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The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide
on the performance of landslide susceptibility assessment (LSA). The study area is the Feiyun catchment
in Wenzhou City, Southeast China. Two types of landslides samples, combined with seven non-landslide
sampling strategies, resulted in a total of 14 scenarios. The corresponding landslide susceptibility map
(LSM) for each scenario was generated using the random forest model. The receiver operating charac-
teristic (ROC) curve and statistical indicators were calculated and used to assess the impact of the dataset
sampling strategy. The results showed that higher accuracies were achieved when using the landslide
core as positive samples, combined with non-landslide sampling from the very low zone or buffer zone.
The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of
LSA, which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.

© 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Landslides are one of the major geological disasters all over the
world, causing considerable human casualties and economic losses
every year (Petley, 2012). For example, the southeastern part of
China often suffers from rainstorm-triggered landslide events in
summer, which may lead to dozens of deaths and millions in eco-
nomic losses (Su et al., 2015; Zhao et al., 2019; Ma et al., 2022a; Guo
et al,, 2023a). Thus, spotting the areas exposed to landslides is an
important task for land planning and regional security (Chen and Li,
2020; Guo et al.,, 2020a). Recently, landslide susceptibility mapping
(LSM) has been a commonly used tool for achieving this goal, and
extensive stakeholders have begun to assess and reduce landslide
risk through it (Brenning, 2005; van Westen et al., 2008; Agterberg,
2022).
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Landslide susceptibility assessment (LSA) is to obtain the spatial
distribution of landslide occurrence probability in a region by
analyzing the correlation among historical landslides and envi-
ronmental factors (Fell et al., 2008; Pradhan, 2010). A normal LSA
procedure mainly includes the sampling of landslides (positive)
and non-landslide (negative) datasets, and the determination of
influencing factors, landslide susceptibility modelling and map-
ping, and accuracy analysis of results (Barik et al., 2017). Among
them, input data commonly differs in terms of landslide and non-
landslide samples, leading to a significant source of uncertainty in
LSA. Specifically, it is important to accurately express the spatial
shape of landslide samples and the spatial location of non-landslide
samples because they can affect the nonlinear correlation between
samples and factors during modelling, which further impacts the
accuracy of LSA (Arnone et al., 2016).

The landslide locations are usually determined from historical
landslides, remote sensing images, and field investigations
(Guzzetti et al., 2012; Guo et al., 2020b; Smith et al., 2021). Then the
landslides should be digitized for the analysis of the relationship
between landslides and environmental factors (Peng et al., 2014;
Paryani et al., 2021). At present, expression forms of landslide
samples in the literature mainly include points (Guo et al., 2022),
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circles (Huang et al., 2022) or irregular shapes (dustpan shapes,
semicircles, elongated bars, etc) (Galli et al., 2008; Moosavi et al.,
2014). Specifically, the selection of landslide digital form largely
depends on the study scale and landslide size. For studies at small
scales (1:100,000 or smaller), it is commonly an operational chal-
lenge to accurately capture the actual boundary of landslides thus
the forms of point and circle are mainly adopted under this con-
dition (van Westen et al., 2006). Users only need to record limited
but necessary information on landslides (e.g., location, type, and
time) in the inventory. At medium (1:10,000—1:50,000) or large
scales (>1:50,000), more information can be revealed in the
landslide inventory since the test area is smaller, allowing for more
detailed investigations, including initiation area, accumulation
area, size and abundance. It is also common to identify the actual
boundaries (irregular shapes) of landslides, especially with the
development of remote sensing and drone techniques (Azarafza
et al,, 2018; Nikoobakht et al., 2022; Su et al., 2022). Considering
the systematic error when it comes to the form of landslide points
and circles, more studies prefer to digitalize the landslides as
irregular shapes for the LSA (e.g., Shahabi and Hashim, 2015; Ma
et al,, 2022b), which align more closely with realistic situations.
As Huang et al. (2022) pointed out, landslide samples expressed by
irregular shapes (actual boundary) often have a higher result ac-
curacy and a lower uncertainty in landslide susceptibility model-
ling. When a landslide inventory with irregular shapes is used for
LSA, a data transformation from vector to raster (pixel) is required.
However, when landslides are represented in GIS by pixels, their
boundaries and pixel boundaries often do not completely overlap.
There is not yet a unified standard determining whether a pixel
crossing a landslide boundary should be considered part of the
landslide samples. Although this aspect may significantly impact
the outcome of the susceptibility analysis, the issue of the proper
representation of landslide locations has not been widely discussed
yet.

Regarding the sampling strategy of non-landslide dataset, there
are mainly four kinds of ways: (i) sampling randomly from
landslide-free areas, which is the most commonly used one in the
literature (e.g. Okalp and Akgiin, 2016; Bueechi et al., 2019;
Azarafza et al., 2021), (ii) sampling from the buffer zone by defining
a minimum distance between the landslide area and a landslide-
free area (Xi et al., 2022), (iii) sampling from the low susceptibil-
ity zone obtained by constraining certain external factors, such as
self-organizing neural network (Huang et al., 2017), similarity-
based approach (Zhu et al., 2019), and (iv) sampling from terrain
area with low slope angles or plain regions (Kavzoglu et al., 2014;
Lucchese et al., 2021; Okalp and Akgiin, 2022). However, all these
strategies have inherent drawbacks which can cause some impor-
tant aspects of uncertainty to the LSA (Zhu et al, 2019). For
example, the negative samples generated by (i) and (ii) may be
located on steep slopes that are susceptible to landslides. The
strategy (iv) may identify the pixels near rivers which are also
possibly prone to landslide occurrence. Hence, it is necessary to
compare and assess the performance of different sampling strate-
gies of non-landslide dataset in the LSA. Unfortunately, limited
efforts have been made on this issue. Xi et al. (2022) compared the
results from two scenarios, namely a set of negative samples
created using different buffer distances (strategy (ii)) and a set of
negative samples created by the Newmark-based method (strategy
(iii)). Except this, more studies simply propose a specific method for
non-landslide sampling and test its performance. The uncertainty
stemming from this aspect remains due to the lack of compre-
hensive comparisons among different scenarios.

