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Accurately picking P- and S-wave arrivals of microseismic (MS) signals in real-time directly influences
the early warning of rock mass failure. A common contradiction between accuracy and computation
exists in the current arrival picking methods. Thus, a real-time arrival picking method of MS signals is
constructed based on a convolutional-recurrent neural network (CRNN). This method fully utilizes the
advantages of convolutional layers and gated recurrent units (GRU) in extracting short- and long-term
features, in order to create a precise and lightweight arrival picking structure. Then, the synthetic sig-
nals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an
optimal CRNN model. The actual operation on various devices indicates that compared with the U-Net
method, the CRNN method achieves faster arrival picking with less performance consumption. An
application of large underground caverns in the Yebatan hydropower station (YBT) project shows that
compared with the short-term average/long-term average (STA/LTA), Akaike information criterion (AIC)
and U-Net methods, the CRNN method has the highest accuracy within four sampling points, which is
87.44% for P-wave and 91.29% for S-wave, respectively. The sum of mean absolute errors (MAESUM) of the
CRNN method is 4.22 sampling points, which is lower than that of the other methods. Among the four
methods, the MS sources location calculated based on the CRNNmethod shows the best consistency with
the actual failure, which occurs at the junction of the shaft and the second gallery. Thus, the proposed
method can pick up P- and S-arrival accurately and rapidly, providing a reference for rock failure analysis
and evaluation in engineering applications.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Microseismic (MS) monitoring is an effective monitoring and
early warning technology for rock mass failure (Cook, 1976; Zhao
et al., 2022; Li et al., 2023b), which has been widely used in deep
rock engineering (Young and Collins, 2001; Durrheim et al., 2005;
Feng et al., 2019; Li et al., 2023a; Mao et al., 2023). MS monitoring
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analyzes the spatiotemporal evolution mechanism of rock micro-
fractures and achieves rock failure prediction through waveform
recognition, arrival picking, source positioning, and source
parameter inversion in sequence (Xiao et al., 2016; Zhang et al.,
2021a). Currently, the manual processing of MS data is usually
considered to have the highest accuracy and the drawbacks of high
cost and latency, and the automatic processing still has a certain
gap in accuracy compared to manual processing. The MS P- and S-
arrivals are the calculation bases of source positioning and source
parameter inversion, and the deviation of the arrivals will be
quickly amplified by these subsequent steps (Akram and Eaton,
2016). Thus, the accuracy and efficiency of MS arrival picking
have a direct impact on the effect of rock failure monitoring. For
this, various arrival-picking methods for MS P- and S-waves have
been proposed, which are generally divided into traditional and
machine learning methods.

The traditional methods mainly include the short-term average/
long-term average (STA/LTA)method (Allen,1978,1982), the Akaike
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. A contradiction between accuracy and computation for existing methods.
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information criterion (AIC) method (Maeda, 1985; Li et al., 2017),
the phase arrival identificationeskewness/kurtosis (PAI-S/K)
method (Saragiotis et al., 2002; Nippress et al., 2010) and their
variants. The STA/LTA method is widely used in practical MS
monitoring due to its simplicity and rapidity. However, it has the
following weaknesses: relatively low accuracy, instability due to
dependence on the window length (Akram and Eaton, 2016) and
insensitivity to signals with a low signal-to-noise ratio (SNR). The
AIC and PAI-S/K methods achieve high-accuracy arrival-picking
based on changes in information or statistics. However, these
methods also perform poorly on low-SNR signals (Dong et al.,
2018).

Machine learning methods mainly include clustering (Zhu et al.,
2016, 2022; Ma et al., 2018; Guo et al., 2021; Lan et al., 2022) and
deep learning methods for MS arrival picking. Deep learning
methods are able to pick P- and S-arrivals simultaneously by
extracting hidden features from the original MS signals. Thus, these
methods are a popular focus of research because of their strong
robustness and high accuracy. A few approaches use the regression
method to determine the arrival sampling point directly. For
example, Ross et al. (2018) used a convolutional neural network
(CNN) to find the regression between waveforms and arrivals. A
convolutional network named Cospy uses a two-stage structure,
consisting of rough positioning followed by precise regression
(Pardo et al., 2019).

In most deep learning methods, arrival picking is converted into
a classification task for each sampling point, mainly using U-Net or
long short-termmemory (LSTM) as the backbone. The U-Netmodel
(Ronneberger et al., 2015) is a typical encoder-decoder structure.
Zhang et al. (2021b) proposed a control model for S-arrival based
on the outputs of U-Net, which can be used to improve the early
warning effect for rockburst. Moreover, data augmentation
methods were also used for U-Net training (Zhang and Sheng,
2020; Zhang et al., 2021c). The LSTM model (Hochreiter and
Schmidhuber, 1997) is a representative form of recurrent neural
network (RNN), and is naturally suited for processing time series.
Zheng et al. (2018) established a stacked model consisting of 7
LSTM layers with 1024 hidden units, which shows high accuracy for
acoustic emissionwaveforms but implies an enormousmodel scale.
EQTransformer (Mousavi et al., 2020) can simultaneously realize
high-accuracy seismic signal detection and arrival picking. This
model combines 1D (one-dimensional) convolution, residual con-
nections, bidirectional LSTM and attention mechanism, implying a
very deep encoder. Such large-scale computations may lead to
performance bottlenecks when attempting to process MS signals
with a high sampling frequency in real-time. Subsequently, LEQNet
(Lim et al., 2022), optimized from EQTransformer and reduced the
scale of the model at the cost of a slight decline in accuracy. Xu et al.
(2022) used multi-channel singular spectrum analysis (MSSA) and
short-time Fourier transform (STFT) to extract features from MS
signals, and then input these features into the arrival-picking
model containing 34 LSTM cells with 600 hidden units. It has
been proven to have good accuracy, while many recursive calcu-
lations limit its application in real-time processing. In summary,
high accuracy and large-scale computations are the typical char-
acteristics of the existing deep learning methods, making these
methods applicable only for post-processing. The existing methods
generally have a contradiction between accuracy and computation,
as shown in Fig. 1. Thus, an arrival picking method with both high
accuracy and low computations is of great significance for realizing
real-time arrival picking and early warning of rock mass fracture.
2. Method

MS signals are the typical time series superposed by rock mass
microfracture signals and environmental noise, implying changes
in waveform characteristics such as frequency and amplitude. To
better determine the arrivals of P- and S-waves, it is necessary to
reasonably express both the short-term features (STF) and long-
term features (LTF) of MS signals, which describe the instanta-
neous changes on the local scale and the macroscopic trend on the
global scale, respectively. Thus, we first introduced the structure of
the convolutional-recurrent neural network (CRNN), which is
constructed from the perspective of STF and LTF extraction. Then,
two targeted optimizations are introduced to ensure applicability
to MS signals. Subsequently, we established a complete real-time
arrival picking method based on CRNN.
2.1. CRNN model

The proposed CRNN model consists of an input layer, hidden
layers, and an output layer, which are responsible for accepting rock
mass microfracture signals as input, extracting the features of P-
and S-arrivals, and enabling the expression and evaluation of P- and
S-arrivals, respectively. The structure of the CRNN model is shown
in Fig. 2.



