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a b s t r a c t

Traditional global sensitivity analysis (GSA) neglects the epistemic uncertainties associated with the
probabilistic characteristics (i.e. type of distribution type and its parameters) of input rock properties
emanating due to the small size of datasets while mapping the relative importance of properties to the
model response. This paper proposes an augmented Bayesian multi-model inference (BMMI) coupled
with GSA methodology (BMMI-GSA) to address this issue by estimating the imprecision in the moment-
independent sensitivity indices of rock structures arising from the small size of input data. The meth-
odology employs BMMI to quantify the epistemic uncertainties associated with model type and pa-
rameters of input properties. The estimated uncertainties are propagated in estimating imprecision in
moment-independent Borgonovo’s indices by employing a reweighting approach on candidate proba-
bilistic models. The proposed methodology is showcased for a rock slope prone to stress-controlled
failure in the Himalayan region of India. The proposed methodology was superior to the conventional
GSA (neglects all epistemic uncertainties) and Bayesian coupled GSA (B-GSA) (neglects model uncer-
tainty) due to its capability to incorporate the uncertainties in both model type and parameters of
properties. Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence
intervals of the sensitivity indices instead of their fixed-point estimates, which makes the user more
informed in the data collection efforts. Analyses performed with the varying sample sizes suggested that
the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes. The accurate
importance ranking of properties was only possible via samples of large sizes. Further, the impact of the
prior knowledge in terms of prior ranges and distributions was significant; hence, any related
assumption should be made carefully.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Sensitivity analysis is an important technique employed in rock
mechanics to evaluate the relative importance of input properties
for model response by estimating the resulting variation of the
model response due to the variations of input properties (Fang and
Su, 2020; Xu et al., 2020; Pandit and Babu, 2022). This assists the
users in scheming the laboratory and field investigation in an
efficient way by diverting major resources for the estimation of
sensitive input properties. Additionally, sensitivity analysis helps
reliability analysis become more computationally efficient by
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
identifying which properties should be regarded as random vari-
ables or deterministic quantities (Pandit et al., 2019; Kumar and
Tiwari, 2022a).

Sensitivity analysis can be divided into two major classes: local
sensitivity analysis (LSA) and global sensitivity analysis (GSA)
(Borgonovo and Plischke, 2016). LSA estimates the sensitivity by
perturbating the input properties by small magnitudes close to
their nominal values. Therefore, LSA fails to adequately explore the
complete input space. LSA depends on the local gradient of the
function in relation to the input properties, which leads to certain
inherent constraints. LSA may lead to inaccurate results for any
generic performance function (GðxÞÞ with (a) nonlinear nature and
changing derivative point, and (b) interaction terms between input
parameters (e.g. vG=ðvxivxjÞ and vG=ðvxivxjvxkÞ). GSA overcomes
these limitations of LSA by estimating the input property’s global
(complete input space) influence on the model response indicated
by the changes in their probabilistic characteristics. Further, the
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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GSA can consider the interaction effects between input properties.
Hence, GSA is now widely applied across different engineering
domains (Christen et al., 2017; Donaubauer and Hinrichsen, 2018;
Banyay et al., 2019) along with rock engineering (Pandit et al., 2019;
Fang and Su, 2020; Xu et al., 2020; Kumar and Tiwari, 2022a; Pandit
and Babu, 2022).

Over the years, several GSA methods have been developed, with
variance-based (i.e. Sobol’s) method emerging as the preferred
choice among researchers. Sobol’s GSA is significantly superior to
LSA as it performs well for nonlinear models, robust to model type
and accounts for the probability density over a parameter domain
(Saltelli et al., 2006). Because of these reasons, Sobol’s GSA has been
used extensively in the rock mechanics domain in recent years
(Pandit et al., 2019; Fang and Su, 2020; Kumar and Tiwari, 2022a;
Pandit and Babu, 2022). However, it should be noted that the
variance is only a moment of the probability density function (PDF)
which can provide only a summary of the distribution. This map-
ping of the entire distribution information to a single number leads
to the inevitable loss of resolution (Helton and Davis, 2003).
Moment-independent GSA like Borgonovo’s GSA overcomes this
limitation of Sobol’s GSA by considering the changes in the entire
distribution in contrast to a particular moment, as shown in Fig. 1.
Limited studies are available on the applicability of Borgonovo’s
moment-independent GSA for rock mechanics (Xu et al., 2020;
Pandit et al., 2022) problems possibly due to its mathematical
complexity.

The mathematical framework of the above-mentioned GSAs
relies on the classical probability theory and requires probabilistic
characteristics, i.e. distribution type and associated parameters of
the input properties for the analysis (Borgonovo and Plischke,
2016). Hence, the accuracy of GSAs relies upon the accurate esti-
mation of the probabilistic characteristics of input, which in turn
relies majorly upon the sufficiency of the investigation data.
However, data for characterizing the input properties are more
often very sparsely available for rock mechanics projects due to
financial and practical difficulties in conducting tests, sample
preparation, etc. (Wyllie and Mah, 2004; Ramamurthy, 2014;
Pandit et al., 2019; Kumar and Tiwari, 2022a, 2022b). This epistemic
uncertainty arising from limited data often compels to make sub-
jective assumptions on the characteristics of input properties. This
may further lead to inaccurate and non-conservative estimation of
sensitivity indices (Zhang et al., 2021). Bayesian inference provides
a coherent framework to account for the parameter uncertainty of a
considered probability model (Ang and Tang, 1975). It has been
recently employed to deal with the uncertainties in the parameters
of the probabilistic models used to represent the data of rock
properties (Contreras et al., 2018; Bozorgzadeh and Harrison, 2019;
Contreras and Brown, 2019; Aladejare and Idris, 2020). However,
Fig. 1. Illustration of the inner integral required for the estimation of Borgonovo’s
moment-independent sensitivity indices.
the major issue with these studies is the ignorance of the un-
certainties associated with selection of a probability model in the
presence of limited data. In the presence of insufficient data, mul-
tiple models could statistically fit onto the available data with
comparable accuracy. Traditional Bayesian analysis often ignores
this issue by assuming a precise probability model to represent the
data subjectively. Multi-model inference assists in overcoming this
limitation of the traditional Bayesian methodology by considering
the uncertainties in selecting the types of probability models
(Burnham and Anderson, 2004). Recently, some studies have
considered this issue while performing the reliability analysis of
geotechnical structures (Zhang et al., 2014; Wang et al., 2018; Li
et al., 2019). Based on the literature review and to the author’s
best knowledge, it was observed that no studies are available
emphasizing the importance of data collection on the GSA. Some
specific gaps can be identified as: (i) no studies on the inclusion of
epistemic uncertainty (uncertainties in the model type and pa-
rameters) due to lack of data in the GSA of rock structures, (ii) no
studies emphasizing the relative importance of uncertainties be-
tween model type and parameters on the imprecision of the esti-
mated sensitivity indices, (iii) no studies on the effect of the sample
size of properties on the imprecision in sensitivity indices, and (iv)
limited studies on the applicability of moment-independent GSA
for rock structures.

To address these issues, this study aims to propose a Bayesian
multi-model inference (BMMI) coupled with GSA (BMMI-GSA),
which infers the probability distributions of Borgonovo’s indices.
BMMI was employed to characterize the uncertainties associated
with model types and parameters of input parameters and propa-
gated in the Borgonovo’s indices via Monte-Carlo Simulations
(MCSs) and the model reweighting approach. Analysis of a slope
along the jointed rock mass susceptible to stress-controlled failure
is performed as an application example to demonstrate the pro-
posed methodology, assessment of the confidence in the sensitivity
indices and practical applicability in assessing the future investi-
gation program to collect further data. The impact of sample size on
the imprecision in the global sensitivity indices is also evaluated in
depth. Further, analyses are also performed with traditional GSA
(neglects uncertainties in model type and parameters) and con-
ventional Bayesian coupled GSA (B-GSA) (neglects uncertainty in
model types) to evaluate the relative significance of model type and
parameter uncertainties on the sensitivity indices. The paper is
structured as follows. Section 2 outlines the moment-independent
Borgonovo’s GSA and explains its implementation algorithm in
detail. Section 3 elaborates on the Bayesian and multi-model
inference. Section 4 depicts the steps of RBF based response sur-
face construction. Section 5 introduces the algorithm of the pro-
posed BMMI-GSAmethodology. Section 6 showcases its application
in the sensitivity analysis of a rock slope. Section 7 provides dis-
cussions followed by the important conclusions in Section 8.
2. Moment-independent sensitivity methods