The commonly-used models for LSA can be divided into expert-
based models (Sezer et al., 2017), physically-based models (Medina
et al, 2021) and data-driven models (Eker et al., 2015; Zézere et al.,
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Fig.1. Distribution of the landslides in the study area where the DEM with a resolution
of 30 m is used as the base map.

2017). Generally, data-driven models can be classified as
statistically-based and machine learning models (Pham et al., 2016;
Reichenbach et al, 2018; Guo et al, 2023b). Compared with
mathematical statistics, machine learning models have advantages
in reflecting the nonlinear corrections between landslides and
factors (Bueechi et al., 2019). Thus, models like Random Forest (RF),
C5.0 Decision Trees (C5.0 DT), Logistic Regression (LR), Bayes
Network (BN), Artificial Neural Networks (ANN), Multilayer Per-
ceptron (MLP) and Support Vector Machine (SVM) have been
widely developed and applied for LSA over the past decade (Bui
et al, 2012; Conforti et al., 2014; Hong et al., 2020; Merghadi
et al,, 2020). Additionally, some recent advances in data process-
ing techniques show that ensemble learning methods can further
improve the performance of machine learning methods and alle-
viate their limitations (e.g. Bui et al., 2019; Chen and Li, 2020).
However, it should be noted that a sole type of machine learning
model may be coincidental regarding high accuracy, so it is
necessary to consider different models to obtain more stable and
reliable results. In this study, we used three models including C5.0
model, SVM LR models to generate landslide susceptibility maps,
which herein we refer to as pre-LSM. The non-landslide dataset was
sampled from the very low susceptibility zones in these pre-LSMs,
which was subsequently used to generate final LSM. Considering
the high accuracy and maturity of the RF model (Catani et al., 2013),
this model was selected for the final landslide susceptibility
modelling.

In general, the application of machine learning in the field of LSA
is relatively mature. However, there are imperfections in the
modelling process. Specifically, there is limited research on the
gridding method for landslide datasets and the selection of non-
landslide samples. The main objective of the present study is to
clarify the uncertainties from landslide and non-landslide sampling
strategy and reveal their impacts on LSA. As far as we know, very
few studies have discussed the combined effect of both aspects
before. The Feiyun catchment in Zhejiang Province of Southeast
China was taken as the study area. More specifically, our aims
include: (i) design of landslide and non-landslide sampling stra-
tegies based on various sampling areas; (ii) constructing the com-
bined scenarios of sampling strategies and conducting regional LSA
based on machine learning models; and (iii) comparative analysis
of predictive ability under different scenarios and effects of sam-
pling strategies.
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2. Materials
2.1. Study area

The present study was conducted in the Feiyun catchment,
which is located southwest of Wenzhou, Zhejiang Province, China.
It covers a total area of 388.17 km? and is geographically between
latitudes 119°59’32”E and 120°15’30”E, longitudes 27°39'12”N and
27°50'29”N (Fig. 1). The landscape of the region is dominated by
mountains and hills, and the elevation ranges from 12 m above sea
level at the river valley to 1091 m at the highest peak, with the
topography characterized by higher elevation in the northwest and
lower elevations in the southeast. The area is a subtropical marine
monsoon climate zone with a multi-year average temperature of
14 °C—18.5 °C and a multi-year average rainfall of approximately
1884.7 mm. The river systems in the area are well developed, with
the Feiyun River being the main stream which flows through the
catchment from west to east, and the settlements are mainly
located along the river banks. The predominant strata outcrops in
the region comprise volcanic rock, granites, Paleozoic clastic rock,
and carbonate rock (Su et al., 2015; Wang et al., 2020).

2.2. Landslide inventory

The LSA by applying data-driven models is commonly based on
an important assumption that future landslides will likely occur in
areas with environments similar to those of historical landslides
(Zézere et al., 2017). Therefore, landslide inventory as a basis for
understanding the spatial distribution of historical landslides in a
region is essential (Huang et al, 2017). In this study, based on
historical landslide reports, visual interpretation of remote sensing
images and field geological surveys, 96 landslide points are iden-
tified in the inventory (Fig. 1). Their boundaries were also identified
and subsequently digitized as polygons. Covering a total area of
8.8 km?, these landslides constitute 0.23% of the total study area.
These landslides are mainly developed along the river banks of the
central and northwestern part, and identified as shallow type ac-
cording to Varnes classification system (Varnes, 1978; Hungr et al.,
2014). The most important triggering factor for them is heavy
rainfall in rainy season, which commonly happens with typhoon
events.

2.3. Data source and preparation of influencing factors

The data used in this study mainly includes the digital elevation
model (DEM), satellite images, the survey map of the study area and
water system. Detailed information and the purpose of the data are
shown in Table 1.

The development and mechanism of landslides over a large area
are complex and diverse, and mainly influenced by five types of
factors, namely topography, hydrology, land cover, geology and
others (e.g. human engineering activities) (Reichenbach et al., 2018;
Goyes-Penafiel and Hernandez-Rojas, 2021). There is no agreement
on the best combination of influencing factors for LSA so far. In this
study, ten factors (Fig. 2) were selected for analysis, based on pre-
vious literature and overall characteristics of landslides in the re-
gion. It should be stated that the rainfall was not taken into account
in this study because it was considered relevant to temporal
probability of landslides, which was beyond the concept of land-
slide susceptibility in the widely accepted criterion (Fell et al.,
2008).

Table 1
The information of data used in this study.

Type Sources Form Propose
DEM ASTER satellite Raster Preparing factor maps:
Fig. 3a—f

Satellite Sentinel-2 Raster Preparing factor map:
image Fig. 3h

Land use  National Earth System Science  Vector Preparing factor map:
map Data Center Fig. 3i

Soil type Vector Preparing factor map:
map Fig. 3j

Water DEM Vector Preparing factor map:
system Fig. 3g

Topographic factors include aspect, elevation, slope, topo-
graphic position index (TPI), profile curvature and relief. Among
them, slope is considered as the most important topographic factor
that can directly control slope stability (Zhou et al., 2016). Aspect
and TPI orientation indirectly affect landslide development by
influencing the vegetation distribution and illumination of the
slope (He et al.,, 2019). Elevation reflects the changes of the tem-
perature, humidity and biodiversity on the slope (Shahri et al.,
2019). Relief and profile curvature characterize the undulation of
the terrain and subsequently control the water flow on the slope
surface. The degree of relief was obtained by searching the 3
m x 3 m neighborhood grid unit and calculating its maximum
elevation difference. The other factors were all generated by digital
elevation model (DEM) data with spatial resolution of 30 m in GIS
10.6 software.