Fig. 2. Structure of the CRNN model. L is the input waveform length, l is the convolution kernel width, n is the convolution channels,m is the GRU units, and the solid line area is the
calculation process of the t-th sampling point (taking l ¼ 5 as an example in this context).
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2.1.1. Input layer
The input of the CRNN model is original MS waveforms of rock

mass microfracture signals, considering that deep learning models
have a robust feature extraction ability. The need for additional
filtering or transformation is non-essential, which would affect the
real-time performance. However, it is necessary to normalize the
input waveforms, considering that variations in rock fracture size
and signal propagation distance can lead to considerable differ-
ences in the amplitudes of MS signals, which can even be as high as
a factor of 103. The maximum absolute scaling method is used to
linearly scale the MS signals to the range of [�1, 1] to eliminate the
influence of amplitude differences (Galli, 2022):

X0 ¼ X
max½absðXÞ� (1)

where X 0 is the normalized input waveform, X is the original input
waveform, max(,) is a function that outputs the maximum value of
the argument, and abs(,) is a function that outputs the absolute
value of the argument.
2.1.2. Hidden layers
The hidden layers are the key to the CRNN model. Three novel

layers, namely the STF layer, the LTF layer and the interpretation
layer, are designed to perfectly extract the features of P- and S-ar-
rivals from rock mass microfracture signals, as shown in Fig. 2. The
STF layer uses a convolutional layer to extract the STF of MS signals,
where the pooling layer is abandoned to maintain the length
consistency of the inputs and outputs. The convolution kernel
width (l) and convolution channels (n) are both important hyper-
parameters that affect the extraction of STF, and their values are
determined through orthogonal tests. The calculation process of
the convolutional layer is written as (Goodfellow et al., 2016).

cit ¼ ReLU
�
X0*K i þ bi

�
¼ max

 
0;
X
l

X0
tþlK

i
l þ bi

!
(2)

where cit is the t-th output of the i-th convolutional layer, and ct ¼�
c1t c2t / cnt

�
; ReLU(,) is the rectified linear unit; * is the

convolutional operator; K i is the i-th convolutional kernel with
length l; and bi is the i-th bias.

The LTF layer uses a gated recurrent unit (GRU) (Bahdanau et al.,
2014), which is a representative structure of RNN, to extract the LTF
of MS signals. The GRU uses a reset gate and an update gate to
realize information forgetting and updating, and uses state vector
(ht) to store past information of MS signals before each sampling
point, thus realizing the extraction of LTF with a small amount of
computation, as shown in Eq. (3) (Goodfellow et al., 2016). The size
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of ht is determined by the GRU units (m), which is also determined
through orthogonal tests.

hit ¼ uit�1h
i
t�1 þ

�
1�uit�1

�
tanh

0
@X

j

Wi;jrjt�1h
j
t�1 þ

X
j

Ui;jcjt

1
A
(3)

where hit is the t-th output of the i-th GRU unit, and ht ¼h
h1t h2t / hmt

i
; uit and rit are the t-th value of the i-th update

and reset gate, respectively; tanh(,) is the hyperbolic tangent
function; Wi;j and Ui;j are weights of historical information and
current input, respectively.

The interpretation layer again uses a convolutional layer to
process the features obtained in the LTF layer. On one hand, ht is
compressed into a three-dimensional vector at ¼ �

aNt aPt aSt
�T

to facilitate subsequent processing in the output layer, where aNt , aPt
and aSt are the features of the non-arrival, P-arrival and S-arrival,
respectively, corresponding to sampling point t. On the other hand,
the local connections of the convolutional layer can further analyze
the local changes of LTF, improving the accuracy of P- and S-arrivals
picking for rock mass microfracture signals. To enhance the
generalization ability of the CRNN model, the dropout function is
added to each hidden layer, which inhibits over-fitting by randomly
dropping units during the training process.
2.1.3. Output layer
Since the outputs of the interpretation layer range from 0 to

positive infinity, there is a lack of contrast between the pre- and
post-sampling points. The softmax function normalizes the inter-
pretation layer outputs to a probability matrix pt ¼ �

pNt pPt pSt
�T

(Peterson and Söderberg, 1989):

pkt ¼ ea
k
t

P3
i¼1

eait
(4)

where pkt is the predicted probability of the k-th class at the t-th
sampling point of the waveform, and k takes N, P and S, corre-
sponding to non-, P- and S-arrival, respectively.
2.2. Optimization of the CRNN model

The arrival-picking task is essentially transformed into the
classification of each sampling point using the CRNN model.
However, because of the typically high sampling frequency (several
kHz), MS waveforms are generally long time series, leading to
extreme class imbalance and the loss of effective information. Thus,
two corresponding optimizations of the CRNN model are proposed
to accurately pick P- and S-arrivals of rock mass microfracture
signals in real-time.
Fig. 3. Influences of the input waveform length on the model training and picking
accuracy: (a) MAESUM and total training time; and (b) Training time per epoch and
training epochs.
2.2.1. Waveform interception
Cho et al. (2014) showed that too long input sequences would

reduce the learning performance of a GRU model and significantly
increase the computational complexity, while too short input se-
quences will easily omit P- or S-arrivals and would be disturbed by
changes in noise. When all other parameters remain unchanged,
the effect of the input waveform length is studied to determine the
appropriate value. The performance of the CRNN model is evalu-
ated by the sum of the mean absolute errors for P- and S-arrivals
(MAESUM):
MAESUM ¼ 1
2N

XN
i¼1

h
abs
�
Ti;P � T*i;P

�
þ abs

�
Ti;S � T*i;S

�i
(5)

where Ti;P and Ti;S are the automatically picked P- and S-arrivals of
the i-th waveform, respectively; T*i;P and T*i;S are the real P- and S-
arrivals of the i-th waveform, respectively; and N is the total
number of waveforms.

