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Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical
engineering. The inverse analysis is commonly utilized to determine the physico-mechanical parameters.
However, conventional inverse analysis cannot deal with uncertainty in geotechnical and geological
systems. In this study, a framework was developed to evaluate and quantify uncertainty in inverse
analysis based on the reduced-order model (ROM) and probabilistic programming. The ROM was utilized
to capture the mechanical and deformation properties of surrounding rock mass in geomechanical
problems. Probabilistic programming was employed to evaluate uncertainty during construction in
geotechnical engineering. A circular tunnel was then used to illustrate the proposed framework using
analytical and numerical solution. The results show that the geomechanical parameters and associated
uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors
under uncertainty. Then, a slope case was employed to demonstrate the performance of the developed
framework. The results prove that the proposed framework provides a scientific, feasible, and effective
tool to characterize the properties and physical mechanism of geomaterials under uncertainty in
geotechnical engineering problems.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In geotechnical engineering, inverse analysis is essential for
determining the geological properties, geomechanical properties,
and in situ stress. It has been widely used as an analysis tool for
design, adjusting construction technology and optimizing the
support scheme in geotechnical and geological engineering prob-
lems (Feng et al., 2004). However, due to the complex geological
conditions, there are many uncertainties caused by the anisotropy
and heterogeneity of geomaterials, for example the monitoring
error, observation error, and simplicity of the computational model.
Uncertainty is an intrinsic property in geotechnical and geological
engineering. Uncertainty quantification provides an excellent way
to handle uncertainty in the field of engineering. However, tradi-
tional inverse analysis cannot deal with uncertainty.
g and Geomatics, Shandong
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Inverse analysis has been applied to geotechnical and geological
engineering over the past decades. Some researchers have proposed
different inverse analysis methods using various models. These
models are used to approximate and capture the complex nonlinear
responses of surrounding rock mass based on the geotechnical and
geological parameters (Yu et al., 2007; Zhao and Yin, 2009, 2016;
Bozzano et al., 2012; Zhang and Yin, 2014; Fazio et al., 2017; Lv et al.,
2017; Sun et al., 2018). The response surface method is an excellent
model to approximate thephysicalmodel (Li et al., 2016a).However, it
is challenging to characterize the physical model of the geotechnical
structure because of the highly nonlinear relationship of the high-
dimensional unknown parameters (Guo et al., 2016). With develop-
ment of the artificial intelligence, machine learning and soft
computing were utilized to generate the surrogate model in the in-
verse analysis (Deng and Lee, 2001; Shang et al., 2002; Feng et al.,
2004; Yu et al., 2007; Zhao and Yin, 2009; Zhao et al., 2015). Unfor-
tunately, overfitting and local minimum trapping hinder the appli-
cation of artificial intelligence and machine learning in geotechnical
and geological engineering (Zhao et al., 2012). Moreover, the above
models were only a universal approximator trained using a set of
samples and did not reflect the physical mechanism of the
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Schematics of inverse analysis.
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geotechnical and geological structures (Zhao and Chen, 2021). The
reduced-order model (ROM) has been recently developed to capture
some physical mechanisms of the engineering structure under
consideration (Zhao, 2021). TheROMis thephysics-baseddata-driven
model and can capture well the physical mechanism of geotechnical
structure. Compared with traditional and intelligent models such as
artificial neural networks, support vector machines, decision trees,
fewer parameters are needed in the ROM. Meanwhile, the ROM can
predict the total physical field of structure responses for geotechnical
engineering. This study adopted the ROM to capture the complex
response based onunknowngeotechnical and geological parameters.

Probabilistic technology has been applied in inverse analysis to
handle uncertainty. The traditional inverse analysis usually adopts
the deterministic method and ignores the uncertainty of the geo-
material parameters and monitoring information. The probabilistic
inverse analysis method has been adopted to back-calculate the
geomaterial parameters by combining the statistical method,
inference model, and idea of inverse analysis (Li et al., 2016b; Jiang
et al., 2020; Sun et al., 2021). The probabilistic inverse analysis
method opens a space to extend back-calculation based on prior
knowledge and field information. However, it is not easy to
implement in practical engineering (Zhang et al., 2010). Uncertainty
quantification provides an excellent tool to characterize uncer-
tainty and has attracted considerable attention in engineering (Sun
et al., 2021). The uncertainty quantification method is used to
characterize the mechanical mechanism of a fully grouted rockbolt
based on the pull-out tests (Zhang et al., 2022). This study combines
uncertainty quantification with inverse analysis to capture uncer-
tainty based on probabilistic programming.