The hydrological factor was represented by the distance from
the river, because it can affect groundwater level, drainage capacity
of slopes and erosion on the bank slopes. Therefore, with the
drainage line as the buffer center and 100 m intervals from O to
600 m, six equally spaced buffer zones were determined. Combined
with the areas with the distance to river beyond 600 m, a total of
seven levels were generated to represent the impact range of the
river on the bank slopes.

Land cover influences the infiltration, drainage and anti-
weathering ability of slopes, thus causing instability (Dao et al.,
2020). The land cover data were downloaded from National Earth
System Science Data Center (https://www.geodata.cn). It was
divided into eleven categories, namely, dense forest, open forest,
garden, shrubs, dense grass, open grass, paddy field, dry land, bare
land, urban area and water, which were remarked from 1 to 11 in
order. Moreover, normalized difference vegetation index (NDVI)
was also considered, which can reflect the development of vege-
tation. Vegetation roots can reinforce soil and slow down soil
erosion. Compared with densely vegetated areas, bare slopes
without vegetation cover are commonly more prone to deforma-
tion when exposed to external conditions such as rainfall
(Hirlimann et al, 2022). This map was calculated by using
Sentinel-2 images at different wavelengths.

Geological factors are crucial in controlling landslide materials.
Different soil types have various mechanical and hydrological
properties, which have significant effects on occurrence of shallow
landslides. Since most landslides in the study area were identified
as shallow types, soil type was considered as geological factor. The
soil type factor was obtained from National Earth System Science
Data Center (https://www.geodata.cn), and it was divided into six
types including red soil, yellow soil, paddy soil, submergic paddy
soil, acid soil and brown soil, which were remarked from 1 to 6 in
order. According to Chinese Soil Taxonomy, different soil types
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Fig. 3. The methodological framework of this study.

present different colors due to the difference of soil textures, so the
colors can be used to represent soil type (Liu et al., 2020).

3. Methodologies
3.1. Modelling procedure

The flow chart of this study is shown in Fig. 3. Overall, there are
totally five main steps as follows: (i) Data preparation and factor
reclassification: All influencing factors were generated into raster
with a resolution of 30 m using ArcGIS. Among these influencing
factors, seven are continuous variables except for distance from
river, land cover and soil type, which are discrete. On one side, it is
time-consuming if every single value of the variables is used as the
input parameter for the model without the division of classes. On
the other side, a relevant source of subjectivity and uncertainty is
introduced when splitting the input parameters into fixed classes
with a certain of break values. To resolve this issue, the continuous
influencing factors were first equally classified into 20 sub-
categories, and then the frequency ratio of each classification was
calculated in this study. Finally, the sub-categories with similar
frequency ratios were grouped to form the final influencing factor
classification. It should be mentioned that the final arbitrary
number of classes was determined from 5 to 7, which fits with
previous studies (Dou et al., 2020; Huang et al., 2020). The details of
frequency ratio analysis for each factor will be described in section
4.1: (ii) Landslide sampling strategy: Two landslide expression
styles were designed in this part. One is the rasters only within the
landslide boundary (herein we call it by “landslide core”) were
considered as the landslide dataset after rasterization of the

landslide surface. The other one is that the rasters including land-
slide core and the rasters covering the landslide boundary were
integrated as the entire group (herein we call it by “landslide
extension”) (see the “sampling strategy” section for the detailed
definitions of landslide core and landslide extension). (iii) Non-
landslide sampling strategy: Seven scenarios were determined to
sample non-landslide datasets, which can be divided into three
categories. The first one was sampling non-landslides from
landslide-free areas, which was commonly used in literature (Ali
et al., 2022; Mehrabi, 2022). The second one was to obtain non-
landslide samples from the buffer zone (within the distance of
200 m, 200—400 m, and larger than 400 m buffer zone to landslide
boundary, respectively). The third method was to sample non-
landslides from the very low susceptibility zones identified by
some models in advance (herein we call it pre-LSM). Three machine
models were applied to create pre-LSMs in this study, namely SVM,
C5.0 and LR models. (iv) LSM: A total of fourteen scenarios were
determined by combining the landslide and non-landslide sam-
pling strategies mentioned above, and the LSM under each scenario
was generated based on the RF model. (v) Validation and compar-
ison: The receiver operating characteristic (ROC) curve and area
under curve (AUC) value for each scenario were calculated to
analyze the model performance and evaluate the effect of sampling
strategy on LSA. It should be stated that three different machine
learning models were employed in step (iii) to mitigate the chance
of incidental errors in VL zone produced by a single model. During
step (iv), the purpose of the application of the RF model instead of
the three models mentioned above was to keep the sampling of
landslide/non-landslide as the only variable in the test. The details
on the model principles used will be described in continuation.
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3.2. Frequency ratio (FR) model

The frequency ratio (FR) method is a traditional statistics model
for regional LSA. The FR values of one factor greater than 1 indicate
a positive relationship with landslide occurrence, and conversely
FR values less than 1 represent a negative relationship (Shirzadi
et al,, 2017). It is now commonly used for the grading of influ-
encing factors:

L;j/TL

FRj =
VT ¢/TC

(1)

where i and j indicate the number and grading of impact factors
respectively, L j indicates the area of landslides within class j of the i
th influencing factor and TL represents the total area of landslides; C
j indicates the area of class j of the i th impact factor and TC rep-
resents the total area of the study area.