As shown in Fig. 3, with the increase of input waveform length L,
the training time per epoch, the number of training epochs and the
total training time show continuous increasing trends. More spe-
cifically, when the input waveform length L is in each of the three
intervals (0, 256), [256, 1536] and (1536, 4096], MAESUM shows a
high value, a stable low value and a rapidly increasing value,
respectively. This implies that the optimal value of the input
waveform length is between 256 and 1536 sampling points.

In addition, two properties of the input waveform should be
guaranteed: it should contain the arrival points of the P- and S-
waves, and it should contain background noise of sufficient length.
Thus, the waveform interception method is adopted:

Tb ¼ Tmax � aDTmax (6)



Fig. 4. Arrival picking results of the CRNN models with different Lossall and Lossarr: (a)
The original waveform; (b) A small Lossall and a large Lossarr; (c) A large Lossall and a
small Lossarr; (d) A large Lossall and a large Lossarr; and (e) A small Lossall and a small
Lossarr.
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Te ¼ Tmax þ bDTmax (7)

where Tb and Te are the beginning and ending sampling points of
the intercepted waveform, respectively; Tmax is the sampling point
corresponding to the maximum absolute amplitude, and Tmax ¼
argmax½absðXmsÞ�; Xms is the time series of the MS waveform,
Xms ¼ ½ x1 x2 / xi �, with xi being the amplitude value of the
i-th sampling point; a and b are the front and post amplification
factors, respectively; and DTmax is the maximum time interval be-
tween the P- and S-waves within the monitoring range, which can
be obtained by (Zhu et al., 2022).

DTmax ¼ fsyslmax

�
1
vS

� 1
vP

�
(8)

where fsys is the sampling frequency of the MS monitoring system,
lmax is the maximum monitoring distance, and vP, vS are the wave
velocities of the P- and S-waves, respectively.

Considering the Yebatan hydropower station project (YBT
Project) as an example (see Section 4.1), the sampling frequency is
4000 Hz, the distance from each sensor to the edge of the moni-
toring area is between 200 m and 400 m, and the rock class in the
project is mainly of grade III. Thus, it is assumed that fsys ¼
4000 Hz, lmax ¼ 300 m, vP ¼ 5500 m=s and vS ¼ 3500 m=s (Zhu
et al., 2019; Li et al., 2021). We set a ¼ 3, where the length of
2DTmax is used to learn the background noise information, and the
remaining length is used to intercept the arrival information of the
P- and S-waves. We set b ¼ 1 to prevent missing P- and S-arrivals.
According to Eqs. (6)e(8), the input waveform length L is calculated
to be 499, and is adjusted to 29 ¼ 512 sampling points for con-
venience in deep learning processing.

2.2.2. Loss function
The loss function directly affects the gradient direction during

model training (Dickson et al., 2022). The relative proportions of
non-arrival, P-arrival and S-arrival sampling points are seriously
imbalanced for MS arrival picking. To prevent the class imbalance
from affecting the learning of minority classes (P- and S-arrivals),
we introduced a class weight w for P- and S-arrivals, and decom-
posed the loss into two parts: the average loss value at all sampling
points (Lossall) (Zhu and Beroza, 2019) and the average loss value at
arrival points (Lossarr):

Loss ¼ Lossall þ
2ðw� 1Þ

L
Lossarr (9)

Lossall ¼ � 1
NL

XN
i¼1

XL
j¼1

X3
k¼1

yki;j log10p
k
i;j (10)

Lossarr ¼ � 1
2N

XN
i¼1

X3
k¼1

�
yki;P log10p

k
i;P þ yki;S log10p

k
i;S

�
(11)

where yki;j and pki;j are respectively the actual and predicted values of
the k-th class for the j-th sampling point of the i-th waveform, yki;P,
yki;S, p

k
i;P and pki;S can be correspondingly obtained when j is taken as

the actual arrival point of the P- and S-waves, respectively.
Through a comprehensive evaluation of Lossall and Lossarr, it can

be readily judged whether the model training direction is correct.
The former evaluates the learning effect for the whole waveform
without considering the class weight, whereas the latter evaluates
the error between the predicted and actual values only at the actual
arrival points of the P- and S-waves. Taking the waveform shown in
Fig. 4a as an example, Fig. 4b shows that themodel is too insensitive
to respond effectively to the arrivals due to class imbalance, as
indicated by the small Lossall and large Lossarr. In contrast, Fig. 4c
shows the case of a large Lossall and a small Lossarr, implying that
the model is too sensitive and will incorrectly judge small wave-
form changes as arrivals. Fig. 4d shows a divergent model with both
a large Lossall and a large Lossarr. Only when Lossall and Lossarr are
small, as shown in Fig. 4e, the model can achieve good perfor-
mance. At this time, the model achieves a balance between
robustness and sensitivity, picking the P- and S-arrivals correctly
without the influence of noise.

Thus, during model training, Loss is used to guide gradient
descent, and Lossall and Lossarr are taken as early stop criteria to
avoid over-fitting issue: (1) the minimum value of Lossall is not
updated for 20 consecutive epochs, and (2) Lossarr < 0.1.
2.3. A real-time arrival picking method based on CRNN

The proposed real-time arrival picking method for rock mass
microfracture signals consists of three modules: CRNN model
training, real-time arrival picking, and dynamic feedback, as shown
in Fig. 5.
2.3.1. CRNN model training
The steps for CRNN model training are as follows:

(1) Step 1: Select the training waveforms and mark the arrival
points manually. The selected training waveforms should
encompass rock mass microfracture signals with various
amplitudes, frequencies and SNRs to enable comprehensive
learning of the arrival features of various signals.



Fig. 5. The flow chart of real-time arrival picking method based on CRNN.
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(2) Step 2: Label each sampling point of the waveforms with
one-hot encoding. Non-arrival, P-arrival and S-arrival sam-
pling points are marked as [1, 0, 0], [0, 1, 0] and [0, 0, 1],
respectively. Each waveform corresponds to a sparse label
matrix in chronological order, with a size of L� 3.

(3) Step 3: Randomly initialize the weights of the CRNN model.
(4) Step 4: Input a training waveform into the CRNN model and

output the corresponding probability matrix p ¼
½ p1 p2 / pt / pL �.

(5) Step 5: Calculate Loss, Lossall and Lossarr according to Eqs.
(9)e(11).