An uncertainty quantification framework was developed in this
context to characterize the geomaterial properties and the corre-
sponding uncertainty by combining the ROM and probabilistic
programming. The uncertainty quantification algorithm was
implemented in the PyMC3 package, and the proposed framework
was applied to analyze a circular tunnel and the Bachimen slope in
Fujian Province, China.

2. Inverse analysis and ROM

2.1. Concept of inverse analysis

Sakurai and Takeuchi (1983) developed the inverse analysis
technique to recognize rock properties by monitoring deformation
in rock engineering. It provides a simple but effective technology to
identify the properties of geomaterials, such as mechanical pa-
rameters and in situ stresses. The basic idea is to minimize the
discrepancy between the monitoring response and the predicted
response of the geotechnical and geological structure based on the
monitoring data to obtain the unknown parameters. Fig. 1 shows
the framework of inverse analysis.

In recent years, significant progress has been made on inverse
analysis methods for geotechnical engineering (Sakurai, 2017). The
physical model, which characterizes the deformation and failure
mechanism of the geological medium, is the main component of
the inverse analysis. Numerical analysis is widely utilized to char-
acterize the mechanical response of the geological medium (Jing
and Hudson, 2002). However, in practical geotechnical applica-
tions, numerical analysis is time-consuming. In order to improve
the efficiency of the numerical model, ROM is regarded as an
alternative in this study.

2.2. Model in inverse analysis: ROM

Due to the complexity and nonlinearity of the geotechnical and
geological medium, it is impossible to obtain closed-form solutions,
and numerical solutions are generally time-consuming. A model
constructed based on orthogonal decomposition was utilized to
approximate the response of the surrounding rock mass according
to the theory of the ROM. The following equation can be obtained
based on the proper orthogonal decomposition (Audouze et al.,
2009):

~uh
�
xi; qj

� ¼
XN
k¼1

bk
�
qj
�
4kðxiÞ þ ~g

�
xi; qj

�
(1)

where ~uhðxi; qjÞ is the solution of the response field (such as
displacement, stress, and strain) for geotechnical engineering
problems, qj denotes the geomechanical parameters (design vari-
ables), xi denotes the spatial coordinates, N is the number of the
basis vector, ~gðx; qÞ is an extended boundary condition over the
whole domain.

Eq. (1) can be rewritten as follows:

~uh ¼ 4bþ ~g (2)

where

~gðx; qÞ ¼
�

gðx; qÞ ðon vUÞ
0 ðelsewhereÞ (3)

A set of design variables, qj, is generated using Latin hypercube
sampling (LHS) to obtain the basis vector 4 and its coefficient b for
ROM. Then, a set of the discrete responses (snapshots) of the
geotechnical structure, wj ¼ uhðqjÞ � ~gðqjÞ; is determined using
numerical models, such as the discrete elementmethod. The spatial
Gram matrix (Mx) is defined as follows:

Mx
ij ¼ wiwj ði; j ¼ 1;2;.; JÞ (4)

where wiwj denotes the scalar product between wi and wj. The
positive eigenvalues l of Mx are presented in descending order:

l1 � l2 � . � lJ � 0 (5)

The orthogonal principal direction of snapshots is obtained
based on the first K eigenfunctions 4kðxÞ ð k ¼ 1;2; .) If
rk ¼ ðrkj Þj¼i;i;.J is the k th eigenvector of Mx, then its dual k th
eigenfunctions 4kðxÞ are obtained by

4kðxÞ ¼
XK
j¼1

rkj wjðxÞ (6)
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where K is the dimension of the proper orthogonal decomposition
basis, can be determined as follows:

PK
i¼1

li

PJ
i¼1

li

> ε (7)

where ε is tolerance and specified by the user according to the
problem. ε is generally 0.9999.