3.3. Machine learning models

3.3.1. C5.0 decision tree (C5.0 DT)

The C5.0 Decision Tree model is based on a multistage or hier-
archical decision structure. The core of the C5.0 DT model is using
the rate of decline in information gain ratio (GR) as the basis for
determining the optimal branching variables and segmentation
thresholds. The GR can be expressed as following (Guo et al., 2021):

Gains(D,T)

GainRatio = Ent(T)

(2)

where D is the dataset and T is the predictor variable. The Gains (D,
T) represents the entropy difference between the original and child
nodes, which is calculated as below:

) (3)

where C is the target variable, n is the category number of C, C;
(i=1,2,...,n). The category number of Tism, T; (j=1,2, ..., m).In
this study, Adaboosting algorithm and Pruning was adopted to
improve the generalization ability of the C5.0 DT model during the
modelling process.

Gains(D, T) = anP(CiID)logz P(G; ID)} <Z|DJ|

3.3.2. Support vector machine (SVM)

The SVM model is a sparse and robust classifier that uses a hinge
loss function to compute empirical risk and adds a regularization
term to the solution system to optimize structural risk. The SVM
model is one of the common kernel learning methods for nonlinear
classification by the kernel method (Zhang et al., 2019). Generally, a
high-dimensional feature space was map data through nonlinear
kernels and classified by separating hyperplane. The separating
hyperplane can be defined as following:

wx+b =0 (4)
with the optimal solution to:
2 I
[[w]]

min—+cZEl~ (5)
i=1
s.t.y,-(cu-xier)zl 7&1',&1' >0 (6)

where w determines the direction of the hyperplane b is the bias, C
represent the penalty, x;eR", y;e { — 1,1}, &; is the slack factor used

for classifier and the number of support vectors is 1. The classifi-
cation function is calculated as Eq. (7) by introducing kernel
functions:

l
fx) = sgn(Za,-y,-K(x]

i=1

< X)+ b) (7)
where n is the number of the samples, and a ; is Lagrange multiplier.

3.3.3. Logistic regression (LR)

The logistic regression method is a classic linear regression
model that has been widely applied to solve dichotomous problems
in LSA (Kavzoglu et al., 2014). The main calculation formula of it can
be written as following:

logit(z) = k + a1y1 + axys + asys + -+ + an¥n (8)

where z is the linear predictor for landslide, y j, is the characteristic
value of influencing factors, k is a constant and a , is the n th
regression coefficient. The weighted values of each influencing
factor were obtained by the product of y ,, (characteristic value) and
a , (coefficient) of each influencing factor. And the landslide sus-
ceptibility index (IS) can be calculated as

_exp(logit(z))
I5= 1 + exp(logit(z)) ®)

3.3.4. Random forest (RF)

The RF model is an integrated learning method that combines
multiple decision trees for classification and prediction. The clas-
sifier is a recursive process from the root node to the child nodes,
selecting a random portion of samples and features from the
training data with put-backs (Ilia et al., 2018; Dou et al., 2019). From
the nodes of the tree, branches are determined based on the
optimal features between the nodes, and branching is continued
until the result of a tree is obtained. Finally, the subset of categories
with the most votes can be selected as the final outputs:

k
T(X) = ay maxy » _I(t;X) =T) (10)
i=1

where T(X) is the combined classification model, each node is
denoted by k and t ; is the decision tree. The output variable and the
feature function are represented by U and I. The marginal function
can be denoted by the following equation:

mg(X,Y) = ayl(tx(X) = ¥) — max;.. ravl (& (Y) = j) (11)

The classification reliability of the model is proportional to the
value of the function. The following equation is principle of the
categorization:
Pry(Po(t(X,0) =) —max Py(h(X,0) =j)) <0 (12)
where (X,U) is the probability space and P represents the feature
variable.

The model does not require any transformation or rearrange-
ment for disaggregated data, thus can effectively eliminate over-
fitting of data Considering it has strong generalization ability and
high accuracy, the RF model has been widely used in the topic of
LSA (Kim et al., 2018; Hong et al., 2019). The RF generally consists of
two trees (positive and negative), each of which was constructed by
using ten random features (influencing factors) in this study. The
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purpose of this study is to explore the impact of sampling strategies
on LSA, so using a stable model can reduce the effect of uncertainty
from the model itself. This is the reason why the RF model was used
as the approach to generate final landslide susceptibility maps.

3.4. Sampling strategy

3.4.1. Landslide sampling strategy

The conversion of landslide inventory from vector to raster is a
delicate operation when conducting landslide susceptibility
modelling. Different rasterization methods impact the calculation
of landslide area which may result in large differences in landslide
information. Moreover, the landslide shape, area and raster reso-
lution also influence the final results, especially when the landslide
area is small and the raster resolution is coarse (Arnone et al., 2016;
Huang et al., 2022). When the number of pixels involved in the
landslide boundary is large, whether to consider the landslide
boundary pixels as the landslide sampling dataset may have a large
impact on the landslide information included into the model.
Hence, two landslide rasterization scenarios (landslide core and
landslide extension) were designed to evaluate the influence of
rasterization methods. Usually, the landslide boundary occupies
one pixel, and sometimes up to two pixels (Fig. 4a). The landslide
core was expressed by all the pixels contained in the landslide
boundary and was obtained through the Polygon to Raster tool in
GIS 10.6 software as shown in Fig. 4b. The landslide extension was
the pixels combination of landslide core and landslide boundary
(Fig. 4c). In this study, the landslide boundary includes 4161 pixels,
the landslide core contains 9805 pixels, and the landslide extension
contains 13966 pixels. The ratio of landslide boundary to core is
0.424 under the raster resolution of 30 m.

3.4.2. Non-landslide sampling strategy

Different from landslide samples, the sampling of non-landslide
dataset is highly subjective. In literature, non-landslide samples
were mostly randomly sampled from landslide-free area (Fig. 5a),
thus this strategy was selected as the reference scenario in the
present study. Regarding the controlling test, non-landslides were
sampled from the buffer zone and the very low (VL) susceptibility
zone generated from some models. The buffer zone is obtained by
taking the centre of any landslide point and drawing a circle surface
with the buffer distance as the radius, then taking the intersection
of the circle surface. The buffer zone scenarios included the buffer
distance to landslides of <200 m (Figs. 5b), 200—400 m (Fig. 5¢) and
outside of 400 m (Fig. 5d), which were designed to reveal the effect
of buffer distances on the sampling.