(6) Step 6: Use the Adam optimizer to update the CRNN model
weights based on Loss.

(7) Step 7: Judge whether training is completed based on Lossall
and Lossarr. End training if the conditions are met; otherwise,
return to Step 4.
2.3.2. Real-time arrival picking
The steps for real-time arrival picking are as follows:

(1) Step 1: Monitor rock mass microfracture signals in real-time.
(2) Step 2: Calculate the recursive STA/LTA value R of the current

sampling point.
(3) Step 3: If R > R0, where R0 is the trigger threshold, proceed to

Step 4; otherwise, return to Step 1.
(4) Step 4: Record the MSwaveform until R < R1, where R1 is the

end threshold. Form a complete triggered waveform by Eqs.
(6) and (7).
(5) Step 5: Input the triggered waveform into the trained CRNN
model and obtain the probability matrix.

(6) Step 6: Take the sampling points corresponding to the
maximum probability values of pP and pS as the P- and S-
arrivals of the rock mass microfracture signal.
2.3.3. Dynamic feedback
The steps for dynamic feedback are as follows:

(1) Step 1: Regularly spot-check and calculate theMAESUM of the
CRNN model. In particular, when the field environment,
geological conditions or SNR changes significantly, it is
necessary to evaluate the arrival picking accuracy of the
CRNN model and calculate its MAESUM.

(2) Step 2: If MAESUM � MAE0, whereMAE0 is an error threshold
meeting the engineering requirements, the CRNN model is
qualified and can be used to pick up arrivals of waveforms;
otherwise, retrain the CRNN model with newMS waveforms
under the current working conditions.

3. Performance analysis

3.1. Impact of hyperparameters on model performance

Hyperparameters play an important role in the performance of
deep learning models (Goodfellow et al., 2016). To optimize the
performance of the CRNN model, four main hyperparameters were
studied by combining simulation and orthogonal experiments:



Table 1
Levels and values of hyperparameters in the CRNN model.

Hyperparameters Levels Fixed
hyperparameters

Value

Class weight [1, 128, 256, 384, 512] Convolution strides 1
Convolution kernel width [3, 7, 11, 15, 19] Learning rate 0.001
Convolution channels [4, 8, 12, 16, 20] Activation function ReLU

Fig. 6. Typical actual and synthetic MS signals of rock mass microfracture: (a) Real rock
mass microfracture signal; (b) Synthetic signal with SNR ¼ 10 dB; (c) Synthetic signal
with SNR ¼ 15 dB; and (d) Synthetic signal with SNR ¼ 20 dB.
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class weight, convolution kernel width, convolution channels and
GRU units.

3.1.1. Experimental scheme
Each hyperparameter is set with five levels, and the values

corresponding to these levels are taken at equal intervals according
to experience, as shown in Table 1. Thus, 25 cases are designed in
accordance with the orthogonal table L25(54) (Hedayat et al., 1999),
as shown in Table 2. Four evaluation indexes are designed:MAESUM,
Lossall, Lossarr and ATT . MAESUM is used to evaluate the picking
ability of the CRNN model, calculated by Eq. (3), Lossall and Lossarr
are used to evaluate the stability and sensitivity of the CRNNmodel,
calculated by Eqs. (8) and (9), and ATT is the time required for each
training epoch, which is mainly used to evaluate the calculation
speed of the CRNN model. Other hyperparameters of the CRNN
model are also listed in Table 1.

3.1.2. Data preparation
In view of the actual arrivals and controllable SNRs, the syn-

thetic MS signals are the best choice to accurately evaluate the
performance of the CRNN model. Different from other synthesis
methods, we take real noises from the YBT Project as the back-
ground noise, and fully consider the characteristic distributions of
the field MS signals such as the frequency, duration, and P- and S-
wave amplitude ratio. Thenwe use a Gaussian function tomodulate
the sine-basis function, calculated by Eq. (12). To ensure that the
Table 2
Orthogonal test scheme and corresponding responses.

Case No. Hyperparameters Responses

Class weight Convolution kernel width Convolution channels GRU units MAESUM (point) Lossall Lossarr ATT (s)

1 1 3 4 8 14.084 0.0168 3.347 0.164
2 1 7 8 16 2.966 0.0055 0.933 0.173
3 1 11 12 24 2.186 0.0041 0.659 0.197
4 1 15 16 32 2.187 0.0030 0.484 0.207
5 1 19 20 40 2.301 0.0011 0.179 0.216
6 128 3 8 24 6.467 0.1553 0.255 0.184
7 128 7 12 32 2.973 0.0398 0.045 0.195
8 128 11 16 40 2.401 0.0302 0.026 0.209
9 128 15 20 8 2.261 0.0487 0.064 0.169
10 128 19 4 16 2.762 0.0475 0.051 0.174
11 256 3 12 40 3.977 0.1176 0.084 0.199
12 256 7 16 8 3.338 0.0891 0.085 0.166
13 256 11 20 16 2.175 0.0537 0.028 0.174
14 256 15 4 24 3.048 0.0632 0.026 0.188
15 256 19 8 32 2.433 0.0393 0.015 0.204
16 384 3 16 16 4.243 0.1368 0.104 0.173
17 384 7 20 24 3.053 0.0833 0.030 0.185
18 384 11 4 32 3.024 0.0760 0.028 0.197
19 384 15 8 40 2.339 0.0632 0.018 0.209
20 384 19 12 8 2.312 0.0693 0.019 0.169
21 512 3 20 32 4.249 0.1152 0.051 0.192
22 512 7 4 40 4.587 0.1396 0.052 0.201
23 512 11 8 8 4.124 0.1252 0.040 0.162
24 512 15 12 16 2.481 0.1034 0.029 0.177
25 512 19 16 24 2.267 0.0658 0.016 0.197



Fig. 7. Average responses of evaluation indexes for each factor: (a) Class weight; (b) Convolution kernel width; (c) Convolution channels; and (d) GRU units.
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input noise does not contain potential valid signals, the real noise is
defined as a continuous signal segment with STA/LTA values
consistently less than 2. To prevent information leakage, the real
noises do not include any data used in the engineering applications
below. Typical synthetic MS signals are shown in Fig. 6, which are
highly similar to actual field signals. A total of 2500MS signals were
synthesized, including 1000 signals for training and 1500 signals
for testing.

sðtÞ ¼ APgPðtÞ þ ASgSðtÞ þ ANgNðtÞ (12)

where gNðtÞ is the real noise, AP, AS and AN are the amplitude co-
efficients of the P-wave, S-wave and noise, respectively, and gPðtÞ
and gSðtÞ are the sine functions of the P- and S-waves, respectively,
modulated by a Gaussian function and calculated by

giðtÞ ¼

8><
>:

0 ðt < TiÞ

e
�9

2

�
t�Ti
li

�2

sin½2pfiðt � TiÞ� ðt � TiÞ
(13)

where Ti, fi and li (i ¼ P; S) are the arrival time, frequency and
duration of the P- and S-waves, respectively.
3.1.3. Experiment results analysis
To reduce the impact of the random initial weights on the

training results, each case conducts 3 independent trainings with
3000 epochs. During training, we recorded the MAESUM of the test
waveforms every 50 epochs, and finally selected the model corre-
sponding to the minimum MAESUM among the three independent
trainings as the best model for each case. The test results of the 25
cases are shown in Table 2.