The penalized minimization method is utilized to determine the
coefficient b as follows:

min
bj˛RK

���uh;j � 4bj � ~gj
���2 þ m

��bj��2 (8)

The parameter bj in Eq. (8) can be solved as follows:�
4T4þmIK

�
bj ¼ 4T

�
uh;j � ~gj

�
ðj ¼ 1;2;.; JÞ (9)

where m is a small regularization parameter.
To obtain the field variables of the spatial coordinates x and

unknown design variables q, the coefficient bkðqÞ is expanded based
on Radial Basis Function (RBF) as follows:

bkðqÞ ¼
XJ
j¼1

ajkj

�		q� qj
		

s



(10)

where s is the scalar parameters.
Based on the above equation, the following equation will be

obtained for any qj0 ðj0 ¼ 1;2;.; JÞ:

bkj0 ¼
XJ

j¼1

ajkj

�		qj0 � qj
		

s



(11)

Eq. (11) can be rewritten in the compact form:

Aak ¼ bk (12)

The unknown coefficient ak can be solved using the following
equation:�
ATAþmIJ

�
ak ¼ ATbk ðk ¼ 1;2;.;KÞ (13)
Fig. 2. Probabilistic programming and statistical model: (a) Statistical model; and (b)
Probabilistic programming.
3. Uncertainty quantification and probabilistic programming

Recently, uncertainty quantification has been a hot topic in
engineering systems (Clement et al., 2013). Uncertainty quantifi-
cation has been a diverse analysis method appropriate for evalu-
ating the uncertainty of measurements and computational
processes. Since the uncertainty of fluid dynamics was evaluated by
uncertainty quantification in 1986 (AIAA G-077-1998, 2002),
increasing attention has been paid in various engineering fields. In
general, uncertainty quantification is divided into forwarding and
inverse methods. The forwarding method, also called uncertainty
propagation, investigates the effect of input uncertainty on the
response uncertainty of engineering systems in engineering
models. The inverse method evaluates the uncertainty corre-
sponding to the properties because of the experimental, compu-
tational, measurement, and personal errors. Computational
algorithms, such as polynomial chaos expansion, KarhuneneLoeve
expansion, Bayesian methods, and Monte Carlo simulation, have
been adopted in uncertainty quantification (Choi et al., 2007; Beck,
2010; Hiriyur et al., 2011; Clement et al., 2013). In this context,
probabilistic programming was employed to carry out uncertainty
quantification to capture the mechanical and deformation behav-
iors of the surrounding rock mass under uncertainty.

Probabilistic programming, a subfield of artificial intelligence,
deals with the relationship between uncertain input and output.
Probabilistic programming allows the programmer to express un-
certain knowledge in the form of probability distributions. It makes
it possible to evaluate and quantify the uncertainty response of the
engineering system from uncertain data. Probabilistic program-
ming offers some advantages for artificial intelligence applications.
They allow for the concise representation of complex models, and
provide a way for uncertainty automatically. This can be compiled
into efficient code.

Probabilistic programming is also a comprehensive crossover
technique based on Bayesian statistics, machine learning, and
process-based modeling. Probabilistic programming includes a
probabilistic model and an inference algorithm. It works by
building a new probabilistic reasoning model, and makes pre-
dictions and inferences about unknown things based on observa-
tions (Avi, 2016). The basic idea of probabilistic programming is to
represent probabilistic models by computer programs (Fig. 2). The
data simulator, which samples different sets of possible data based
on the probabilistic model by calling the random number gener-
ator, is constructed based on a probabilistic model using probabi-
listic programming (Ghahramani, 2015). It is easy to construct
recursion and control flow statements using probabilistic pro-
gramming, while it is impossible to implement using a finite graph.
Any computable probability distribution can be handled by prob-
abilistic programming.

Probabilistic programming can infer unobserved information
from the observed data based on the physical model in an engi-
neering system. The uncertainty of the system model can be
captured by the probability feature used in the simulator. The
inference algorithm can automatically infer the unknown me-
chanical behavior and other uncertain model parameters of the
engineering system by constraining the output of the program
according to the observed data. Many probabilistic programming
has emerged recently, such as BUGS (Lunn et al., 2000), Stan,
AutoBayes (Fischer and Schumann, 2003), and PyMC3. We utilized



Fig. 3. The flowchart of the proposed framework.
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PyMC3 to recognize the geomaterial properties and to evaluate
their uncertainty.