Given that the LSA results mark different from model to model,
two types of data-driven models, including generalized linear
model (LR) and nonlinear regression model (C5.0 and SVM) were
selected to generate landslide susceptibility maps in advance (pre-
LSM) (Fig. 5e, f, and g). Then the VL zones in these pre-LSMs were
used to prepare for formal non-landslide datasets. It should be
noted that the pre-LSMs were generated by using the non-landslide
samples from landslide-free area and combined with equal land-
slide samples.

Finally, fourteen scenarios were determined by combining the
landslide and non-landslide sampling methods mentioned above,
and the specific information are shown in Table 2. An equal number
of landslide and non-landslide samples were selected to ensure a
balance of positive and negative samples in the modelling dataset
in SPSS Statistics software. Then, the LSIs of the recorded landslide
samples were set to 1, whereas those of the randomly selected non-
landslide samples were set to 0. As Shirzadi et al. (2017) suggested,
the ratio of training to test datasets at 8:2 could obtain higher
prediction accuracy in the raster resolution of 30 m. Thus, 80% of
the modelling datasets (composed of equal landslide and non-
landslide samples) under each scenario were randomly selected
for the RF model training. The remaining 20% of the datasets were
used for the test in SPSS modeler software.

3.5. Contribution of influencing factors

The evaluation of the importance of the influencing factors can
reflect the reasonableness of the links established between the
model and the actual geological environment, and help to establish
a system of influencing factors suitable for landslide susceptibility
analysis (Liang et al., 2021). In this study, the importance of ten
influencing factors was assigned by RF model in SPSS modeler 18.
Then each of the importance indices was normalized using the
max—min method, which was calculated as the following equation:

* fz *fmin
fi _fmax _fmin (13)

where f; and f; * denote the values before and after normalization
respectively, fmin and fmax are the minimum and maximum values
in the data.

3.6. Model performance evaluation
ROC curve is known to be used to evaluate the accuracy of binary

classification tasks in machine learning models and is widely used
in the analysis of LSA results (Rodrigues et al., 2021). The horizontal

Actual landslide boundary Pixel El Landslide boundary El Landslide core El Landslide extension

Fig. 4. Different rasterization ways to represent a landslide with pixels: (a) Landslide boundary, (b) Landslide core, and (c) Landslide extension.
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Fig. 5. The negative sampling area for each sampling strategy: (a) Landslide-free area, (b) Buffer distance <200 m, (c) Buffer distance 200—400 m, (d) Buffer distance >400 m; (e),
(f) and (g) are the VL zone of pre-LSMs generated by SVM, C5.0 and LR models, respectively.

axis and vertical axis of the ROC curve are combined by 1-specificity

and sensitivity, and the AUC of the ROC curve ranges from O to 1,

closer to 1 indicates better model performance. Sensitivity = P (14)
TP + FN
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Table 2
The landslide and non-landslide sampling strategy of each scenario.

Landslide Non-landslide Pixels of NLS Pixels of Percentage of
sampling sampling (NLS) selection area NLS NLS (%)
landslide VL zone from SVM 241,129 9805 0.41
core VL zone from C5.0 189,757 9805 5.17
VL zone from LR 146,174 9805 6.71
landslide-free area 421,503 9805 2.33
buffer distance 32,346 9805 30.31
<200 m
buffer distance 200 36,449 9805 26.90
—400 m
buffer distance 350,977 9805 2.79
>400 m
landslide VL zone from SVM 241,129 13,966 0.58
extension VL zone from C5.0 189,757 13,966 7.36
VL zone from LR 146,174 13,966 9.55
landslide-free area 417,342 13,966 3.35
buffer distance 33,569 13,966 41.60
<200 m
buffer distance 200 36,531 13,966 38.23
—400 m
buffer distance 345,514 13,966 4.04
>400 m
e FP
Specificity TN < FP (15)
M(1+M
AUC = Zie positiveclassmnki - % (1 6)

M x N

where the value of rank; is the number of the i-th sample, M and N
are the number of positive and negative samples, respectively.

4. Results
4.1. Factor importance and LSM

Based on the principles introduced before, the influencing fac-
tors were reclassified and the FR values of each category are shown

in Table 3. We can see that the impacts of different factors and
categories on the occurrence of landslides have evident differences.

885

For instance, the FR values were all greater than 1 when the slope
degrees larger than 37°, and increased with the increase of the
degree. However, the FR values of the slope degrees lower than 37°
were smaller than 1, thus indicating the negative effect on landslide
occurrences in the study area. Regarding the soil factor, the FR
values of all soil types were lower than 1 except the red soil, which
indicated that this type of soil was the most important for the
development of shallow landslides. This can be explained by the
large porosity of red soil, thus its strength decreases more rapidly
when exposed to water (Su et al., 2015). The classifications in land
cover factor that had larger impacts on landslides included dryland
(FR = 1.93), shrubs (FR = 1.09), open grass (FR = 1.50) and urban
land (FR = 1.17). Regarding the distance to river, the overall trend is
that the FR values decreased with the increase of distance rivers,
which agreed well with the spatial distribution of landslides in the
area.

As seen in Fig. 6, the importance of each influencing factor,
which was represented by the importance measure (IM) value, was
obtained from the RF model. We can see that six factors contributed
more to the landslides in the study area, namely land cover
(IM = 1), soil type (IM = 0.949), slope (IM = 0.923), distance to river
(IM = 0.846), NDVI (IM = 0.769), elevation (IM = 0.641). The other
four factors had relatively lower importance and their IM values
were below 0.5. In general, the current results showed that the
development of shallow landslides in the region was mainly
controlled by the material (soil type), shape (slope), and surface
covers (land cover, NDVI) of slopes. Moreover, no importance of the
factors was smaller than 0, thus indicating it is reasonable to
include these factors into the LSA of the study area.