Fig. 7 shows a line graph of the responses to each hyper-
parameter based on intuitive analysis. The results show that:

(1) In Fig. 7a, with the increase of class weight, MAESUM first
rapidly decreases to a minimum value and then increases;
Lossall increases continuously; Lossarr first rapidly decreases
to a low level and then remains stable; and ATT is basically
stable throughout the process. Based on the discussion in
Section 2.2, it can be found that the class weight is helpful to
reduce the impact of class imbalance, but too large class
weight will make the model too sensitive to STF while
ignoring LTF, leading to incorrect arrival picking. In addition,
the training time is not sensitive to the class weight. The
suggested value of the class weight is 256.

(2) In Fig. 7b, as the convolution kernel width increases,
MAESUM, Lossall and Lossarr first decrease and then tend to
stabilize, while ATT increases significantly. Considering the
arrival picking accuracy and computational cost, the convo-
lution kernel width is taken to be 15 in this context.

(3) In Fig. 7c, as the convolution channels increase, the trends of
responses ofMAESUM, Lossall and Lossarr are similar to those of
the convolution kernel width, whereas ATT increases slowly.
The number of convolution channels is taken to be 12 in this
paper.

(4) In Fig. 7d, with the increase of GRU units, MAESUM first
quickly drops to a minimum and then begins to fluctuate;
Lossall fluctuates within a consistent level; Lossarr continu-
ously declines; and ATT increases rapidly. Once the value of



Table 4
Computational performances of the two methods on different computers.

Cores Order Configuration Average CPU usage
(%)

Average time per
batch (ms)

U-
Net

CRNN D-
value

U-
Net

CRNN D-
value
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GRU units exceeds a certain threshold, the arrival picking
ability of the model is not significantly improved, but the
computational cost greatly increases. Therefore, the number
of GRUs units is set to 16 in this study.

In general, the arrival picking ability of the CRNN model is
significantly impacted by the convolution kernel width, followed
by the convolution channels, GRU units, and class weight. GRU
units have the greatest impact on the computational cost, followed
by the convolution kernel width, which is consistent with the
theory of CNN and RNN. An increase of hyperparameters can
effectively improve the arrival picking accuracy at the cost of a
greater computation. However, blindly increasing the hyper-
parameters will improve the CRNN model only to a limited extent,
and may even cause over-fitting issue.

3.1.4. Performance verification
Considering that the optimal hyperparameter configuration is

not in the case of orthogonal test, we trained the CRNNmodel with
the optimal hyperparameters to verify the optimization effect. The
class weight, convolution kernel width, convolution channels and
GRU units are 256, 15, 12 and 16, respectively. The training and test
waveforms are the same as those in the orthogonal experiment,
and the results are shown in Table 3. The MAESUM of the optimized
CRNNmodel is 2.26 points, which is smaller than that of any case in
Table 2, and the arrival picking accuracy within 4 sampling points is
excellent, which is 91.80% for P-wave and 98.73% for S-wave,
respectively. Therefore, the orthogonal test correctly reveals the
influence of each hyperparameter on the model performance, and
the optimized model is defined as the standard CRNN model used
below.

3.2. Computational performance analysis

Computational performance is an important index to measure
the ability of the CRNN model to pick MS signals in real-time. We
compared the computational performance of the standard CRNN
model and the typical U-Net model. In the U-Net model (Zhang
et al., 2021b, 2021c), the number of convolutional layers, convo-
lution kernel width, convolution channels and the up-sampling
rate are 5, 7, [8, 16, 32, 64, 128] and 2, respectively. We used the
trained CRNN model and U-Net model to pick arrivals of 100
batches (each batch has 100waveforms), recorded the CPU usage of
the models every 0.1 s, and calculated the average time per batch.

Three multi-core computers with reduced performance and one
single-core computer were selected to analyze the universality of
the models. The computing performances of the CRNN model and
U-Net model on each device are shown in Table 4. On the multi-
core CPU devices, both the CPU usage and average time per batch
of the CRNNmodel are lower than those of the U-Net model, which
are reduced by 30% and 25% approximately on average, respec-
tively. With the decline in device performance, the gap in the CPU
usage between the CRNN method and U-Net method decreases
gradually, from 34.4% to 25.3%, and the gap in the average time per
batch correspondingly increases, from 21.1% to 28.6%. In the
Table 3
Results of arrival picking based on the optimized CRNN model.

Wave Absolute error range (%) MAESUM (point)

[0, 4] (4, 8] (8, 16] (16, 32] (32, 64] (64, 512]

P 91.80 4.00 2.47 1.20 0.47 0.07 1.51
S 98.73 0.13 0.87 0.27 0.00 0.00 0.65
Total 95.27 2.07 1.67 0.74 0.24 0.04 2.16
extreme case of the single-core in device 4, both models fully
occupy the thread, and the difference in the average time per batch
is as high as 43.5%.

Taking device 3 with low performance as an example, the CPU
usage curve during arrival picking is shown in Fig. 8. The U-Net
model takes 10.50 s to pick arrivals, and the CPU usage is recorded
104 times, with values mainly between 68.46% and 82.30%. Taking
90% usage as the alert threshold, the U-Net model triggers the alert
threshold 13 times, accounting for 12.5% of the total. It means that
the U-Net method has almost reached the performance limit of
device 3, which may affect the real-time acquisition and processing
of MS signals, hindering the stable operation of the MS monitoring
system. In contrast, the CRNN method takes 7.54 s to pick arrivals,
where the CPU usage is mainly between 50.09% and 62.61%, and the
maximum usage is only 74.69%. It shows that the CRNNmethod can
work perfectly even on devices with limited performance, without
affecting the normal operation of the MS monitoring system. Thus,
compared with the U-Net model, the CRNN model has lower CPU
usage, less computational cost and broader applicability.

