilized in future work to
enhance the generalizability of the prediction model.

5. Conclusions

Deep neural network (DNN) is suitable for processing nonlinear
and massive data, which increases the model complexity and
nonlinearity by adjusting the number of neurons and hidden layers,
thereby adapting to the growing data size and improving themodel
predictability (or generalization). This work was the first study



Table 8
Performance of the DNN, BPNN, BRNN, and QRNN models on training and testing
datasets.

Model Accuracy on testing dataset Accuracy on training dataset

RMSE (%) MAE (%) R2 (%) RMSE (%) MAE (%) R2 (%)

DNN 4.41 3.35 94.52 3.82 2.94 95.83
BPNN 4.88 3.74 93.29 4.62 3.60 93.91
BRNN 4.70 3.60 93.78 4.38 3.39 94.52
QRNN 4.83 3.65 93.44 4.48 3.43 94.27

Fig. 9. Performance of the DNN, DT, RF, GBR, GPR, SVR, and KNN models evaluated by
RMSE (in percentage) based on training and testing datasets.

Fig. 10. Performance of the DNN, DT, RF, GBR, GPR, SVR, and KNN models evaluated by
MAE (in percentage) based on training and testing datasets.
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incorporating truck haulage information and weather conditions as
training data to construct a principal component analysis (PCA)-
based DNNmodel for forecasting ore production at open-pit mines.
Additionally, 11 benchmark models were established to be
compared with the DNNmodel to assess its performance. From this
study, the main findings are listed as follows:

(1) The DNN model with multiple hidden layers (i.e. three hid-
den layers) outperformed the ANNmodels with only a single
hidden layer. For example, In terms of R2 alone, the pre-
dictability of the DNN model with three-hidden layer
(94.52%) was higher than that of the BPNN (93.29%), BRNN
(93.78%), and QRNN (93.44%) models, which contained only
one hidden layer.

(2) The DNN model performed better than the commonly used
machine learning models (benchmark models) in predicting
ore production. For instance, in terms of the testing dataset,
radial basis function kernel-based support vector regression
(SVR (RBF)) had the lowest RMSE value (4.7%) among the
benchmark models, indicating that it outperformed the
other benchmark models. Despite this, the DNN (4.41%)
model achieved a lower RMSE value compared with the SVR
(RBF) (4.7%) model.

(3) The truck haulage-related inputs played a more critical role
in predicting ore production than theweather-related inputs.
For example, the R2 of the DNN model reached 80.73% when
only trucking-related inputs were involved, compared to
10.32% for the DNN model that included only weather-
related inputs.

(4) The predictability of the SVR (RBF) model was better than the
linear kernel-based SVR model (SVR (Linear)) and the poly-
nomial kernel-based SVR model (SVR (Poly)). For instance,
for the testing dataset, the R2 of the SVR (RBF) was 93.79%,
while those of the SVR (Linear) and SVR (Poly) were 91.62%
and 92.2%.

(5) The tree-based ensemble models had higher accuracy than
the single decision tree (DT) model. For example, for the
testing dataset, the MAE value of the DT (4.3%) model was
Fig. 11. Performance of the DNN, DT, RF, GBR, GPR, SVR, and KNN models evaluated by
R2 (in percentage) based on training and testing datasets.
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more significant than the random forest (3.76%) and gradient
boosting regression (3.67%) models.

(6) The DNN model with the neural structure of 10e25-4-4-1
was proposed for ore production forecasting due to its su-
perior performance over the others. In this study, the DNN
models achieved the highest accuracy, with an R2 of 94.52%.
This can providemining companies with an accurate method
to forecast ore production, which helps make sound budg-
eting decisions and mine planning.
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