Moment-independent sensitivity methods, also referred to as
density-based sensitivity methods, offer an alternative approach to
evaluating sensitivity that considers the entire distribution rather
than focusing on specific moments. This distinction prevents the
loss of resolution encountered in moment-dependent methods,
which summarize information into a single value (Helton and
Davis, 2003). The underlying concept of these methods is as fol-
lows: when all model inputs can vary according to their respective
distributions, an unconditional model output density, denoted as
fYðyÞ, can be as illustrated in Fig.1. Additionally, by keeping the value
of a particular model input (xi) fixed, a conditional density, denoted
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as fY jxi ðyÞ, can obtain as shown in Fig. 1. The sensitivity of the input
variable xi is then evaluated based on the difference between the
unconditional and conditional output densities, measured through
methods like the Kullback-Leibler/Minkowski distance of order 2
(Chun et al., 2000) or the area between these curves (Borgonovo,
2007). To further generalize this approach, Borgonovo et al.
(2016) proposed to incorporate the PDF or cumulative distribu-
tion function (CDF) of the output. This enables the utilization of
different divergence measures, including the Kolmogorov-Smirnov
statistic, absolute difference, or Kullback-Leibler divergence, to es-
timate the sensitivity measure of xi. For our present study, Borgo-
novo’s moment-independent method was employed, which can be
mathematically expressed in terms of the d-sensitivity measure,
serving as the first representative of the class of sensitivity
measures:

di ¼
1
2
E

264 Z
DY

���fYðyÞ � fY jXi
ðyÞ
���dy
375 (1)

This equation can be symmetrically represented as (Plischke
et al., 2013):

di ¼
1
2

Z
DXi

fXi
ðxiÞ

Z
DY

���fY ðyÞ � fY jXi
ðyÞ
���dydxi (2)

where di signifies the sensitivity measure of xi; fXi
ðxiÞ and fY ðyÞ

represent the PDFs of xi and y, respectively; fY jXi
ðyÞ is the condi-

tional PDF of y; and DXi
and DY represent the domains of xi and y,

respectively. Eqs. (1) and (2) are visually represented as the shaded
area in Fig. 1.
2.1. Estimating Borgonovo’s indices using the Monte Carlo method

In this work, Borgonovo’s analysis was performed via a
histogram-based approximation based on Monte Carlo simulations
(MCSs) due to its robustness and simplicity (Wei et al., 2013). This
choice was taken in order to address the problem of biased inner
integral estimate when utilizing kernel density estimators (Schmid
et al., 2019; Antoniano-Villalobos et al., 2020). Further, the multi-
model inference methods can be coupled conveniently with this
analysis scheme for the imprecise sensitivity analysis proposed
herein. The steps involved in the method are shown below.

Step 1. Generate a random realization x of size N for input random
vector X ¼ ðX1;X2;.;XdÞ with d variables based on their proba-
bility distributions:

x ¼

266666664

xð1Þ1 xð2Þ1 . xðNÞ1

xð1Þ2 xð2Þ2 . xðNÞ2

« « 1 «

xð1Þd xð2Þd . xðNÞd

3777777775
¼
�
xð1Þ; xð2Þ;.; xðNÞ

�
(3)

Step 2. Evaluate the performance function (PF)Gð $Þ for the random
realizations of x, i.e. y ¼ ðy1; y2;.; yNÞ ¼ Gðxð1Þ; xð2Þ;.; xðNÞÞ and
estimate the unconditional PDF fY ðyÞ via a histogram (normalized to
give probability values)with a predefined number of bins ny as given
below:
bf Y ¼
�bf ð1ÞY ðyÞ; bf ð2ÞY ðyÞ;.;bf ðnyÞ

Y ðyÞ
�

(4)

Step 3. Divide x ¼ ðxð1Þ; xð2Þ;.; xðNÞÞ into nx classes (subsets) for
input variable Xi under consideration. Each of the nx classes (Cnx )
could be defined by their bounds flq;uqg with lq < uq, q˛f1;2;.;

nxg. Class Cnx include all samples of xðjÞ; j˛f1;2;.;Ng whose re-

alizations of Xi, i.e. x
ðjÞ
i ˛ flq;uqg, i.e. Cnx ¼ fxðjÞ : lq � xðjÞi � uqg. The

probability PðxðjÞ ˛Cnx Þ is 1=nx for sufficiently large N.

Step 4. Evaluate the PF values corresponding to each class, i.e.
GðxðjÞÞ; xðjÞ˛Cnx and estimate the distribution of Y in each class
(fY jXi

ðyÞ) via the normalized histogram with ny bins approximately

as bf ðCnx ;tÞ
YjXi

ðyÞ, t˛f1;2;.;nyg. Further, the conditional PDF fY jXi
ðyÞ can

be expressed approximately as given below:

bf Y jXi
ðyÞ ¼

266666666666664

bf ð1;1ÞY jXi
ðyÞ bf ð1;2ÞY jXi

ðyÞ

bf ð2;1ÞY jXi
ðyÞ bf ð2;2ÞY jXi

ðyÞ

. bf ð1;nyÞ
Y jXi

ðyÞ

bf ð2;nyÞ
Y jXi

ðyÞ
« «

bf ðnx;1Þ
Y jXi

ðyÞ bf ðnx;2Þ
Y jXi

ðyÞ

«

bf ðnx;nyÞ
Y jXi

ðyÞ

377777777777775
(5)

Step 5. Estimate the di in accordance to the integral in Eq. (2) as
given below:

di ¼
1
2

24Xnx

j¼1

1
nx

 Xny

k¼1

���bf ðkÞY ðyÞ � bf ðj;kÞY jXi
ðyÞ
���!
35 (6)

Step 6. Repeat Steps 3-5 for each Xi ði¼ 1;2;.; dÞ and estimate
the corresponding di. The above algorithm is implemented in
MATLAB.
3. Bayesian multi-model inference for uncertainty estimation
due to limited data

As mentioned previously, Borgonovo’s sensitivity method that
requires the probability distributions of input properties must be
precisely known. Samples are drawn from these known probability
distributions of input properties to estimate their sensitivities.
However, the precise characterization of probability distributions
of input properties requires large data sets, which are seldom
available for rock mechanics projects (Cai et al., 2004; Tiwari and
Latha, 2020). The major issue is related to the high costs and
practical difficulties associated with the laboratory tests and in situ
investigations (Duzgun et al., 2002; Wyllie and Mah, 2004;
Ramamurthy, 2014). This section presents a Bayesian multi-model
framework to quantify the uncertainties in the distribution type
and its parameters emanating due to the limited sample sizes of
properties. These uncertainties will be incorporated in Borgonovo’s
sensitivity analysis to estimate the uncertainties in the sensitivity
indices arising due to limited data which is discussed in Section 5.
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3.1. Bayesian inference to estimate parameter uncertainty

Bayesian inference allows to quantify uncertainties related to
the parameters of a probability model (M). This method treats the
model parameters (q) to be random variables, and their prior
knowledge is incorporated through the prior distribution pðq;MÞ.
The posterior/updated distribution pðqjD; MÞ) is obtained by
combining the pðq;MÞwith the site-data (D), which is described via
a likelihood function pðDjq; MÞ. The pðqjD;MÞ is mathematically
expressed using Bayes’ rule as shown below (Ang and Tang, 1975):

pðqjD;MÞ ¼ pðDjq;MÞpðq;MÞ
pðD;MÞ fpðDjq;MÞpðq;MÞ (7)

where pðD;MÞ serves as the normalizing factor that ensures the
integration of the pðqjD;MÞ to unity and is defined as follows:

pðD;MÞ¼
Z

LðqjD;MÞpðq;MÞ (8)

Estimating the pðqjD;MÞ often involves complex computations,
particularly when analytical solutions are not readily available,
except in cases where conjugate prior distributions are used. To
address this computational complexity, this article adopts the
Markov chain Monte Carlo (MCMC) simulation method. MCMC
generates a sequence of random samples from the pðqjD; MÞ,
significantly reducing the computational burden (Aladejare and
Wang, 2018; Liu et al., 2022).
3.2. Multi-model inference to estimate model uncertainty

In Bayesian inference, an appropriate probability model of the
property of interest is essential for the analysis. Common methods
for selecting the probability model include statistical goodness-of-
fit tests, Bayesian model selection, and information-theoretic based
methods (Burnham and Anderson, 2004; Zhang and Shields, 2018).
This article utilizes Bayesian information criterion (BIC) to estimate
the best-fit probability model. BIC relies on the Bayes factors, which
are ratios of integrated likelihood functions for different models.
Mathematically, BIC is expressed as follows:

BIC¼ �2ln pðbqjD;MÞ þ K ln n (9)

where bq denotes the maximum likelihood estimate of q, pðbqjD;MÞ
represents the likelihood function at bq, K represents the number of
candidate model M parameters, and n depicts the dataset D size.
Best-fit model among the Nd candidate models, i.e. M ¼ ðM1;M2;

.;MNd
Þ is the one with the lowest BIC value. Once the best-fit

model is identified, traditional Bayesian inference can be used to
estimate uncertainties in the associated parameters.