Fourteen final LSMs were generated for different scenarios
based on the RF model. The whole area was divided into five zones
based on the natural breaks method, namely very-low suscepti-
bility (VL), low susceptibility (L), moderate susceptibility (M), high
susceptibility (H), and very high susceptibility (VH), as shown in
Figs. 7 and 8. On the whole, although the LSMs under different
scenarios are different, the distribution of VH, VL zones has similar
patterns. The VH zones are mainly distributed at the river banks,
since most settlements are located in this region, and human en-
gineering activities can easily change slope stability. Another
obvious VH zone is located in the mountainous area of the north-
east which is characterized as higher altitude and larger relief. The

Table 3
The frequency ratio of each category within the influencing factors.

Factor Category FR Factor Category FR Factor Category FR

Aspect (°) 0-52 0.72 Relief —34.0-4.1 0.13 NDVI 0.43-0.46 1.07
52—-126 1.15 -4.1-2.0 0.45 0.46—0.49 1.42
126—199 1.41 -2.0-04 0.86 0.49-0.84 1.64
199-251 1.22 0421 1.29 Land cover (1) Water Field 1.00
251-306 0.81 2.1-33 1.52 (2) Dryland 1.93
306—360 0.50 3.3-41 1.92 (3) Dense Forest 0.95

Elevation (m) 12-52 0.72 Slope (°) 0-13 0.14 (4) Shrubs 1.09
52—-180 1.90 13-21 0.37 (5) Open forest 0.93
180—452 0.90 21-37 0.79 (6) Garden 0.87
452—538 0.50 37-51 1.23 (7) Dense grass 0.65
538-627 0.67 51-62 1.52 (8) Open grass 1.50
627—-1091 0.49 62—-81 1.89 (9) Urban land 1.17

Profile Curvature 0.0-4.0 0.74 Distance to river (m) 100 1.69 (10) Water Area 0.00
4.0-6.9 0.89 200 3.41 (11) Bare land 0.00
6.9-9.8 1.02 300 3.15 Soil type (1) red soil 1.45
9.8—-15.4 1.15 400 2.51 (2) yellow soil 0.16
15.4-42.7 1.30 500 235 (3) paddy soil 0.86

TPI -16.3—4.1 1.16 600 1.07 (4) submergic paddy soil 0.01
-4.1-0.8 0.84 >600 0.62 (5) acid soil 0.55
-0.8—-1.0 0.88 NDVI -0.30-0.31 0.27 (6) brown soil 0.10
1.0-6.3 1.16 0.31-0.39 0.55
6.3-17.4 1.59 0.39-0.43 0.86
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Fig. 6. Radar chart of the importance of the influencing factors, in which the numbers
show the IM value of each factor obtained from the RF model.

VL area is mainly located in the central and northwestern part with
relatively gentle terrain. Although the susceptibility zonation varies
with scenarios, all these maps can generally reflect the develop-
ment trend of landslides in the region. Regarding the comparison
among different sampling scenarios, the maps using landslide core
(Fig. 7) have more VH zone and less M zone than that using land-
slide extension dataset (Fig. 8). Moreover, when the buffer distance
applied for non-landslide dataset increases, the VL and VH zones
become larger (Fig. 7b—d, Fig. 8b—d).

4.2. Model performance evaluation and comparison

In order to reveal the distribution pattern of the susceptibility
zonation and landslides in these LSMs, the area of each suscepti-
bility level was first counted. The results show that the area of VH
zone accounts for 12%—17% of the total area, and the area with
medium susceptibility level accounts for 8%—30%. The area of L and
VL zones are commonly larger than that of other susceptibility
levels (Fig. 9a and b). However, this is not the case when using the
non-landslide dataset from the VL-LR model. In this scenario, the
area of VH zone is rather large, which reaches 39% and 42%,
respectively. Next, we compared the percentage of landslides in
each susceptibility level. When the landslide core is utilized as
positive samples (Fig. 9c), the percentage of landslides identified in
VL areas are no more than 2%, while this number can reach up to
90% in VH areas. In contrast, the landslide located in VL zone is less
than 10% and the percentages of landslide in VH zones are between
44% and 83% when considering landslide extension as landslide
dataset (Fig. 9d). Then, the indicator of frequency ratio (FR) was
calculated to represent the relatively density degree of landslides in
a specific susceptibility zone which considered both landslide
numbers and total area. Generally speaking, a reasonable landslide
susceptibility map is characterized as higher FR values in high and
very high susceptibility areas. In this study, the FR values for all
scenarios increase with the increase of susceptibility level (Fig. 9e
and f). The FR values are less than 1 in low and very low suscepti-
bility areas while larger than 1 in high and very high areas, thus
indicating the landslide susceptibility zonation accurately captures
the spatial distribution of historical landslides. It should be
mentioned that the results regarding the scenario of VL-LR model is

still an exception, where the FR values in H zone is less than 1, and
FR in VH zones is evidently smaller than that in the other scenarios.
This indicates that the performance by using the VL area from LR
model as non-landslide dataset is not satisfactory.

Finally, the AUC values of training and testing datasets under 14
scenarios were calculated in SPSS modeler software to compare the
performance of different sampling strategies (Fig. 10). The AUC
values range from 0.733 to 0.942, thus indicating that all the sce-
narios have good predictive results. Moreover, the results obtained
by using the training dataset and test dataset have similar accu-
racies, which verifies the generalization ability of the applied
methods. Among all the scenarios, the peak accuracy is from the
result by using landslide core and VL-C5.0 model with the AUC
value of 0.933 (training dataset) and 0.942 (testing dataset).

4.3. Impact of sampling strategies on LSA

4.3.1. Impact of landslides sampling strategies

By comparing the landslide susceptibility maps of different
scenarios, it can be found that the total area of H and VH zones of
the maps applying landslide core as positive samples are slightly
larger than those using the landslide extension dataset. Meanwhile,
less L and VL zones are identified in the former maps than the latter
ones. Moreover, the AUC values of the maps using landslide core are
larger than those using landslide extension samples. Specifically,
the maps using landslide core samples are larger than those using
landslide extension by 0.2%—2.7% in AUC accuracy. These inter-
esting results indicate that landslide cores can better reflect land-
slide characteristics, and better distinguish between landslide and
non-landslide samples. This is mainly because that the landslide
extension covers landslide boundary areas, which is the overlap
zone between landslide and non-landslide. Pixels in these areas
will dilute the landslide features and reduce the quality of landslide
samples. Hence, it is recommended that users employ only land-
slide core as positive samples and discard pixels covering landslide
boundary during landslide susceptibility modelling.