4. Application

4.1. Engineering background

The YBT Project is located on the main upstream of the Jinsha
River, at the junction of Baiyu County, Sichuan Province and
Gongjue County, Tibet Autonomous Region, China. The under-
ground caverns of this project are located in the Jinshajiang fault
zone, with complex geological structures and developed faults. The
surrounding rock is mainly of grade III quartz diorite. The uniaxial
compressive strength is 120e180 MPa, and the measured
maximum principal stress is 37.6 MPa. Relevant analysis shows the
risks of rockburst, wall spalling, collapse and fault sliding during
construction. Therefore, the SinoSeism (SSS) MS monitoring sys-
tem, developed by Institute of Rock and Soil Mechanics, Chinese
Academy of Sciences, and Hubei Seaquake Technology Co., Ltd., was
deployed to monitor MS activity during the whole construction
process. The monitoring system consists of 1 time server, 1 data
server, 4 acquisition units, 23 mono-component sensors and 3
three-component sensors. The sampling frequency is 4 kHz, the
signal trigger algorithm is the improved STA/LTA algorithm, and the
trigger threshold value is set to 4, instead of the more generally
applied value of 6, to obtain more MS information of rock mass
microfracture.

A total of 1607 rock mass microfracture waveforms were
collected from November 27, 2021 to December 5, 2021, 803 of
which were randomly selected for training, and the remaining 804
waveforms used for testing. The SNR and amplitude distributions of
(%) (%)

Multi-
core

1 CPU: i7-11700F RAM:
16G 3200 MHz

59.85 39.27 34.4 57 45 21.1

2 CPU: R7-4800H RAM:
16G 3200 MHz

55.39 38.33 30.8 108 81 25.0

3 CPU: E5-1620 RAM: 8G
2400 MHz

75.25 56.20 25.3 105 75 28.6

Single-
core

4 CPU: E5-1620 RAM: 8G
2400 MHz

99.60 99.68 0.1 170 96 43.5

Note: D-value is the percentage difference between the CRNN and U-Net models.



Fig. 8. CPU usage curve during arrival picking on device 3.

Fig. 9. Characteristic statistics of rock mass microfracture signals from the YBT Project:
(a) Distribution histogram of SNR, and (b) Scatter distribution of amplitude-SNR.
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all signals are shown in Fig. 9. The SNR can be roughly estimated by
Eq. (14). Fig. 9a shows that the proportion of signals with SNR <

10 dB among all signals is 25%. Fig. 9b shows that the amplitude of
66% of the rock mass microfracture signals is lower than 10�5 m/s,
and this proportion increases to 93% for signals with SNR < 10 dB.
Thus, the waveforms from the YBT Project are typical weak rock
mass microfracture signals, which are not conducive to picking P-
and S-arrivals via traditional methods, such as the STA/LTA and AIC
methods (Leonard and Kennett, 1999; Dong et al., 2018).

SNRz10 log10

�
s2½sðtÞ� � s2½nðtÞ�

s2½nðtÞ�
	

(14)

where sðtÞ and nðtÞ are the waveform data with 800 sampling
points after and before P-arrival, respectively.

4.2. Model training

To train a CRNN model suitable for picking up P- and S-arrivals
of weak rock mass microfracture signals from the YBT Project, we
first built the CRNN model structure as described in Section 2.1.
Then, the synthetic waveforms were generated to obtain the
optimal hyperparameters as described in Section 3.1. Finally the
training field waveforms were input (see Section 4.1) to train the
model weights via the Adam optimizer. The curves of the losses and
time consumed during model training are shown in Fig. 10.
Although Lossarr starts at a high level of 1.56 at the beginning of
training, it decreases rapidly with the training and drops below
Lossall after only 45 epochs. At the same time, Lossall declined
steadily and finally stabilized at approximately 0.14, without a
trend of first decreasing and then increasing. The trends of Lossall
and Lossarr indicate that the class weight value is reasonable for
highlighting arrival points, while also maintaining robustness for
non-arrival points.

The CRNN model completes its training at 314 epochs, with a
Lossall value of 0.14 and a Lossarr value of 0.09. With NVIDIA’s
CUDNN parallel computing platform, the average training time per
epoch is only 0.16 s, and the total training time is 50.28 s. The re-
sults show that the CRNN model has an outstanding convergence
speed and low training cost, meeting the demands of on-site
monitoring.

4.3. Picking results analysis

Considering that the actual arrivals of field MS signals are
theoretically unobservable, the manually picked arrivals are
approximately considered as the actual arrivals (Tan and He, 2016).
We define A1 as the picking accuracy of P- and S-arrivals within 4
sampling points, compared with the manually picked arrivals, and
A2 as the picking accuracy within 16 sampling points. The improved
STA/LTA, AIC, trained CRNN and trained U-Net methods were used
to pick the P- and S-arrivals of 804 test waveforms. The short- and
long-termwindows of the STA/LTA are 20 and 200 sampling points,
respectively. The threshold is 5 for P-arrival and half of the
maximumvalue for S-arrival, and the characteristic functions for P-
and S-arrival (PCFðtÞ and SCFðtÞ, respectively) are given in Eqs. (15)
and (16) (Zhang et al., 2021b). The time window of the AIC is set to
½Tb; Tmax� for P-arrival, and ½TP; TP þaDT� for S-arrival, where DT is
the number of sampling points from TP to Tmax, and a is a scale
factor with a value of 1.2 (Zhu et al., 2022). The hyperparameters of
the U-Net model are shown in Section 3.2.

PCFðtÞ ¼ x2t � xt�1xtþ1 (15)

SCFðtÞ ¼ fsysðxt � xt�1Þ2 (16)

The A1 accuracy, A2 accuracy andMAE values for P- and S-waves
are shown in Table 5. In terms of the A1 accuracy, the CRNNmethod



Fig. 10. Training losses and training time.

Table 5
Arrivals picking accuracy of each method.