However, a major challenge arises when there are insufficient
data (common in rock-related problems) to identify a best-fit
probability model to be used in the traditional Bayesian inference
analysis (Section 3.1). The Bayesian framework provides a means to
quantify model uncertainty and assess the likelihood of candidate
models accurately representing the dataset D (Burnham and
Anderson, 2004). The posterior probability of Mi, denoted as pi,
can be calculated using Bayes’ rule:

pi ¼ pðMijDÞ ¼
pðDjMiÞpðMiÞPNd

m¼1
pðDjMmÞpðMmÞ

(10)
where pi or pðMijDÞ represents the posterior probability and pðMiÞ
is the prior probability of model Mi. All candidate models are
considered equally likely, with non-informative prior probabilities
of models pðMiÞ¼ 1 =Nd ði¼ 1;2;.;NdÞ in non-availability of prior
information (Burnham and Anderson, 2004).

In the proposed multi-model inference (Burnham and
Anderson, 2004; Zhang and Shields, 2018), all candidate models
with non-negative pi are retained for the analysis, rather than
focusing on a fixed best-fit model. The method ranks candidate
models based on their pi values. BIC can be used to estimate the pi
of each model Mi in the candidate set (Kass and Raftery, 1995; Wit
et al., 2012), where maximizing pi corresponds to minimizing BIC.

Initially, the BIC difference values (DðiÞ
B ) is estimated forMi based on

its BIC value as given below (Burnham and Anderson, 2004):

DðiÞ
B ¼ BICðiÞ � BICmin (11)

where BICmin represents the minimum among the different BICðiÞ

values of the candidate models M ¼ ðM1;M2;.;MNd
Þ. The best

model emerges from this transformation with DðiÞ
B ¼ 0, whereas all

other models have positive values. The pi can then be estimated by

normalizing the likelihood expð�DðiÞ
B =2Þ as follows:

pi ¼ pðMijdÞ ¼
exp

�
� 1

2D
ðiÞ
B

�
PNd

m¼1
exp

�
� 1

2D
ðmÞ
B

� (12)

For non-informative prior probabilities of models, Eq. (10) re-

duces to Eq. (12) (Kass and Raftery, 1995). The lesser the DðiÞ
B or

larger the pi, the more likely it is that the modelMi in the candidate
model set will accurately describe the provided data set. This
ranking can be utilized to assess model uncertainty and prepare
Monte Carlo simulation (MCS) sets required for later reliability
analysis.
3.3. Metropolis-Hastings (MH) MCMC sampling

This technique is used to generate samples for arbitrary prob-
ability models without relying on analytical density functions (Beck
and Au, 2002; Robert and Casella, 2004). It proves to be a valuable
tool in Bayesian inference, particularly for variables with complex
posterior distributions that are challenging to express analytically.
The MH algorithm was used as the MCMC method in this study
since it is effective and easy to sample the posterior values of q
(Metropolis et al., 1953; Hastings, 1970). For the MH algorithm to
work effectively, careful consideration of the proposal distribution
and initial value is necessary, as they have a significant impact on
the Markov chain’s convergence to the stationary state. The initial
samples are eliminated as burn-in because their validity may be in
doubt depending on the initial value considered. Determining the
optimal tuning parameter is essential and can be achieved by
analyzing the trace plot (plotting Markov chain samples against
sample numbers) and the autocorrelation plot (displaying the
autocorrelation function (ACF) against lag values) of the simulated
Markov chain samples (Roberts and Rosenthal, 2001). A trace plot
that resembles a hairy caterpillar shape with no anomalies, along
with an autocorrelation plot showing a rapid and exponential
decrease in correlation between samples, indicates that the chain
has reached stationarity. Another numerical approach to assessing
performance is through the acceptance rate. A 20%e40% acceptance
rate is regarded as being efficient (Gelman et al., 1995). To ensure
the successful execution of the MCMC sampling, a MATLAB
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subroutine was developed to produce random numbers from the
posteriors.
4. Radial basis function-response surface method (RBF-RSM)

RSM constructs a surrogate prediction function for an implicit PF
utilizing limited sampling points with known PF values. RBF-based
RSM (RBF-RSM) are highly efficient for multi-variable and highly
nonlinear PFs. RBF-RSM uses a series of linear combinations of
radially symmetric functions to approximate the PF, which can be
formulated as given below (Krishnamurthy, 2003):

GðXÞz bGðXÞ ¼ Xh
i¼1

lijðkX � Xik2Þ (13)

where kX � Xik2 depicts the Euclidian distance between observa-
tion or unknown point X and ith sampling point Xi, and j represent
the RBF. The quantity of training points generated via Latin hy-
percube sampling (LHS) is denoted by h, and l ¼ ðl1; l2;.; lhÞ are
the interpolation coefficients that need to be determined. These
coefficients can be obtained by solving the system of linear
equations:

½l�h�1 ¼ ½A�e1h�h � ½Y �h�1 (14)

where Y ¼ ½GðZ1ÞGðZ2Þ.GðZhÞ�T represents the estimated outputs
at h training points. A could be computed as follows:

Aij ¼ j
���Xi � Xj

��
2

�
ði; j¼ 1;2;.;hÞ (15)

Classical RBFs are computationally inefficient when it comes to
reproducing simple polynomials like constant, linear, and quadratic
functions (Krishnamurthy, 2003). To overcome this limitation,
augmented RBFs are introduced, which can efficiently approximate
simple polynomials. The augmented RBF can be expressed as
(Krishnamurthy, 2003):

bGðXÞ ¼ Xh
i¼1

lijðkX � Xik2Þ þ
Xm
j¼1

bjPjðXÞ (16)

where PjðXÞ represents the monomial terms of the polynomial
PðXÞ, and bj are m constant coefficients corresponding to the
polynomial augmented. For linear polynomials, m ¼ dþ1 (i.e.
PjðZÞ ¼ ½1z1 z2.zd�1�m), where d is the degree of the polynomial.
The additional m coefficients are estimated by employing the
orthogonality condition:

Xh
i¼1

liPjðZiÞ¼ 0ðj¼ 1;2;.;mÞ (17)

By combining Eqs. (14) and (17), l and b can be estimated by
solving the following equation:

�
lh�1
bm�1

	
¼
24 Ah�h Bh�m

BT
m�h 0m�m

35e1� Yh�1
0m�1

	
(18)

where Bij ¼ PjðZiÞ for i¼ 1;2;.;h and j¼ 1;2;.;m and b ¼
½b1 b2.bm�T.

Commonly used RBFs jð $Þ are linear, cubic, Gaussian and multi-
quadratic as given in Appendix A. In this study, the compactly
supported RBF is employed, defined as
jðrÞ ¼

 ð1etÞ5

�
8þ 40t þ 48t2 þ 25t3 þ 5t4Þ ð0 � r � r0

�
0 ðr > r0Þ

(19)

where t ¼ r=r0 and r0 denotes the compact support radius of the
domain, which can be estimated using the leave-one-out cross-
validation (LOOCV) method (Rippa, 1999). Within LOOCV, a
response surface is constructed using h�1 sampling points, and
cross-validation is performed on the left-out sampling point. The
process of leaving out one sampling point is done for all h points.
The cumulative squares of errors are computed for varying tuning
parameters. The t for which LOOCV (Eq. (20)) is minimum is used
for the RBF response surface approximation.