4.3.2. Impact of non-landslides sampling strategies

Considering the comparison results mentioned in the section
above, the following analysis regarding non-landslide samples
focus on the scenarios based on landslide core. Non-landslide
sampling from landslide-free area is the most commonly used
non-landslide sampling strategy, so this scenario is used as a
reference to measure the magnitudes of change of modelling ac-
curacy user the other scenarios. When the non-landslide dataset is
obtained from the buffer zone around landslide boundary, the AUC
accuracies improve with the increase of buffer distance. However,
compared with the reference (AUC = 0.844), only the scenario
when the buffer distance larger than 400 m has better performance
(AUC = 0.878). The scenarios with the buffer distance of 200 m
(AUC =0.751) and 200—400 m (AUC = 0.801) are evidently lower in
accuracy. This makes us conclude that the quality of non-landslide
samples can be improved only when sampling at the area with a
sufficient distance to landslide boundary. This can be explained that
the pixels near from the landslide boundary have some similar
characteristics with positive samples (landslide pixels) while the
characteristics of negative samples (non-landslide pixels) are
weakened. Therefore, the non-landslides dataset for machine
learning model training are not representative enough.

Next, we assess the impacts of scenarios which use the VL zone
from pre-LSM as non-landslide samples. It can be found that this
sampling strategy can improve the performance of LSA. The AUC
values are 0.857 (VL-SVM), 0.901 (VL-C5.0) and 0.839 (VL-LR),
respectively. It should be mentioned that the performance of the
scenario applying the VL-LR model is not superior to that of the
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Fig. 7. The landslide susceptibility maps generated by using the landslide core as positive samples, where the negative dataset was sampled from: (a) Landslide-free area, (b) Buffer
distance <200 m, (c) Buffer distance 200—400 m, (d) Buffer distance >400 m; (e), (f) and (g) are the VL zone of pre-LSMs obtained from the SVM, C5.0 DT and LR models,
respectively.

reference, which supports the results from the statistics of landslide situation. Similar results are not observed in the scenarios which
distribution. Under this scenario (Fig. 8g), the total area of high and determine the non-landslides through the VL-SVM and VL-C5.0
very high susceptibility areas that were identified is larger than 50% methods. From the perspective of model principles, the RF, SVM,
of the entire region, which doesn’t agree well with the actual and C5.0 models are nonlinear models, while the LR is a linear one.
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The former is commonly more complex than the latter since the
classification criteria for linear classification are homogeneous.
Hence, the scenarios using the VL-SVM and VL-C5.0 methods
conduct two nonlinear classification (the second one is the final
LSM by using the RF model), which cause higher model accuracies.
From the perspective of sample quality, the very low susceptibility
zones from the LR model only focus on a part of characteristics of
non-landslide sample, which causes that the missing characteris-
tics are identified as high and very high susceptibility zones in the
LSM. This is also the reason why this scenario has larger VH and H
susceptibility zones than the other scenarios. Overall, the negative
dataset sampled from very low susceptibility zone determined by
machine learning models can improve the performance of LSA
compared with that from the landslide-free area, but it is recom-
mended to select nonlinear models. Therefore, among all the sce-
narios in this study, the one applying landslide core (positive
dataset) and VL zone from C5.0 model (negative dataset) has the
highest accuracy.

5. Discussion

In this section three main points will be discussed: (i) the un-
certainties associated with the modelling strategy and results, (ii)
main limitations of the current method and findings, and (iii) the
comparison with previous studies.

The uncertainties of this study are mainly related to one of the
following aspects: (i) the relationship between data resolution and
landslide size, (ii) determination of buffer distance between land-
slide area and landslide-free area, and (iii) selection of influencing
factors for the LSA. The landslides in the study area are mostly
small-scale in volume (<10° m?), with the area ranging from
478 m? to 0.05 km?. With the data resolution of 30 m, landslide
boundary commonly accounts for a large proportion of the entire
landslide, which can result in a significant difference in the total
area of landslide datasets between the two positive sample stra-
tegies. The statistical results confirm this point: the number of
landslide pixels obtained from the landslide core is higher than
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those from the landslide extension by 40%. Hence, more fuzzy
features related to the pixels covering landslide boundary are
included into the positive dataset, leading to lower accuracies of the
scenarios using landslide extension. It can be expected that the
impact of sampling strategy of landslide dataset may decrease
when it comes to large-scale landslides or higher resolution data.
The choice of the proper resolution in LSM is always an operational
issue, which is related to many aspects (Catani et al., 2013). Some
studies test the performance of different data resolutions in
regional LSM, but they failed to incorporate the variability of
sampling strategy (e.g. Arnone et al., 2016; Schlogel et al., 2018).
Hence, the future tests regarding the combined impacts of different
scales, data resolution and sampling strategy may be of high
interest.

Regarding the best definition of buffer distance for non-
landslide sampling, there is no agreement on this topic so far. In
this study, a measurement in GIS shows that the average distance
among the landslides in the study area is approximately 400 m,
thus we used the 200 m as the interval for buffer distance but set
only three scenarios (<200 m, 200—400 m, >400 m). There are also
studies using 1 hm (e.g. Xi et al., 2022) or kilometer (e.g. Gameiro
et al., 2021) as interval and defining more than 5 different buffer
distances. Evidently, more intervals can more accurately capture
the impact of buffer distance, but our current outputs reveal similar
findings with the ones previously mentioned, namely the accuracy
of LSM becomes higher with the increase of distance between
landslide and non-landslide samples. Moreover, it should be noted
that the definition standard of buffer distance in this study is
different from previous ones. We separate the landslide free area
into several individual parts without interactive overlap, instead of
setting the area with larger distance than a certain threshold as an
entire (Fig. 11). Under this standard, we avoid potential repetitive
sampling in landslide-free area.