In the past decades, various probabilistic programming systems
have been built. A new generation of Markov chain Monte Carlo
(MCMC) sampling techniques, such as Hamilton Monte Carlo
(HMC) (Duane et al., 1987) and no-U-turn sampler (NUTS)
(Hoffman and Gelman, 2014), can be well adapted to high and
complex posterior distributions, and many complex models can be
applied without understanding fitting methods. The gradient
method is utilized in HMC and NUTS to gain much higher efficiency
than conventional sampling technologies, especially for larger-
scale problems such as those of geotechnical engineering. PyMC3
is a novel, open-source probabilistic programming package with an
intuitive, readable, and powerful syntax that approximates the
natural syntax statisticians use to characterize models (Salvatier
et al., 2016). PyMC3 is adopted to solve general Bayesian predic-
tion and statistical inference problems.

4. Uncertainty quantification of inverse analysis

We adopted uncertainty quantification to capture the uncer-
tainty feature of the inverse analysis using PyMC3. The analytical
model was utilized to characterize the relation between the geo-
material properties and corresponding responses of geotechnical
and geological structure. PyMC3 was employed to determine the
unknown geotechnical and geological parameters and to assess
their uncertainty from the monitored data (prior knowledge). The
mechanical behavior of the geotechnical and geological structure
was evaluated and quantified by combining ROM, probabilistic
programming, and field monitoring data.

4.1. ROM-based geotechnical model

To improve the efficiency of the computational model, the ROM
was used to construct the computational model of geotechnical and
geological engineering problems. The ROM was utilized to obtain
the geotechnical and geological structure response based on the
uncertainty variables. The ROMpresented the relationship between
the uncertainty of geomaterial property and the corresponding
response. It can be presented as follows:

ROMðXÞ : Rn/R (14)

y ¼ ROMðXÞ (15)

where X ¼ ðx1; x2;.; xnÞ, and xi (i ¼ 1, 2, ., n) represents the
geotechnical and geological parameters (such as cohesion, friction
angle, Young’s modulus, and in situ stress); y represents the stress,
displacement, and plastic zone. In this study, the algorithm of the
ROM was programmed using Python 3.0.

4.2. Uncertainty quantification using PyMC3

To evaluate the uncertainty of inverse analysis, PyMC3 was
adopted to evaluate the response of the geotechnical structure and
the corresponding uncertainty based on the monitoring data and
the surrogated model (ROM). The predicting deformation u is
presented in normally distributed observations. The expected value
su is a nonlinear function of the uncertainty of the unknown vari-
able of the geomechanical model. It can be approximated by the
ROM as follows:

uwN
�
mu; s

2
u

�
(16)
mu ¼ ROMðXÞ (17)

We applied uniform distribution [Xl, Xu] to geotechnical and
geological parameters (X). Xl and Xu are the lower and upper
bounds of X, respectively. The uniform distribution corresponds to
the weak information of actual unknown geomaterial parameters.
According to the nature of geotechnical and geological engineering
problems, some other distributions such as normal distribution can
also be adopted based on the obtained information:

XwUðXl;XuÞ (18)

By using PyMC3 to specify the above model, a posterior esti-
mation of unknown geotechnical and geological parameters is
computed based on the ROM in the next step. Depending on the
objective of the problem and the structure of the model, there are
twoways to determine the regression coefficients, namely using an
optimization method to find the maximum a posteriori (MAP) and
using the MCMC sampling method to calculate a summary of the
sample based on the posterior distribution.
4.3. Procedure

The flowchart of the proposed framework is presented in Fig. 3.
The detailed procedure is as follows.

(1) Collect the projection data, including geological conditions,
geomaterial data, geometric data, and scale of the geotech-
nical and geological structure,

(2) Construct the numerical model and generate snapshots
based on the experiment design technology,

(3) Build the ROM based on the snapshots,
(4) Conduct the uncertainty quantification using PyMC3 based

on probabilistic programming, and
(5) Obtain and quantify the uncertainty of geotechnical and

geological parameters and their response.



Table 1
Obtained mechanical parameters and their comparison with the actual properties.