LOOCV ¼
Xh
i¼1

fbGðXiÞ � GðXiÞg2 (20)

where bGðXiÞ and GðXiÞ are the outputs at the left-out point from the
RSM prepared using h�1 training points and the numerical model,
respectively.

Furthermore, the accuracy of constructed RSM is evaluated by
employing the Nash-Sutcliffe efficiency (NSE) as a measure of ac-
curacy (Moriasi et al., 2007). To estimate NSE, additional l off-
sampling points of inputs are generated. At these points, the FOSs

are determined using both the RSMs (GðXÞRSMi ) and the original

numerical program (GðXÞoriginali ). NSE can be computed as follows:

NSE¼ 1�

26664
Pl
i¼1

�
GðXÞoriginali � GðXÞRSMi

�2
Pl
i¼1

�
GðXÞoriginali � GðXÞmean

�2
37775 (21)

where GðXÞmean denotes the mean value of GðXÞoriginali . RSMs with
NSE> 0:75 is considered to have a very good performance rating. A
MATLAB code was written to construct the RBF-RSM.
5. Methodology

The proposed BMMI-based GSA combines multi-model and
Bayesian inferences to handle uncertainties due to the sparseness
in data. This methodology aims to quantify uncertainties not only in
the probability model type but also in the parameters of input
properties. The process involves propagating these uncertainties
through Borgonovo’s GSA to estimate imprecise sensitivity indices
of rock properties. The overall methodology is depicted in Fig. 2 to
aid in comprehension. The steps involved in this approach are
summarized as follows:

(1) Step 1: Determination of properties. Determine the proper-
ties using standard methods (ISRM, 1981).

(2) Step 2: Define performance function (PF). Define the PF
based on analytical or other methods. If an explicit PF is not
available, the RBF-RSM can be utilized, as discussed in later
sections.

(3) Step 3: Identify plausible models and associated priors of
model parameters. Initially select a candidate model set with
Nd models, i.e. M ¼ ðM1;M2;.;MNd

Þ for all properties. Due
to the non-negative nature of rock properties, the models
defined for non-negative ranges were considered as the
candidate models. Plausible models were selected from the
candidate models with DðiÞ

B < 10, since for DðiÞ
B > 10, the pi



Fig. 2. Flowchart demonstrating the steps involved in the proposed BMMI-GSA for the estimation of imprecise sensitivity indices.
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value almost becomes zero (Zhang and Shields, 2018). The
likelihood function pðDjq;MiÞ corresponding to each plau-
sible probability model Mi for a property with observation
data D ¼ fD1:D2;.;Dng can be formulated as below.
Initially, select a candidate model set M ¼ ðM1;M2;.;MNd

Þ
comprising Nd models, where each model corresponds to
specific properties. As rock properties are non-negative, only
models defined for non-negative ranges are considered as
candidates. From this set, plausible models are identified
based on a threshold of DðiÞ

B < 10 (Zhang and Shields, 2018).
The likelihood function, pðDjq;MiÞ, for each plausible prob-
ability model Mi associated with a property and the obser-
vation data D ¼ fD1:D2;.;Dng is formulated as follows:

pðDjq;MiÞ ¼ f ðD1jqÞf ðD2jqÞ.f ðDnjqÞ ¼
Yn
q¼1

f
�
Dq
��q� (22)
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where f ðDq
��qÞ represents the PDF value of the Mi evaluated at the

q-th data point Dq, and q denotes the parameters of Mi. The priors,
i.e. pðq;MiÞ, for all properties, are estimated using available data
from literature.

(4) Step 4: Evaluation of posteriors pðqjD;MiÞ. Employ Bayesian
inference to estimate the posteriors of q, i.e. i.e. pðqjD;MiÞ, for
each plausible model Mi, thereby quantifying their un-
certainties. Analytical solutions for pðqjD;MiÞ involve
computationally complex and inefficient multi-dimensional
integration. To overcome this challenge, the MH-MCMC nu-
merical sampling technique is utilized to generate a
sequence of random samples from pðqjD;MiÞ (Section 3.3).

(5) Step 5: Estimation of imprecise Borgonovo’s sensitivity
indices. Create a model set for each property, consisting of a
large number (Nm) of models selected from the plausible
models. Number of times (Ni

m) a model ðMi) is selected in the
set of Nm models is determined, considering their corre-
sponding pi values (from Step 3) as weightage, i.e. Ni

m ¼
pi � Nm. Subsequently, values of parameters are selected at
random from the pðqjD;MiÞ obtained in Step 4. Borgonovo’s
sensitivity indices are then computed using the MCSs
method by generating N random realizations (Section 2)
corresponding to each of the Nm models in the established
set. Statistics of the sensitivity indices, such as mean, coef-
ficient of variation (COV), and PDFs, can be estimated to
quantify uncertainties resulting from the small sample size.

A MATLAB code has been developed to sequentially implement
all the aforementioned steps to perform the imprecise GSA.
Table 1
Original sample of intact rock properties, RMR and geological strength index (GSI).

No. mi UCS (MPa) Ei (GPa) RMR RMR089 GSI

1 12.1949 153 75 37 47 42
2 10.9272 164 85 42 47 42
3 8.3032 59 85 37 47 42
4 3.6465 125 58 34 47 42
5 8.8251 141 60 35 40 35
6 16.0289 102 84 35 48 43
7 12.9051 68 82 27 40 35
8 16.8598 101 73 30 40 35
9 6.5479 131 33 45 58 53
10 15.0637 120 30 35 45 40
11 4.2672 92 74 55 60 55
12 17.326 57 36 45 50 45
13 17.2944 77 57 35 45 40
14 14.943 169 39 34 47 42
15 18.775 140 97 32 45 40
16 12.6379 264 79 37 47 42
17 11.5167 109 41 30 40 35
18 10.6426 102 79 35 40 35
19 16.7689 126 61 30 35 31
20 18.9248 106 72 42 55 50
21 14.6554 105 71 32 37 32
22 12.2824 27 48 41 54 49
Mean 12.788 115.3636 65.4516 41.1364
COV 0.3463 0.4227 0.2965 0.1569
Best-fit PDF Weibull Weibull Lognormal Lognormal

Note: COV ¼ Coefficient of variation, PDF ¼ Probability density function.
6. Application example

6.1. Problem description

This section demonstrates the proposed methodology by eval-
uating the sensitivities of strength and deformational properties of
the rock along with the geological strength index (GSI) for the
stability of a rock slope. Significant time, financial and human re-
sources are required to estimate these properties. Data related to
rock properties are often sparse in nature even for high-budget
projects owing to the practical difficulties and significant di-
mensions of the project. It is therefore necessary to know the
sensitivity of the individual rock property on the stability estimates
of the slopes with poorly defined probability models characterizing
input properties. Available resources can be optimally employed by
investing more in the determination of those properties which are
more sensitive to the stability estimates of the slope. Stability es-
timate of the slope is commonly defined in terms of the factor of
safety (FOS) (i.e. PF), which is a function of rock properties.

For this study, a Himalayan rock slope of dimension
293 m� 196 mwas selected. Main reason for this selectionwas the
availability of the data required to demonstrate the methodology.
This rock slope supports a railway bridge along a proposed railway
line connecting Jammu to Srinagar. Dolomite with highly jointed
and crossed by three major joint sets as well as a few more random
joint sets makes up the lithology. The permeability at the location
ranges from 0.48 to 70.48 Lugeons with closely spaced joint spacing
and very tight apertures, respectively (Tiwari and Latha, 2016,
2019). Intact rock properties were estimated by standard laboratory
tests on NX-sized rock cores collected from boreholes at intervals of
1.5e3 m. Laboratory testing of three to five samples of intact rock
was conducted following the guidelines of the ISRM (1981). The
rock was weathered to different degrees on the surface, while
remaining fresh at greater depths. In some areas, the rock mass
exhibited intense jointing, fracturing, and folding, with significant
wrapping along the bedding joints and localized shearing (Tiwari
and Latha, 2016, 2019, 2020). Due to this complex geology (in
terms of rock weathering, rock sample extraction depth, significant
spatial extent of the site, etc.), significant range (variation) of the
uniaxial compressive strength (UCS) was estimated. GSI was esti-
mated using the traditional chart-based method and the correla-
tion existing between rock mass rating (RMR) and GSI (Hoek and
Brown, 2019), i.e. GSI ¼ RMR089 � 5, where RMR089 is the RMR
value adjusted for groundwater rating and joint orientation. Table 1
summarizes the estimated data of the intact rock properties (i.e.
mi ¼ Hoek-Brown strength parameter and Ei ¼ elastic modulus of
intact rock) and GSI (Tiwari and Latha, 2019). Sensitivities of these
properties were estimated for the FOS of the slope.
6.2. Define performance function (PF)