Method P-arrival S-arrival MAESUM
(point)

A1
(%)

A2
(%)

MAEP
(point)

A1
(%)

A2
(%)

MAES
(point)

STA/LTA 30.47 74.00 15.22 39.18 84.58 9.59 24.81
AIC 68.41 85.70 13.64 66.29 85.07 7.38 21.02
U-Net 84.33 96.39 3.32 90.80 98.51 1.86 5.18
CRNN 87.44 97.64 2.57 91.29 98.38 1.66 4.22

Fig. 11. Distributions of arrival picking errors based on the four methods: (a) P-arrival
picking error, and (b) S-arrival picking error. The negative and positive errors mean
that the picked arrival point is earlier and later than the manually picked point,
respectively. Errors exceeding þ32 and �32 sampling points are classified into [32, 36]
and [-36, �32] intervals, respectively.
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performs best, with 87.44% for P-wave and 91.29% for S-wave, fol-
lowed by the U-Net method. The AIC and STA/LTA methods have a
poor accuracy, especially the STA/LTA method, with 30.47% for P-
wave and 39.18% for S-wave. For the A2 accuracy, the CRNN and U-
Netmethods have a similar performance, both exceeding 96% for P-
and S-waves. The average accuracy of the AIC and STA/LTAmethods
increases to 82.34%, which is still generally lower than that of deep
learning methods. In terms of MAE, all MAE values of the CRNN are
the lowest, with 2.57 sampling points for P-wave, 1.66 sampling
points for S-wave and 4.22 sampling points in total, followed by the
U-Net method. The AIC method is slightly better than the STA/LTA
method and inferior to the CRNN and U-Net methods. Additionally,
the S-arrival picking accuracies of the four methods are generally
higher than that of the P-arrival. This is because the low SNR of MS
signals in the YBT project results in more noise interference on P-
waves than S-waves, which is consistent with the relevant study
(Zhou et al., 2016; Fu et al., 2020).

To compare the differences in the arrival picking results based
on the four methods, the distributions of the arrival picking error
and the change in the arrival picking error with SNR are calculated
and shown in Figs. 11 and 12, respectively. In Fig. 11, the P- and S-
arrivals picking errors of the CRNN and U-Net methods are char-
acterized by ‘symmetrical concentration’, that is, the picked arrivals
are distributed evenly and symmetrically on both sides of the
manually picked arrivals, mainly concentrated on the range of�4 to
4 sampling points. The AIC method has the characteristic of ‘slight
delay for the majority and extreme advance for the minority’ for P-
waves, mainly concentrated within 8 sampling points. However, as
the noise increases, arrivals can be easily triggered many sampling
points in advance by the incorrect minimum points on the AIC
curve, resulting in poor picking stability. For S-waves, the AIC
method shows the characteristic of ‘scattered advance’, being
mainly distributed between �16 and 4 sampling points. The STA/
LTA method shows the characteristics of ‘general delay’ for P-waves
and ‘delay for the majority and scattered advance for the minority’
for S-waves, mainly caused by its mechanisms of the sliding win-
dow and threshold-based trigger.

Fig. 12 shows that as the SNR decreases, the P- and S-arrivals
picking errors of all four methods tend to increase, but the CRNN
and U-Net methods are less affected. In contrast, the AIC method
performs well for SNR � 20 dB but sharply weakly for SNR < 20 dB.
The STA/LTA method shows high sensitivity to the SNR for P-arrival
picking, and passivation for S-arrival picking.
Fig. 13 presents the picking details for rock mass microfracture
signals with 6 different SNRs. There is a general delay in P- and S-
arrivals picking due to the average window of the STA/LTA method,
and the degree of delay increases as the SNR decreases. When SNR
< 10 dB, as shown in Fig. 13d, the P-arrival picked by the STA/LTA
method lags behind the S-arrival, which indicates that the method
can no longer distinguish the P-wave signal from the strong



Fig. 12. Scatter distributions of arrival picking errors with SNR based on the four
methods: (a) P-arrival picking error, and (b) S-arrival picking error. Errors exceeding
�60 sampling points are counted as �60, respectively.
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background noise. The AIC method has good picking accuracy, but
its picking reliability depends on the quality of the input signals.
Fig. 13f shows the picking results when the input signal has a low
SNR value and high background noise. The AIC method picks the P-
arrival in advance under the influence of the noise, and then
incorrectly judges the real P-arrival as the S-arrival. The U-Net and
CRNN methods can widely adapt to arrival picking under different
SNR conditions. Nevertheless, it is worth mentioning that deep
learning methods have a data-driven nature, which may lead to
unexpected impacts of slight differences in the input signals. As
shown in Fig.13d, the slight change in the background noise around
the 950th sampling point is obviously reflected in the outputs of
both the U-Net and CRNNmethods. The difference is that the U-Net
method misjudges it, while the CRNN method distinguishes the
disturbance promptly and picks the real P-arrival. This is because
the recurrent structure of the CRNN can naturally store all historical
waveform information from the beginning, which can be used to
combat noise. In contrast, the U-Net method only obtains the
waveform information in a certain period before and after, through
down- and up-sampling, lacking the ability to identify abrupt local
changes.
In summary, it can be found that the CRNN method has the
highest accuracy, the lowest MAE values, and a strong anti-
interference ability for both P- and S-waves. The U-Net method is
inferior to the CRNN method slightly in various indicators, which is
relatively similar but superior to the STA/LTA and AIC methods. For
the two traditional methods, the AIC method has higher accuracy
but poorer stability, and is sensitive to noise. The STA/LTA method
has lower picking accuracy but better stability, which is consistent
with the existing research results (Shang et al., 2018).

4.4. Application in field failure monitoring

In view of the analysis in Section 4.3, during the MS monitoring
for rock -mass stability of the YBT Project construction, the CRNN
method has been used to pick P- and S-arrivals in real-time. Then
the Newton second order, Newton downhill method (Li and Chen,
2013), was used to locate the rock mass microfracture in order to
evaluate the stability of the rock mass.

During the monitoring process, rock mass microfracture signals
occurred in the junction area between the shaft and the second
gallery on March 19, 2022. As of March 31, 183 rock mass micro-
fracture events had been accumulated in this area. A cloud diagram
of the spatial distribution density is shown in Fig. 14. Fig. 15 shows
the evolution of the microfracture events with time, implying that
rock mass microfractures with moment magnitudes (Mw) mainly
ranged from �1 to �0.5, and continued to occur in this area,
especially on March 28. According to on-site feedback, three faults
(F85, F88 and F21) pass through this area, leading to poor integrity
of the rock mass in the faults and the adjacent areas. The maximum
in situ stress in the fault area is 12.5e18.8 MPa, and the maximum
in situ stress between the faults with good rock mass integrity is
37.6 MPa. On March 30 and 31, 2022, multiple failures occurred in
the area between the faults, which weremainly stress-type spalling
failures. The spalled rocks are mainly thin blocky or thin flaky rocks,
with fresh and unfilled failure surfaces, as shown in Fig. 16. It shows
that, in terms of weak microfracture events with Mw < � 0:5, the
positioning results based on the arrivals picked by the CRNN
method have a good consistency with the actual failures, providing
a good support for engineering construction.