Parameter index P0 (MPa) E (MPa) c (MPa) 4 (o)

Actual value 32 6800 3.2 32
Mean 33.8443 6687.9311 3.2032 32.1049
Standard deviation 4.7828 852.9739 0.8301 5.4401
Relative error (%) �5.7634 1.6481 �0.1 �0.3278
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5. Verification

A tunnel was utilized to verify and demonstrate the proposed
framework. The shape of the tunnel is circular, and the rock is
homogeneous, continuous, and isotropic. It is excavated under
hydrostatic far-field stress p0 and uniform support pressure pi (see
Fig. 4). Duncan Fama (1993) used theMohreCoulomb (M�C) model
to study the deformation of tunnel wall uip during excavation:

uip
r0

¼
�
1þ v

E


"
2ð1� vÞðp0 �pcrÞ

�
rp
r0


2
�2ð1�2vÞðp0 �piÞ

#

(19)

where E, v, and rp are the elastic modulus, Poisson’s ratio, and
plastic zone radius, respectively. The values of pcr, k, s, and rp can be
determined by

pcr ¼ 2p0 � sc
kþ 1

(20)

k ¼ 1þ sin 4

1� sin 4
(21)

sc ¼ cðk� 1Þ
tan 4

(22)

s ¼ sc
k� 1

(23)

rp
r0

¼
�

2ðp0 þ sÞ
ðkþ 1Þðpi þ sÞ

�1=ðk�1Þ
(24)

where c and 4 are the cohesion and friction angle of the rock,
respectively; pcr is the critical pressure that determines whether or
not a plastic zone occurs. A plastic zone will appear when pi is less
than the critical pressure pcr.

The radius of the tunnel is 1 m. The E, v, c, and 4 are 6800 MPa,
0.2, 3.2 MPa, and 32�, respectively. The in situ stress is 32 MPa. The
radial deformations of five monitoring points (see Fig. 4), with
distances of 1 m, 1.2 m, 1.6 m, 1.8 m, and 2 m from the center of the
tunnel, are utilized to identify the mechanical parameters of rock
mass in the circular tunnel. The synthetic displacements of five
monitoring points can be calculated from the above analytical so-
lution and are chosen as the monitoring data to characterize the
mechanical property of the surrounding rock mass.
Fig. 4. A circular tunnel under
5.1. Analytical solution

Based on the proposed framework, the in situ stresses and
geomechanical parameters (p0, E, c, and 4) of rocks were deter-
mined using the five synthetic displacements based on the
analytical solution (Eq. (19)) and probabilistic programming.
Table 1 presents the obtained mean value, corresponding uncer-
tainty, and their comparisons. The maximum relative error be-
tween the obtained mean value and actual value is less than 6%.
This shows that the framework can be adopted to compute the
mean value of the rock mechanical parameters. The proposed
framework is an excellent tool for inverse analysis.

Fig. 5a compares the deformation curves of surrounding rock
mass using actual parameters and the obtained mean values. The
maximum relative error is less than 7%. The comparison between
the stress curves of surrounding rock mass using the determined
mean values and actual parameters is shown in Fig. 5b, which
shows that the proposed framework aptly characterizes the rock
mechanical behavior in the tunnel based on the M � C model. The
results further prove that the proposed framework can effectively
identify the mechanical properties of rock using the displacement
of the surrounding rock mass.

The rock mechanical parameters and their uncertainty are
exhibited in Fig. 6. The proposed framework obtains themean value
and variance of mechanical parameters. Our investigations show
that the proposed framework can capture the uncertainty of rock
mechanical parameters by considering themonitoring information.
This is helpful and useful for information construction and design
of rock tunnels. Fig. 7 illustrates the uncertainty of the deformation
curve obtained by the proposed framework. The framework can
characterize the uncertainty of the deformation induced by tunnel
excavation. Moreover, it can characterize the deformation of the
rock mass better than traditional inverse analysis.

To investigate the robustness of the proposed framework,
different uniform distributions were illustrated based on probabi-
listic programming. Three different search ranges cover the actual
value of the unknown parameters, but the interval size of the three
ranges is different. Table 2 presents the different uniform
hydrostatic far-field stress.



Fig. 5. Comparison between the actual values and those obtained by the proposed framework: (a) Displacement of the surrounding rock mass; and (b) Stress of the surrounding
rock mass.