Performance function for the slope could be defined as GðXÞ ¼
FOSðXÞ� 1, where X is the vector of input properties. FOS of the
slope is traditionally defined as the ratio of the resisting forces (or
available strength) to the driving forces along the failure surface.
FOS value of less than 1 indicates the failure of slope as the
magnitude of the driving force exceeds the available strength. The
PF becomes negative when the FOS falls below 1 which indicates
slope failure. Probability of failure (Pf ) was estimated as the per-
centage of random realizations for which FOS values were less than
1 to the total realizations. Probability of failure (Pf ) was assessed by
performing MCSs random realizations (S) and determining the
count of realizations (Sf ) in which the PF resulted in a negative
value. The Pf can be expressed mathematically as follows:

Pf ¼
Sf
S
�100 (23)

For the analysis, the first step is to obtain an explicit function of
FOS in terms of input properties under consideration. The slopewas
concluded to be prone to stress-controlled failures based on the site
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observation (small scale stress-controlled failures) and geological
conditions, i.e. closely spaced joints as compared to the slope di-
mensions (Tiwari and Latha, 2019). Derivation of an analytical and
explicit PF for the slopes prone to these failures is difficult using the
traditional Limit Equilibrium Method (LEM) due to the non-
availability of a clearly defined failure surface. RSMs coupled with
numerical methods like the Finite Element Method (FEM) can
provide a robust alternative to obtain an explicit surrogate
expression of FOS in terms of the rock properties. RSM was con-
structed by generating realizations of input properties using LHS
and estimating the corresponding FOS values via numerical simu-
lation of the slope for these realizations.

As mentioned in Section 4, the RBF-RSM was employed in this
study to obtain a surrogate relation between FOS and input prop-
erties. A total of h¼ 100 random realizations of inputs were
generated via LHS based on their statistics mentioned in Table 1.
FOS values for these random realizations were obtained using an
FEM-based program RS2 (https://www.rocscience.com/software/
rs2). A typical RS2 model of the slope is shown in Fig. 3. This pro-
gram estimates the FOS using the shear strength reduction (SSR)
method, which helped to overcome the limitations of LEM-like
assumptions related to the shape of failure surfaces, slope geome-
try, constitutive models of rock, etc. (Kanungo et al., 2013). Rock
mass was considered to exhibit elastic perfectly plastic behavior,
with failure determined by the Hoek-Brown strength criterion. For
each realization in the study, the rockmass properties necessary for
Fig. 3. Typical finite element model prepared in RS2 for the estimation of factor of safety
RS2 modeling were acquired by using the GSI and intact rock
properties, employing empirical relations (Hoek et al., 2002; Hoek
and Diederichs, 2006). Once h sampling points of input properties,
i.e. [X1;X2;.Xd] and output vector Y were known, the RBF-RSMwas
constructed by determining the coefficients l and b as given in
Section 4.

It should be noted that the RSM was constructed to obtain the
FOS directly based on the intact rock properties (Ei, UCS andmi) and
GSI (d¼ 4 (Section 4)) instead of rock mass properties. This is due
to two primary reasons: (i) objective of this study was to estimate
the sensitivities of those properties which require significant lab-
oratory and in situ resources for their determination, i.e. intact rock
properties and GSI. Rock mass properties are simply determined
using empirical relations between these properties only, and (ii) to
decrease the computations required in the transformation of intact
rock properties and GSI to rock mass properties for each realization
in the sensitivity analysis. NSE of the RSM was 0.9681 (i.e. NSE >

0.75) for l ¼ 50, which corresponds to very good rating. Therefore,
the FOS for any new observation point X can be obtained using the
constructed RBF-RSM.
6.3. Identification of plausible models and associated priors of
model parameters

As mentioned earlier, data related to the rock properties are
often sparse and hence, sensitivity analysis should be performed by
(FOS) at the sampling points of input properties to construct the response surface.

https://www.rocscience.com/software/rs2
https://www.rocscience.com/software/rs2
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considering the effect of poorly defined probability models of input
properties. For the multi-model Bayesian analysis from the sparse
data, basic inputs required are the candidate models and the priors
of the associated model parameters. Candidate models for mi, Ei,
UCS and GSI were considered to be Rayleigh, lognormal, Weibull,
gamma, inverse Gaussian, Nakagami and loglogistic due to their
non-negative nature. Normal distribution was not considered as
candidate model since it may give unrealistic negative values
(Hoek, 2007). Fig. 4 shows the histogram with fitted candidate
models for UCS and GSI. Plausible models (models to be considered
for further analysis) were selected among the candidate models by
estimating the BIC or pi for the candidate models. Results are

summarized in Table 2. The models with DðiÞ
B > 10 or piz 0 were

considered to be the non-plausible models. It indicates that a non-
plausible model has a significantly small probability of being the
best-fit or representing the data sample appropriately. Multiple
probability models were observed to be plausible for different
properties. For example, all candidate probability models formi and
UCS, and all candidate models except Rayleigh were plausible for Ei
and GSI with approximately similar BIC or pi (i.e. minimal DðiÞ

B
values). The result obtained supports the idea that it is unattainable
to determine the best-fit model from a small size data sample.

To reinforce this argument, pi values for plausible models were
estimated as a function of the sample size. Different sized samples
(random realizations) were generated for different properties
based on their best-fit models (i.e. with the lowest BIC value). Re-
sults of a typical analysis for UCS are shown in Fig. 5. Loglogistic
model was the best-fit model for the UCS based on its original data.
Samples of different sizes were generated and pi values for plau-
sible models were estimated. It was noted that till the sample size
was suitably large (w1000), pi of the Logistic distribution model
was matching well with the other probable models. It is important
to recognize that any analysis that assumes a single model as the
best-fit for input based on sparse or limited data can be highly
misleading.

Moreover, the priors of the model parameters were evaluated
based on an extensive literature review. The review aimed to
establish representative ranges of statistical moments for different
properties. Aladejare and Wang (2017) provided the typical ranges
of mean and COV for various rock properties based on a compre-
hensive analysis of 135 research articles from prominent journals,
technical reports, and textbooks (Table 3). Moments were taken to
Fig. 4. Histogram of the original sample data with the ca
be uniformly distributed between their identified bounds (Wang
and Aladejare, 2015, 2016; Aladejare and Wang, 2018; Liu et al.,
2022). To estimate the priors of the model parameters, the corre-
lations between these parameters and the statistical moments
were utilized (Ang and Tang, 1975). Table 4 summarizes the priors
of the model parameters for different properties.

6.4. Evaluation of posteriors pðqjD;MiÞ

In this step, the pðqjD;MiÞ for each plausible model were esti-
mated using Bayesian inference, as explained earlier. The prior
distributions were considered non-informative (uniform), i.e.
pðq;MiÞ (Wang and Aladejare, 2015, 2016; Aladejare and Wang,
2018; Liu et al., 2022). A total of 50,000 random realizations, by
omitting the initial 5000 samples as burn-in to ensure convergence
and efficiency, were generated. The convergence of the simulated
chains was examined through trace and autocorrelation plots. The
trace plots showed no anomalies, and the autocorrelation plots
exhibited an exponential decrease between the sample correla-
tions, indicating that the simulated values were not autocorrelated.
Additionally, the acceptance rate of all Markov chains simulated for
each model parameter fell within the desirable range of 20%e40%,
indicating good quantitative performance. Fig. 6 presents these
plots for the Markov chain samples of the lognormal distribution
parameters for UCS. The simulated pðqjD;MiÞ for plausible UCS
models are also shown as the joint PDF and the marginal PDFs in
Fig. 7 quantifying the uncertainties associated with them. Param-
eter values evaluated from the original data sample are shown as
red dots along the joint PDF. The results highlight the presence of
significant uncertainties in the model parameters due to the
sparseness of the data.