The uncertainty originated from the influencing factors is
dominantly associated with the model’s predictivity ability. Many
environmental factors have been incorporated in landslide sus-
ceptibility modelling, but a “perfect” combination of factors does
not exist (van Westen et al., 2006). In this study, we selected 10
factors, which agree with previous studies for similar test sites (e.g.
Su et al., 2015), and each factor has been verified as reasonable

(a)
[

postive
samples

buffer distance:

>0m

through the calculation of importance (Fig. 6). The results indicate
that land use, slope, distance to river and NDVI are of higher
importance for the landslide occurrence, thus partly supporting the
point of Wang et al. (2020). However, there are studies revealing
different findings where the important effect of rainfall on land-
slide susceptibility was emphasized (Su et al., 2015). In this study,
the rainfall factor is discarded since it includes temporal informa-
tion of landslides (Fell et al, 2008). Anyhow, the comparison
regarding the factor importance makes us conclude that the
contribution of factors may vary with local characteristics. More-
over, some studies show that eliminating or adding certain factors
into a model may improve predictive ability (Pham et al., 2019;
Tang et al., 2020), which was not conducted in this study because
this is not our main objective.

Given the uncertainties mentioned above, the main limitations
of the current method and findings can be summarized and stated.
First, the influence of gridding methods of landslide samples on the
model performance is greatly subject to the landslide area and type.
However, limited by the type of slope failures in the study area, the
current findings are only associated with shallow landslides. Sec-
ond, the division of the buffer zone for the non-landslide samples is
not detailed enough. Although the general law of the landslide
susceptibility accuracy with the buffer distance was revealed, the
optimal buffer distance has not been obtained. Finally, the results
are not confirmed in other areas with different geological envi-
ronments yet. Given that the accuracy of LSA is affected by many
aspects, it is really difficult to directly predict the performance of
the algorithm/model when it is applied for another region. We can
only state that the performance of LSA is expected to be good when
the proposed strategy is used for another similar area, when other
procedures are normal. Therefore, it is necessary to verify the
robustness and reliability of the obtained rules in other regions in
future works. In spite of all these drawbacks, our results show that
the uncertainty during the modelling process is acceptable: The
AUC accuracy of all the scenarios is higher than 0.73 by using the
testing dataset, and most scenarios have an accuracy larger than
0.8. This allows us to focus on the analysis of the impacts of sam-
pling strategy instead of the improvement of model performance.

This study conducts an analysis of the combined impacts of
landslide/non-landslide sampling strategy. It is difficult to directly

>200 m >400 m

(b)
L]

negative
sampling area

© o

buffer distance: <200 m

200-400 m

>400 m

Fig. 11. The comparison of buffer zone around landslide pixels: (a) Traditional buffer area used in the literature, and (b) The scenario used in this study.



892 Z. Guo et al. / Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 877—894

compare our work to the other studies, because they often only
considered one separate sampling strategy. For example, Dou et al.
(2020) compared the performance of four different sampling
techniques in LSM, and found that the order of predictive power is
landslide scarp > landslide body > centroid of scarp > centroid of
the body. Huang et al. (2022) tested the effects of different spatial
shapes of landslide boundary, and confirmed better performance of
landslide polygon in LSA. However, the investigation regarding the
landslide expression was missing in the literature described above.
Although the objectives are different, it seems that their works are
useful supplementary for us, and a completed framework on
landslide sampling strategy for different scenarios can be generated
by combining current findings. Regarding the non-landslide sam-
pling strategy, Lucchese et al. (2021) tested the performance by
obtaining non-landslide samples from buffer zone and known
lowlands, and found that a priori intervention on non-landslide
samples (i.e., sample from lowlands) can produce higher accuracy
but are improper for generalization. This procedure needs rich
expert knowledge to determine known non-susceptible area, but
this is not available in the Feiyun catchment. Xi et al. (2022)
compared the influences of the traditional buffer-controlled sam-
pling method and a Newmark-based sampling approach for
earthquake-triggered landslides, and found the latter one gener-
ated better results. Some other studies also have made attempts to
obtain negative samples by machine learning models, including
fractal theory (Hu et al., 2020) and self-organizing neural networks
(Huang et al., 2017). Interestingly, their results all reveal that new
strategies for sampling non-landslides can obtain higher predictive
ability than traditional methods, which supports our results. Hence,
it is necessary to develop and test more non-landslide sampling
techniques as alternatives of traditional ones in the future, which
would certainly provide new insights on this topic.

6. Conclusions

Regional LSA and associated uncertainties are one of the major
challenges for landslide risk management and reduction. In the
present study, the Feiyun catchment in southeast China was
selected as a study area to test the impacts of sampling strategies of
landslide and non-landslide datasets on the performance of LSM.
Our results indicate that when the pixels covering only the land-
slide core are used as positive samples, the accuracy of LSM is
higher than that of the map applying the pixels covering both
landslide core and landslide boundary, with the improvement
magnitude from 0.2% to 2.7%. A comparison regarding the non-
landslide sampling strategies showed that the negative samples
from the very low susceptibility identified by nonlinear machine
learning models can also improve the susceptibility modelling
performance. Hence, the commonly used strategy which selects
non-landslide samples from landslide-free areas may enlarge the
uncertainty for the modelling. The results have demonstrated also
that, the LSA can also have better performance when the non-
landslide dataset is determined from the buffer zone around
landslide pixels. However, it should be noted that this improve-
ment is closely related to the selection of buffer distance: when the
buffer distance is less than 400 m, the accuracy of the landslide
susceptibility map decreases instead. By combining different posi-
tive and negative sampling strategies, we determined 14 scenarios
to generate regional landslide susceptibility maps. Among all the
scenarios, the best predictive capability has been attributed to the
landslide core (positive sample) and the very low susceptible zone
from the C5.0 model (negative sample), with a peak AUC accuracy
of 0.901.

Overall, the current test confirms that some uncertainties in LSA
are associated with the dataset sampling strategy, but they can be

reduced by improving the quality of positive and negative datasets.
Hence, it is recommended to incorporate reasonable strategies
regarding dataset sampling into the framework of LSM to make the
outputs more reliable. Last, our future works can focus on the role
of sampling strategy under different landslide sizes and data
resolution.
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