Fig. 6. Uncertainty distribution of rock mass mechanical parameters and the actual values: (a) In situ stress; (b) elastic modulus; (c) cohesion; and (d) friction angle.
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distributions. Table 3 presents the identified rock mechanical pa-
rameters based on the proposed framework. Themaximum relative
error is less than 9%. Meanwhile, the relative error will decrease
with the narrowing of the search ranges. The deformation curve of
the surrounding rock mass is displayed in Fig. 8 based on different
uniform distributions, which shows that the framework has a good



Fig. 7. The displacement curve of the surrounding rock mass and its uncertainty.

Table 3
The obtained results based on different uniform distributions.

Range Property P0 (MPa) E (MPa) c (MPa) 4 (o)

Range1 Mean 33.8 6687.9 3.2 32.1
Standard deviation 4.7828 852.9739 0.8301 5.4401

Range2 Mean 33.0585 6686.4225 3.0911 31.4644
Standard deviation 2.5422 551.7541 0.5443 2.6664

Range3 Mean 34.8074 6649.731 3.2718 33.3034
Standard deviation 7.2324 1090.833 1.0933 8.0437
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performance in terms of robustness. Fig. 9 reveals the uncertainty
variation of the surrounding rock mass, which is determined based
on the different prior distributions using the proposed framework.
It is clear that the distribution will narrow with decrease of the
uniform distribution range. This proves that more information can
be helpful and reduce the uncertainty of the unknown parameters.
These observations suggest that the proposed framework is robust
and has good global searching performance.
Fig. 8. The displacement curves of the surrounding rock mass and its uncertainty.

5.2. ROM-based model

We utilized the ROM to characterize the rock mass response
induced by the tunnel excavation. Fifty snapshots were constructed
using the analytical solution. ROM was generated based on the 50
snapshots. The other 50 non-snapshots were utilized to demon-
strate the ROM’s performance. Fig. 10 depicts the relationship be-
tween the rock mass response and mechanical parameters using
the analytical solution and ROM. Fig. 11 displays the sensitivity of
the unknownmechanical parameters to the rock mass response. As
observed, the ROM is almost identical to the analytical model.
Fig. 12 compares the ROM and analytical solution. Our in-
vestigations prove that the ROM can capture the rock mechanical
behavior well. It is feasible to predict the rockmass response during
the excavation using ROM instead of analytical and numerical
solutions.

While the ROM was built, probabilistic programming was
employed to acquire the rock mechanical parameters and their
corresponding uncertainty. The results are presented in Table 4. The
results show that the obtained rock mechanical parameters are in
excellent agreement with the real values. The maximum relative
error is less than 4.5%. Fig. 13 shows the comparison of displace-
ment and stress. It proves that the ROM can capture the rock me-
chanical mechanismwell. It also proves that the ROM could replace
the analytical model in the proposed framework, which is condu-
cive to practical rock engineering.

We utilized PyMC3 to characterize the uncertainty of the un-
known parameters based on probabilistic programming. The
Table 2
Different range of uniform distributions for unknown parameters.

Unknown parameters range P0 (MPa) E (MPa) c (MPa) 4 (o)

Range1 [22e42] [5300e8300] [1.7e4.7] [22e42]
Range2 [27e37] [5800e7800] [2.2e4.2] [27e37]
Range3 [17e47] [4800e8800] [1.2e5.2] [17e47]
uncertainty of the mechanical parameters for the rock mass is
shown in Fig. 14. The rockmechanical parameters almost follow the
normal distribution. The uncertainty of the objective function error
is displayed in Fig. 15, which meets the normal distribution.

6. Case study

This section applies the proposed framework to the Bachimen
slope. This slope was induced by the construction of the Funing
expressway, which is located in Fujian Province, China (Feng et al.,
2004). To avoid landslides and maintain stability during construc-
tion, the mechanical parameters of geomaterials are critical for
Bachimen slope. The inclinometers have been installed at 60
boreholes to monitor displacements of the slope. This study
adopted the proposed framework to identify the geomechanical
and strength parameters (Young’s modulus, cohesion, and internal
friction angle) and corresponding uncertainty based on the data of
inclinometers during construction. The deformation values at
different positions of inclinometer boreholes (BCX05 and BCX07)
(Fig. 16) are regarded as prior knowledge using probabilistic
programming.