6.5. Estimation of imprecise sensitivity indices

To estimate the imprecise sensitivity indices, plausible models
along with their corresponding pi values and posterior distribu-
tions of associated parameters were required. Using the plausible
models and corresponding posterior parameters, a finite model set
with Nm models was first constructed for each rock property. The pi
value of each plausible model served as a weighing factor, indi-
cating the counts of the model to be included in the model set (pi �
Nm). In this study, a total of Nm ¼ 5000 models of all properties
were generated. Table 5 provides a summary of the count of each
ndidate probability models for (a) UCS and (b) GSI.



Table 2
Candidate probability distribution models and their corresponding BIC, BIC difference DðiÞ

B and BIC based probability pi values for mi, UCS, Ei and GSI.

Candidate model mi UCS Ei GSI

BIC DðiÞ
B pi BIC DðiÞ

B pi BIC DðiÞ
B pi BIC DðiÞ

B pi

Rayleigh 133.905 7.385 0.016 233.404 2.726 0.058 202.792 11.789 0 178.573 36.254 0
Lognormal 134.871 8.351 0.01 232.762 2.083 0.08 195.694 4.691 0.05 142.368 0.05 0.223
Weibull 126.52 0 0.658 231.461 0.782 0.153 191.003 0 0.527 145.852 3.533 0.039
Gamma 131.199 4.68 0.063 230.767 0.089 0.217 194.002 2.999 0.117 142.581 0.262 0.2
Inverse Gaussian 135.601 9.08 0.007 233.741 3.063 0.050 195.636 4.633 0.052 142.318 0 0.228
Nakagami 128.676 2.156 0.223 230.788 0.11 0.215 192.706 1.703 0.223 142.93 0.612 0.168
Loglogistic 133.211 6.691 0.023 230.679 0 0.227 196.668 5.665 0.031 143.267 0.949 0.142

Note: Text in bold represents the candidate models with DðiÞ
B > 10 or approximately zero pi values.

Fig. 5. Variation of BIC based probability pi for the plausible models with the
increasing sample size demonstrating the need of large sized samples to obtain the
best-fit model for UCS with full certainty.

Table 3
Prior information/knowledge for the sedimentary rock properties (Aladejare and
Wang, 2017).

Statistical parameter mi UCS (MPa) Ei (GPa) GSI

Min Max Min Max Min Max Min Max

Mean 4 21 4.4 264 0.59 73.17 22.6 60.4
COV 0.142 0.275 0.004 1.096 0.07 1.281 0.171 0.27

Note: COV ¼ Coefficient of variation.

Table 4
Range of plausible model parameters to define the uniform prior for mi, UCS, Ei and GSI

Plausible model Model parameter mi UCS

Min Max Min

Rayleigh Parameter 1 (l) 3.19 16.76 3.51
Lognormal Parameter 1 (a) 0.82 3.04 0

Parameter 2 (b) 0.03 1.06 6.67 � 10�5

Weibull Parameter 1 (m) 3.03 23.15 1.27 � 10�146

Parameter 2 (u) 0.67 50.43 0.01
Gamma Parameter 1 (a) 0.45 1366.92 0

Parameter 2 (b) 0.02 8.33 1.17 � 10�6

Inverse Gaussian Parameter 1 (m) 4 21 4.4
Parameter 2 (s) 1.92 28,705.24 0

Nakagami Parameter 1 (m) 0.56 342.1 0.5
Parameter 2 (s) 16.32 474.35 19.36

Loglogistic Parameter 1 (m) 1.39 3.04 1.48
Parameter 2 (l) 0.01 0.79 3.68 � 10�5
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model was considered for different properties. For example, a
model with a pi of 0.016 (Rayleigh model for mi) would be chosen
80 times (pi � Nm ¼ 0:016� 5000 ¼ 80) in the model set of 5000
models. For a model, its parameters were drawn randomly from the
corresponding pðqjD;MiÞ obtained in the previous step. For the
5000 models, this process was repeated, resulting in 5000 models
with randomly chosen parameters, as illustrated in Fig. 8 for UCS
and GSI.

In the next step, a representative 5000 combinations of the
probability models of different properties were chosen using the
LHS. Each combination of the models involves a model of every
property under consideration chosen from their generated models,
as shown in Fig. 8. Sensitivity indices (for such a combination) were

estimated for different properties by generating their N¼ 105 re-
alizations and performing Borgonovo’s sensitivity analysis with nx
and ny being taken as 30 as mentioned in Section 2.1. Model eval-
uations required in Borgonovo’s analysis were performed using the
RBF-RSM constructed for the slope in Section 4. The estimation of
sensitivity indices is visually represented in Fig. 9. Fig. 9a shows the
unconditional (blue color values) and conditional FOS values within
a class (red color values) for the UCS value in the range [87.53e

92.82]. Corresponding unconditional bf FOS and conditional bf FOSjUCS
distribution (PDF) (via histograms) are shown in Fig. 9b. The sum of

the absolute differences between the bf FOS and bf FOSjUCS, i.e.���bf FOS � bf FOSjUCS��� is representing the inner integral in Eq. (2). Results

for a typical analysis in terms of the differences in the FOS distri-
butions for different properties are shown in Fig. 10. Values of the

sum of absolute differences between the bf FOS and bf FOSjXi
for UCS

(0.6428) and GSI (0.8166) were found to be considerably greater in
comparison to mi (0.1251) and Ei (0.1779). This indicates the higher
sensitivities of UCS and GSI for the FOS of the slope. This process
.

Ei GSI

Max Min Max Min Max

210.64 0.47 58.38
5.58 0 0.01 2.91 4.1
2.89 4.29 3.18 0.06 0.65
264 0 0 24.19 66.5
34,295.34 73.32 276.53 1.42 19.82
2.25 � 108 3.96 � 10�5 0 1.92 244.85
19,027.26 31,388.17 14,890.36 0.25 11.77
264 0.59 2.33 � 10�5 22.6 60.4
5.94 � 1010 73.17 2,296,672.45 43.39 14,788.91
5.625 � 107 0.5 0.52 0.88 61.59
153,416 7847.42 14,139.16 525.66 3914.18
5.58 0 0 3.12 4.1
36.26 4.29 87.58 0.04 0.4



Fig. 6. Convergence of the Markov chains as indicated by the (a) trace plot for parameter 1 ‘a’, (b) autocorrelation plot for parameter 1 ‘a’, (c) trace plot for parameter 2 ‘b’, and (d)
autocorrelation plot for parameter 2 ‘b’ of the lognormal probability model for UCS.
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must be repeated for all representative combinations of the prob-
ability models resulting in 5000 values of sensitivity indices for all
properties. Results of the analysis characterizing the imprecision in
the sensitivities of the properties are shown in Fig. 11 and Table 6.

BMMI-GSA provides the distributions/confidence intervals (CIs)
of Borgonovo’s sensitivity indices instead of their single-point es-
timates, indicating the effect of uncertainties associated with
sparse data of rock properties. It was observed that the UCS and GSI
were more sensitive with their sensitivity indices ranging in the
intervals (95% CI) [0.1958, 0.543] and [0.116, 0.4023], respectively.
mi and Ei showed lesser sensitivities with sensitivity indices
ranging in the interval [0.0251, 0.1188] and [0.0298, 0.1238],
respectively. Properties can be broadly divided into two categories:
(i) highly sensitive properties, i.e. UCS and GSI, and (ii) lesser sen-
sitive properties, i.e. mi and Ei. Properties with higher sensitivities,
i.e. UCS and GSI, have wider CIs compared to the lesser sensitive
ones. However, the precise importance ranking of properties to
ascertain the most sensitive property was not possible due to sig-
nificant overlapping CIs of sensitivity indices. For the importance
ranking of properties, samples of larger sizes were required for the
GSA. An important observation was that the UCS is the most sen-
sitive property based on the mean value of di. However, the CIs of di
shows that there is a probability of 16.67% that the UCS may not be
the most sensitive input. Hence, the importance ranking provided
based on the mean value of sensitivity indices could be misleading.

Fig. 11 also shows the histograms and pair-wise joint pdfs of
sensitivity indices and Pearson’s correlation matrix. Results indi-
cated a strong negative correlation (�0.88) between dUCS and dGSI
suggesting a possible negative linear relation between them, i.e. as
the dUCS increases, dGSI value tends to decrease, and vice versa. Also,
a weak negative correlation was observed between dEi and dGSI
(�0.13), indicating a slight tendency for these to move in opposite
directions. However, no significant possibility of linear relationship
was observed between other pairs of sensitivity indices (i.e. dmi and
dUCS (�0.05), dmi and dEi (�0.05), dmi and dGSI (�0.06) and dUCS and
dEi (0.04)), as indicated by their negligible correlation coefficients.