To analyze the positioning differences of the various methods,
the CRNN, U-Net, AIC and STA/LTA methods are used to pick P- and
S-arrivals, and 183 rock mass microfracture events in the shaft area
are recorded. The measured coordinates of the surface failure are
used to approximate the actual location of the failure occurring
within the rock mass. The deviation vectors are defined as directed
line segments that start from the center of the failure area and end
at the MS positioning results, as shown in Fig. 17. Fig. 18 shows the
sets of deviation vectors calculated by each method. In terms of the
macroscopic distribution of MS sources, all four methods show a
trend of roughly distributing along the XOZ plane of the failure area.
Meanwhile, most microseismic events are distributed above the
second gallery, rather than being symmetrically distributed along
the failure center. This is because that this area was undergoing
pilot drilling upwards before failure occurred, and the incubation of
microfracture inside the rock mass promoted the occurrence of
apparent failure. Among these four methods, the deviation vectors
of the CRNN method are the most concentrated and closest to the
failure center, followed by the U-Net method. Although the devi-
ation vectors of the AIC and STA/LTA methods are also concentrated
in the failure area overall, they are more scattered than those of the



Fig. 13. The arrival picking results of rock mass microfracture signals with different SNRs: (a) SNR ¼ 25.4 dB; (b) SNR ¼ 19.1 dB; (c) SNR ¼ 15.1 dB; (d) SNR ¼ 8.0 dB; (e) SNR ¼ 5.1 dB;
and (f) SNR ¼ 2.2 dB. DP and DS are the difference between the picked P- and S-arrivals, respectively, and the manually picked arrivals. Negative numbers represent an advance, and
positive numbers represent a delay.
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two deep learning methods. The positioning results of the AIC
method are the most divergent, which is significantly affected by
SNR. As shown in Fig. 19, the deep learning methods pick up the
arrivals at the same precision regardless of the SNR. The STA/LTA
and AIC methods have a good performance with high SNR, while
have an unstable trendwith low SNR. The difference is that the STA/
LTA method tends to pick up P-waves with hysteresis so that the P-
and S-arrivals overlap, as shown in Fig. 19c and d. The overlapping
results in positioning algorithms based on the arrival time differ-
ences positioning the source near the sensor array. However, the
AIC method tends to pick up P-waves in advance, as shown in
Fig. 19a, leading to significant arrival time differences, seriously
affecting positioning accuracy and even causing positioning
divergence.



Fig. 14. Density nephogram of microfracture events based on the CRNN method (March 19e31, 2022).

Fig. 15. Evolution trend of microfracture events with time based on the CRNN method
(March 19e31, 2022).

Fig. 16. Rock mass failure at the junction area between the shaft and the second
gallery.
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Table 6 presents the average distances of the 183 microfracture
events from the calculated location to the failure center. The
average distance of the CRNN method is 28.79 m, which is the
smallest among the four methods, indicating that the CRNN
method picks arrivals stably and reflects the on-site failures well.
The U-Net method is slightly worse than the CRNN method. The
average distances of the AIC and STA/LTA methods are greater than
50m, larger than that of the deep learningmethods. In addition, the
average distances of all four methods show a trend that can be
characterized as the order of Z-axis > X-axis > Y-axis. This is
because the MS sensors were mainly distributed in the first gallery
due to the spatial structure and construction progress when failure
occurred. The microfracture events were mostly outside the sensor
array in Z-axis direction, leading to greater positioning error in Z-
axis direction (Feng et al., 2015; Chen et al., 2021).



Fig. 18. Deviation vectors from the failure center to the positioning results: (a) CRNN metho
sensors arranged near the failure area.

Fig. 17. Schematic of deviation vectors.
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5. Conclusions

To address the common contradiction between accuracy and
computation in the current arrival picking methods, a real-time
arrival picking method based on CRNN is proposed. The hyper-
parameter sensitivities, computational performance and arrival
picking accuracy of the proposed method are analyzed based on
synthetic and field MS data, and the proposed method has been
applied to the YBT Project for MS monitoring. The conclusions are
drawn as follows:

(1) The hyperparameters have a significant impact on the per-
formance of the CRNN model. An increase of hyper-
parameters can effectively improve the arrival picking
accuracy at the cost of more computations. However, blindly
increasing the hyperparameters only shows a limited
improvement and may even cause over-fitting issue. The
hyperparameters with the most significant impacts on
arrival picking ability and computational cost are the
convolution kernel width and GRU units, respectively.

(2) The computational performance of the CRNN method is
better than that of the U-Net method, showing average de-
creases of 30% and 25% in CPU usage and average time per
d; (b) U-Net method; (c) AIC method; and (d) STA/LTA method. S201eS206 are the MS



Fig. 19. Arrival picking results for different waveforms of the same microfracture: (a)e
(d) are the waveforms of the same microfracture monitored by different MS sensors.

Table 6
The average distances from the calculated location results to the failure center.

Method Straight-line
distance (m)

X-axis
distance (m)

Y-axis
distance (m)

Z-axis
distance (m)

CRNN 28.79 12.31 8.87 21.34
U-Net 30.51 14.02 9.34 21.73
AIC 52.19 23.60 21.78 32.02
STA/LTA 50.66 25.61 13.54 33.62
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batch, respectively, implying a broader applicability of the
CRNN method.

(3) Compared with the STA/LTA, AIC and U-Net methods, the
CRNN method has the highest picking accuracy, the lowest
MAE values, and a strong anti-interference ability for both P-
and S-waves. Within 4 sampling points, the accuracy of the
CRNNmothed is 87.44% for P-arrival and 91.29% for S-arrival,
both of which exceed 96% within 16 sampling points, and the
MAESUM is only 4.22 points, followed by the U-Net, AIC and
STA/LTA methods.

(4) In the application of YBT Project, the positioning results
based on the arrivals picked by the CRNN method show the
best consistency with the actual failure zone, followed by
those of the U-Net, STA/LTA and AIC methods, thus proving
the reliability of the CRNN method in engineering
applications.
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