The numerical model (finite element method) was adopted to
compute the deformation at different positions of the boreholes
(BCX05 and BCX07). To build the ROM, 50 snapshots and 10 vali-
dation samples were generated using the ortho-experimental
design and numerical model. The ROM was constructed using 50
snapshots based on the proposed framework. Then, the ROM was
validated and tested using the above 10 validation samples. Fig. 17
exhibits the comparison of the displacement calculated by the
numerical model and that predicted by the ROM. Our investigations
demonstrate that the ROM aptly captures the deformation char-
acteristics of the geomaterials in Bachimen slope.

The proposed framework was used to determine the unknown
geomechanical parameters, with prior knowledge being a uniform



Fig. 9. The displacement curves of the surrounding rock mass and its uncertainty: (a) In situ stress, (b) elastic modulus, (c) cohesion, and (d) friction angle.

Fig. 10. The in situ stress, elastic modulus, and displacement based on the analytical solution and the ROM: (a) Analytical solution, and (b) ROM.
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Fig. 11. The sensitivity of the unknown parameters to the rock mass response using the analytical solution and the ROM (Note: ST is the total sensitivity: (a) Analytical solution, and
(b) ROM).

Fig. 12. The displacement comparison between the analytical solution and ROM.

Table 4
The obtained results based on the ROM.

Parameter index P0 (MPa) E (MPa) c (MPa) 4 (�)

Actual Value 32 6800 3.2 32
Mean 32.0855 7090.2 3.1932 30.619
Standard deviation 7.7613 1118.5 0.9991 6.5751
Relative error (%) �0.2672 �4.2676 0.2125 4.3156
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distribution, as tabulated in Table 5. Table 6 presents the obtained
results. Fig. 18 depicts the uncertainty of the mechanical parame-
ters of geomaterials. It shows that Young’s modulus of the sub-clay
layer is of normal distribution, and other mechanical parameters
have a uniform distribution. Based on the obtained geomechanical
parameters, our framework predicted the horizontal displacements
of boreholes BCX5 and BCX7. The results are displayed in Fig. 19. For
the borehole BCX7, the predicted displacement is in excellent
agreement with the monitoring displacement, and the absolute
error of the predicted displacement is less than that of the borehole
BCX5. However, the maximum relative error of the borehole BCX5
is 13.83%. The results confirm that the proposed framework can
identify geomechanical parameters in geotechnical engineering
fields.

In geotechnical and geological engineering, the monitoring er-
ror exists in the geotechnical and geological responses and can
induce uncertainty of displacements. The displacement errors are
shown in Figs. 20 and 21 for the boreholes BCX5 and BCX7,
respectively. The monitoring error has a significant impact on the
deep displacement of the slope. Therefore, monitoring accuracy is
essential for evaluating and quantifying the geomechanical pa-
rameters. In Figs. 20 and 21, the predicted mean values of
displacement at depths of 10 m and 15 m (Fig. 20c and d) are in
excellent agreement with the monitoring value, but there are some
differences at depths of 0m and 2m (Fig. 20a and b and Fig. 21). The
shallow monitoring points have a broader distribution than that of
deep monitoring points in the borehole. This induces more signif-
icant error and uncertainty. It suggests that the data of deep
monitoring points are essential and we should be pay more
attention to the geotechnical and geological fieldwork. In order to
better describe the geomechanical characteristics of surrounding
rock, monitoring the deformation of deep surrounding rock is
helpful and valuable in geotechnical engineering.
7. Conclusions

Determining the geomechanical and geological parameters is
essential to the stability, design, support, and construction in
geotechnical engineering. Inverse analysis is an effective method
for this and is widely applied in practical engineering. However,
failure and instability events still exist due to the uncertainty of
geotechnical and geological engineering problems. For this, we
proposed a framework for quantifying uncertainty in inverse
analysis. The framework could determine the geomechanical
properties under uncertainty by combining probabilistic pro-
gramming, numerical model, inverse analysis, and field monitoring
data. The actual cases (a tunnel and a slope) demonstrated the
correctness of the proposed framework. The geomechanical pa-
rameters of the surrounding rock mass and their uncertainty were
obtained using PyMC3. Based on the uncertainty of the geo-
mechanical parameters, the uncertainty of the geomechanical
behavior was evaluated and quantified using the proposed



Fig. 13. The rock mechanical behavior based on the rock mechanical properties obtained by the proposed framework: (a) Displacement, and (b) Stress.