Furthermore, a convergence study was conducted to examine
the impact of the sample size on the sensitivity indices. Samples of
different sizes varying between 22 and 10,000 were generated
based on the original sample data characteristics. Sensitivity anal-
ysis was performed for these sample sizes by employing the pro-
posed BMMI-GSA methodology. Results are presented in Fig. 12.
UCS and GSI were significantly more sensitive as compared to the
mi and Ei irrespective of the sample sizes. Further, the sensitivity
indices of all properties convergedwithin the sample size of 10,000.
Convergence of the sensitivity indices of lesser sensitive properties
was faster compared to the higher sensitive properties. This result



Fig. 7. Marginal and joint PDFs of the posterior model parameters for the plausible models: (a) Lognormal, (b) Weibull, (c) Gamma, (d) Inverse Gaussian, (e) Nakagami, and (f)
Loglogistic of UCS. Red points along the joint PDF show the parameter values estimated from the original sample.
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can also be interpreted easily by plotting confidence level (CL) vs.
number of sample points, as shown in Fig. 13. The CL uses the upper
and lower bounds of CI, i.e. CIU and CIL and can be defined as
CL¼ 1�ðCIU � CILÞ (Zhang et al., 2021). CL depends on the width of
CI with higher values indicating lesser variation. It was observed
that the imprecisions (variations) in the sensitivity indices for more
sensitive properties (UCS and GSI) were higher as compared to the
lesser sensitive properties (mi and Ei) for smaller data sets. This
results in an important interpretation that the lesser (or more)
sensitive properties can be grouped with the small sample size.
However, it is difficult to perform the importance ranking precisely
as convergence, especially for higher sensitive properties, is



Table 5
Number of times a candidate model chosen to construct the finite model set for mi,
UCS, Ei and GSI.

Candidate model mi UCS Ei GSI

Rayleigh 80 (0.016) 290 (0.058) 0 (0) 0 (0)
Lognormal 50 (0.01) 400 (0.08) 250 (0.05) 1115 (0.223)
Weibull 3290 (0.658) 765 (0.153) 2635 (0.527) 195 (0.039)
Gamma 315 (0.063) 1085 (0.217) 585 (0.117) 1000 (0.2)
Inverse Gaussian 35 (0.007) 250 (0.05) 260 (0.052) 1140 (0.228)
Nakagami 1115 (0.223) 1075 (0.215) 1115 (0.223) 840 (0.168)
Loglogistic 115 (0.023) 1135 (0.227) 155 (0.031) 710 (0.142)

Note: Posterior model probability pi values corresponding to candidate models are
given inside the parentheses.
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achievable for large sample sizes only. Based on the sample size of
10,000 importance ranking of the properties can be made as: UCS,
GSI, mi and Ei.

Further, the imprecise reliability analysis can also be carried out
with the model set (consisting of 5000 models of every input)
Fig. 8. Finite model sets with a total of 5000 models est

Fig. 9. Typical representation of the estimated inner integral for the estimation of Borgonovo
and (b) Unconditional and conditional distribution (PDFs) of FOS for the UCS class defined
prepared for the imprecise sensitivity analysis as shown in Fig. 8.
For each of the 5000 model combinations of the model set, 105

random realizations were generated for each input based on the
statistics and the model (for a particular model combination) and
corresponding FOS values were obtained by performing MCSs on
the prepared RBF-RSM using these realizations. Similar procedure
was repeated for all combinations of the input models in the model
set resulting in 5000 values of statistics of FOS as shown in Fig. 14.
For each model set combination, the realizations with FOS < 1
could also be counted and divided by total realizations to estimate
the Pf . For 5000 model combinations (in the model set), 5000
values of Pf could be estimated as shown in Fig. 14.

7. Discussion

Determination of the rock properties requires significant
financial and human resources, which is well documented in the
literature (Duzgun et al., 2002;Wyllie andMah, 2004; Bozorgzadeh
and Harrison, 2019). The budget for the rock investigation program
often lies in the range of 1%e5% of the total project cost, which is
ablished for (a) UCS and (b) GSI for the BMMI-GSA.

’s sensitivity indices conditioned on UCS: (a) Unconditional and conditional FOS values,
in range [87.53e92.82].



Fig. 10. Typical representation of differences in the unconditional and conditional PDFs of the FOS conditioned for (a) mi in range [5.49e6.54], (b) UCS in range [87.53e92.82], (c) Ei
in range [29.80e35.54], and (d) GSI in range [30.77e32.79].
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unjustified to characterize an inherently variable material like rock
mass accurately. Hence, the limited data availability for rock me-
chanics projects is a serious and practical issue even for projects
with high budgets. The condition becomes worse for low-budget
projects where the investigation budget is limited (Sun et al.,
2019; Spross et al., 2020). Due to these reasons, rock properties
are often determined from the limited samples taken from the few
boreholes and audits/drifts excavated along the selected locations
of the site. Examples of high-budget projects are Chenab Railway
Bridge and Kazunogawa hydropower projects (Cai et al., 2004;
Tiwari and Latha, 2020). For these projects, very limited (20e30) in
situ plate load tests were conducted along the excavated drifts to
determine the deformation modulus of the rock mass. Rock pro-
jects are often large-scale projects where engineers have to deal
with natural material like rock mass with a formation history of
thousand years. Hence, the rock mass is an inherently spatially
variable material with the random presence of discontinuities of
different features along it. Due to these reasons, any probabilistic
characterization of the rock properties based on the limited test
data collected from the specific locations is unreasonable. Tradi-
tional GSA ignores all these issues in the input data and estimates
the sensitivities of the properties based on the best-fit probability
model and the model parameters estimated from this limited
investigation data. Traditional GSA assumes these probabilistic
characteristics to be their ‘true estimates’ for the whole rock mass
(i.e. population), which could be an unreasonable assumption and
may lead to inaccuracies in the estimated sensitivities.

The proposed BMMI-GSA addresses the limitations of tradi-
tional GSA methods by providing imprecise sensitivity indices
instead of fixed-point estimates. This approach allows for repre-
senting the sensitivity indices as CIs and distributions, rather than a
single fixed value thatmay not accurately reflect the true sensitivity
of the properties. In practical applications, the true values of
sensitivity indices are often unknown, and the traditional GSA
cannot quantify the deviation of point estimates from these true
values (so-called) (Zhang et al., 2021). In contrast, the interval es-
timates of sensitivity indices obtained through the proposed
methodology offer lower and upper bounds in which the point
estimates may range. These intervals include the true values of
sensitivity indices at a fixed confidence level. Overall, the interval
estimates of the sensitivity indices provide a more detailed
description of the sensitivities of the properties. This makes the
users more informed in making their decisions about planning the
investigation program for a project. The user will remain informed
to invest the resources in the determination of highly sensitive
properties along with the required number of tests to reduce the
imprecision to an acceptable level.



Fig. 11. Histograms and pair-wise joint PDFs of the Borgonovo’s sensitivity indices (di) of rock properties (i.e. mi , UCS, Ei , and GSI) and Pearson’s linear correlation coefficients
between them.
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BMMI-GSA provides a better alternative to the traditional GSA;
however, some assumptions related to the input properties were
made for the BMMI-GSA analysis of the application example. This
section investigates the importance of these input characteristics
on the overall analysis results so that the users should make more
justified decisions in their selection. One key factor is the confi-
dence of the prior information in the uncertainty characterization
through the Bayesian inference (Cao et al., 2016; Wang and Akeju,
2016; Liu et al., 2022) and their effect on the sensitivity analysis.
A detailed analysis was performed to investigate this issue by
varying (i) prior ranges and (ii) prior distributions of the statistics of
properties. Ranges of the statistics were estimated based on the
worldwide data available in the literature, with their prior distri-
butions assumed to be uniform. The level of the information could
be better in case the data are available from nearby sites with
similar geological conditions instead of the worldwide collected
data. Initially, the effect of the ranges of the statistics was estimated
by narrowing down these ranges by approximately 60%, 90% and
95% of the original range. These cases were named as Prior
Knowledge II (PK-II), PK-III and PK-IV, respectively, while the
original case was named as PK-I (in Section 6.3). Credibility (level)
of the information could be arranged as: PK-IV > PK-III > PK-
II > PK-I. Prior distributions of properties were assumed to be
Table 6
Statistics of the Borgonovo’s sensitivity indices di estimated through the BMMI-GSA.