Fig. 14. The displacement curve of the surrounding rock mass and its uncertainty: (a) In situ stress, (b) elastic modulus, (c) cohesion, and (d) friction angle.

Fig. 15. The displacement curve of the surrounding rock mass and its uncertainty.
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framework. Our investigations indicate that the developed frame-
work can effectively evaluate the uncertainty of the geomechanical
behavior. Therefore, it provides an excellent tool for quantifying the
uncertainty of geotechnical and geological structures and scientif-
ically captures the mechanical mechanism of geomaterials with
uncertain parameters. The proposed framework is conducive to
feedback analysis, guiding safe construction, and reliability-based
designs of geotechnical and geological structures. The following
conclusions are drawn in this study.

(1) The proposed framework provides a rational, scientific, and
feasible way to deal with the uncertainty of geotechnical and
geological engineering. A circular tunnel with an analytical
solution and a practical slope with the numerical solution
verified and illustrated the framework.

(2) The ROM is utilized to characterize the mechanical response
of surrounding rock mass. It captures the nonlinear, high-
dimensional, and complex relationship between the
geotechnical parameters and mechanical response. It pro-
vides an excellent tool for characterizing the geomaterial
behavior in geotechnical engineering. The ROM depends on



Fig. 16. Inclinometer boreholes of BCX05 and BCX07 at Bachimen slope.

Fig. 17. Comparison of displacement computed by numerical model and predicted by
the ROM.

Table 5
The range of geomechanical parameters.

Geomaterial Young’s modulus
(MPa)

Cohesion
(kPa)

Internal friction angle
(o)

Sub-clay [1.5, 5.5] [4.0, 64.0] [4.0, 32.0]
Strongly weathered

tuff
[10,000.0, 50,000.0] [70.0, 290.0] [15.0, 35.0]

Weakly weathered
tuff

[60,000.0,
100,000.0]

[300.0,
1020.0]

[25.0, 45.0]

Table 6
The obtained mechanical parameters of geomaterials.

Geomaterial Uncertainty Young’s
modulus (MPa)

Cohesion
(kPa)

Internal friction
angle (�)

Sub-clay Mean 4.42 33.71 17.95
Standard
deviation

1.34 13.69 8.58

Strongly
weathered
tuff

Mean 29,980 182.44 25.14

Standard
deviation

16,620 106.27 18.3

Weakly
weathered
tuff

Mean 79,040 652.5 35.28

Standard
deviation

66,570 417.99 28.33
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the snapshots obtained from the numerical model in this
study. To obtain the excellent surrogated model for inverse
analysis, numerical model that can characterizes the me-
chanical behavior and boundary conditions of the practical
application is essential in the ROM.

(3) The monitoring data reflect the mechanical and deformation
properties of surrounding rock mass, in situ stress, and
geological conditions. The proposed framework makes full
use of the monitoring data to explore mechanism of failure
and deformation. In practical geotechnical engineering, the
developed method can replace the traditional inverse anal-
ysis method to determine the geomaterial properties based
on in situ monitoring data.
(4) Probabilistic programming is an excellent tool for dealing
with uncertainty based on the Bayesian theory. PyMC3 is an
easy and friendly package for probabilistic programming in
Python and is suitable for complex problems such as those of
geotechnical and geological engineering.



Fig. 18. The uncertainty of the obtained mechanical parameters of geomaterials: (a) Young modulus of sub clay, (b) Cohesion of sub clay, (c) Friction angle of sub clay, (d) Young
modulus of strongly weathered, (e) Cohesion of strongly weathered, (f) Friction angle of strongly weathered, (g) Young modulus of weakly weathered, (h) Cohesion of weakly
weathered, and (i) Friction angle of weakly weathered.

Fig. 19. Displacement comparison between predicted by ROM and monitored: (a) BCX07, and (b) BCX05.
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Fig. 20. Displacement comparison under different monitoring errors at borehole BCX7: (a) Monitoring position of 0 m, (b) Monitoring position of 2 m, (c) Monitoring position of
10 m, and (d) Monitoring position of 15 m.

Fig. 21. Displacement comparison under different monitoring errors at borehole BCX5: (a) Monitoring position of 0 m, and (b) Monitoring position of 5 m.
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