Property Mean COV 95% CI

mi 0.047 0.2647 0.0251e0.1188
UCS 0.3549 0.1727 0.1958e0.543
Ei 0.0468 0.2614 0.0298e0.1238
GSI 0.2457 0.2048 0.116e0.4023

Note: COV ¼ Coefficient of variation, CI ¼ Confidence interval.
uniform for all the cases (Fig. 15a). Results are summarized in
Fig. 15b and c. With the increasing level of information, the
imprecision in the sensitivity indices was continuously reduced, as
indicated by the reducing width of the CIs. Minor changes (2.34%e
24.33%) were observed in the CI width for PK-II case compared to
PK-III and PK-IV cases with respect to the PK-I case.

Additional analysis was performed by changing the prior dis-
tributions with the constant ranges of the statistics. Three distri-
butions, i.e. uniform (U), normal (N) andWeibull (W), were selected
corresponding to PK-III case (i.e. PK-III-U, PK-III-N and PK-III-W) for
the analysis. Distributions were selected based on the literature as
shown in Fig. 15d (Liu et al., 2021). Fig. 15e and f shows the results.
The imprecision in the sensitivity indices was lower forWeibull and
normal distributions as compared to the uniform distribution. This
is indicated by the reduced CI widths of the sensitivity indices for
these distributions (12.44%e37.01%) compared to the uniform
distribution. Possible reason could be the less informative nature of
the uniform distribution (also known as non-informative prior)
with respect to the N/W distributions (Liu et al., 2021, 2022).

Further, two types of uncertainties related to input variables
were considered in the BMMI-GSA: (i) model type, and (ii) model
parameters. An analysis has been done to estimate the relative
importance of these uncertainty types for the estimated sensitivity
indices. Analysis was made by fixing the model type of the prop-
erties to their best-fit models with the lowest BIC values (neglects
model uncertainty). This analysis is called traditional Bayesian GSA
(B-GSA). Posterior distributions quantifying the uncertainties of q
were estimated like the BMMI-GSA. The rest of the analysis was
performed like the BMMI-GSA (except neglecting the model un-
certainty). Table 7 summarizes the results of analysis. Mean
sensitivity indices for all properties were matched for BMMI-GSA
and B-GSA. However, the estimated COVs of the sensitivity



Fig. 12. Histograms of the imprecise Borgonovo’s sensitivity indices for different sample sizes: (a) 22, (b) 100, (c) 250, (d) 500, (e) 1000, (f) 5000, and (g) 10000 for mi, UCS, Ei , and
GSI indicating the convergence of sensitivity indices with the increasing sample size.
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Fig. 13. Variation of confidence level (CL) of Borgonovo’s sensitivity indices with the
sample size of input properties indicating the faster convergence of sensitivity indices
with increasing sample size for lesser sensitive properties and vice-versa.
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indices from both methodologies were significantly different
(percentage differences of 0.05%e45.6%). COVs of the indices
Fig. 14. Histograms of the (a) mean of FOS, (b) standard de
estimated by the BMMI-GSAwere higher as compared to the B-GSA
analysis due to the incorporation of bothmodel type and parameter
uncertainties in BMMI-GSA. Further, this difference was higher for
the lesser sensitive properties (i.e. mi and Ei) as compared to the
highly sensitive properties (i.e. UCS and GSI). Overall, it was
concluded that the model type uncertainties of input properties
significantly affect the sensitivity indices and hence it should be
incorporated in the analysis along with the uncertainties in model
parameters.

8. Conclusions and future work

Rock engineering projects often suffer with the issue of limited
data of rock properties due to many financial and resource con-
straints in the investigation program. Traditional GSA relies on this
limited data to estimate probability models and associated pa-
rameters of input properties required to estimate sensitivity
indices. This paper proposes a BMMI coupled with Borgonovo’s GSA
methodology to estimate the imprecision in the moment-
independent sensitivity indices of rock structures emanating due
to samples of small size of rock properties. The proposed meth-
odology estimates the uncertainties in the probability models and
associated parameters of the input properties using BMMI. These
uncertainties are propagated via MCSs and reweighting approaches
to estimate the imprecision in the moment-independent Borgo-
novo’s sensitivity indices. Methodology was demonstrated for a
Himalayan rock slope in detail and various aspects of imprecise
viation (SD) of FOS, and (c) probability of failure (Pf ).



Fig. 15. (a) Prior knowledgeeI (PKeI), PKeII, PKeIII and PKeIV with uniform distribution for mean of UCS; (b) CIs of Borgonovo’s sensitivity indices corresponding to PKeI, PKeII,
PKeIII and PKeIV with uniform distribution estimated from the BMMI-GSA; (c) Confidence level (CL) of Borgonovo’s sensitivity indices corresponding to PKeI, PKeII, PKeIII and
PKeIV with uniform distribution estimated from the BMMI-GSA; (d) PKeIII with three prior distribution, uniform (U), normal (N) andWeibull (W) (i.e. PKeIIIeU, PKeIIIeN and PKe
IIIeW) for mean of UCS; (e) CIs of Borgonovo’s sensitivity indices corresponding to PKeIIIeU, PKeIIIeN and PKeIIIeW estimated from the BMMI-GSA; and (f) CL of Borgonovo’s
sensitivity indices corresponding to PKeIIIeU, PKeIIIeN and PKeIIIeW estimated from the BMMI-GSA.
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sensitivity analysis were discussed. Sensitivity indices were rep-
resented in the form of CIs/distributions by this methodology
instead of their point estimates estimated from a traditional GSA.
These CIs assist the engineers in making a more informed decision
on the sensitivities of properties and in planning the investigation
program accordingly. In terms of the FOS of the slope, UCS and GSI
displayed a considerably higher level of sensitivity compared to mi
and Ei. This observation could be made with the limited size of
samples due to significantly different CIs of UCS and GSI as
compared to mi and Ei. However, significantly larger sized samples



Table 7
Statistics of the Borgonovo’s sensitivity indices di estimated through different
methodologies.

Property Methodology Mean COV 95% CI CL

mi BMMI-GSA 0.047 0.2647 0.0251e0.1188 0.9063
B-GSA 0.0477 0.1987 0.0179e0.085 0.9329

UCS BMMI-GSA 0.3549 0.1727 0.1958e0.543 0.6527
B-GSA 0.3643 0.1655 0.1774e0.5181 0.6593

Ei BMMI-GSA 0.0468 0.2614 0.0298e0.1238 0.9061
B-GSA 0.0467 0.1422 0.0212e0.0728 0.9484

GSI BMMI-GSA 0.2457 0.2048 0.116e0.4023 0.7138
B-GSA 0.247 0.2047 0.0734e0.4009 0.6726

Note: COV¼ Coefficient of variation, CI¼ Confidence interval, CL¼ Confidence level.
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of properties were required to obtain converged sensitivity indices
for the accurate importance ranking of the properties with over-
lapping CIs. Imprecision in the sensitivity indices was reduced with
the increasing sample size with a faster convergence rate for lesser
sensitive properties (mi and Ei). Prior ranges and the distributions
associated with the prior information significantly affected the
imprecision in the sensitivity indices. Uncertainties in prior infor-
mation were observed to be directly proportional to the estimated
imprecision in the sensitivity indices. More confident prior infor-
mation from the nearby sites as compared to the worldwide data
can significantly reduce the imprecision in the sensitivity indices.
Further, the impact of the model type uncertainties of the proper-
ties on the estimated imprecision in the sensitivity indices was
relatively lower as compared to the uncertainties in the model
parameters.

The proposed methodology is generalized in a way to employ it
for a variety of problems. However, some inherent limitations of
this methodology exist and should be addressed in follow-up
research:

(1) This study neglects the correlation between inputs while
estimating the sensitivity indices.

(2) Transformational uncertainties associated with the GSI-
based empirical relations relating intact and rock mass
properties were not considered.

(3) Applicability of the proposed methodology should be eval-
uated for different types of problems.

(4) Applicability of non-parametric densities in modeling the
possible distributions of inputs (instead of parametric den-
sities) could be investigated. Certain points need to be taken
into care including overfitting of density estimation and the
accuracy of smoothing parameter estimation for small size
sample data.
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