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Rockbursts have become a significant hazard in underground mining, underscoring the need for a robust
early warning model to ensure safety management. This study presents a novel approach for rockburst
prediction, integrating the Mann-Kendall trend test (MKT) and multi-indices fusion to enable real-time
and quantitative assessment of rockburst hazards. The methodology employed in this study involves the
development of a comprehensive precursory index library for rockbursts. The MKT is then applied to
analyze the real-time trend of each index, with adherence to rockburst characterization laws serving as
the warning criterion. By employing a confusion matrix, the warning effectiveness of each index is
assessed, enabling index preference determination. Ultimately, the integrated rockburst hazard index Q
is derived through data fusion. The results demonstrate that the proposed model achieves a warning
effectiveness of 0.563 for Q, surpassing the performance of any individual index. Moreover, the model’s
adaptability and scalability are enhanced through periodic updates driven by actual field monitoring
data, making it suitable for complex underground working environments. By providing an efficient and
accurate basis for decision-making, the proposed model holds great potential for the prevention and
control of rockbursts. It offers a valuable tool for enhancing safety measures in underground mining
operations.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Rockburst, which is considered one of the most severe dynamic
disasters in coal mines, refers to the sudden and forceful ejection of
coal and rock masses caused by the accumulation of elastic defor-
mation energy internal. It often leads to casualties and substantial
property damage (Cai et al., 2020; Xue et al., 2021; Zhu et al., 2016,
2018). With the continuous expansion of coal mining into deeper
areas, the coal seam structure of the stope and the surrounding rock
storage conditions around the roadway have become increasingly
complex. Consequently, the internal dynamic response
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
y-nc-nd/4.0/).
characteristics of coal and rock masses have become more intricate
(He et al., 2020). As a result, the frequency of rockburst hazards has
risen sharply, posing significant threats to the safety of individuals
working in mines and their properties.

In an effort to prevent and control rockburst disasters, the
microseismic (MS) monitoring system has been widely adopted in
underground mines, proving to be a powerful tool for rockburst
prediction. Lu et al. (2015) investigated the evolutionary patterns of
multi-parameter precursory characteristics before and after rock-
burst events. Cao et al. (2016) conducted a qualitative analysis of
the evolution of microseismicity leading up to a catastrophic
rockburst. Their study concluded that abnormal clustering of
seismic sources, abnormal variations in daily total energy release,
and event counts could be considered precursors to rockburst in-
cidents. Yu et al. (2016) indicated that the daily maximum MS en-
ergy could be used to estimate rockburst intensity. Tang et al. (2018)
proposed that the spatial and temporal concentration of MS events,
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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along with a decrease in the b-value, can be regarded as precursors
to the instability of the surrounding rock. He et al. (2019) conducted
a study on the variations in MS and acoustic emission monitoring
data prior to rockburst events in steeply inclined and extremely
thick coal seams. They established the energy deviation value and
total deviation high-value indicators as precursory warnings for
rockburst. Li et al. (2021) observed a decreasing trend in MS events
prior to rockbursts, accompanied by a “quiet period,” while elec-
tromagnetic radiation intensity increased and reached a maximum
before rockbursts. Zhang et al. (2021) proposed that peak particle
velocity could serve as an early warning index for rockburst,
emphasizing the need to consider this indicator alongside post-
processing indicators such as event energy. Additionally, various
indicators such as fractal dimension, b-value, apparent cumulative
apparent volume, the energy index, cumulative released energy,
and the Es/Ep value of MS events have been analyzed in relation to
rockburst events. These analyses provide valuable insights for
rockburst prediction (Feng et al., 2016; Mondal and Roy, 2019; Xie
and Pariseau, 1993; Xue et al., 2020).

However, due to the complexity of rockburst occurrence
mechanisms, the use of different warning indicators can lead to
varied warning results for the same event. This is because these
indicators reflect the evolution of rockburst precursors based on
different principles. Consequently, assessing the actual hazard state
can pose challenges for the mine personnel. Consequently, there
have been notable efforts to develop amulti-indices rockburst early
warning model to improve the accuracy of predictions. Cai et al.
(2014) developed a multidimensional index system that in-
corporates MS information. They combined the comprehensive
anomaly index method with the R-value method to provide a
quantitatively description of the real-time rockburst hazard status.
Liu et al. (2016) introduced a methodology for dynamic risk
assessment and management of rockbursts in drill and blast tun-
nels. The approach utilizes quantitative MS indices to evaluate the
probability of rockburst occurrence. Cai et al. (2018) proposed a
fuzzy comprehensive rockburst risk evaluation model. The model
incorporates components such as the Gaussian shape membership
function, the confusion matrix and the maximum membership
degree principle. Dou et al. (2018) utilized the R-value scoring
method to determine theweights and estimate the critical values of
various MS indicators, such as bursting strain energy, time-space-
magnitude independent information, and time-space-magnitude
compound information. The study demonstrated that their
comprehensive index effectively quantifies the pre-warning of
rockburst risk. Cao et al. (2020) developed a probabilistic fore-
casting methodology for rockburst hazard at Coal Mine Velenje.
Their approach integrated data-driven techniques with a physics-
based framework, utilizing MS monitoring data in conjunction
with concurrent face advance records. The study achieved satis-
factory results, highlighting the effectiveness of their methodology
in rockburst hazard assessment. In a study by Feng et al. (2015), a
microseismicity-based rockburst warning method was proposed.
This method utilized real-time microseismic data and a rockburst
warning formula. The formula included a rockburst database, se-
lection of typical rockburst cases, functional relationships between
microseismicity and rockbursts, optimal weighting coefficients,
and dynamic updating. The method was successfully applied to
rockburst warning in deep tunnels at the Jinping II hydropower
project. Yin et al. (2021) proposed an integrated CNN-Adam-BO
algorithm based on microseismic monitoring data for real-time
prediction of rockburst intensity. Cao et al. (2022) presented a
knowledge and data fusion-driven deep neural network called
FDNet for coal burst prediction. The FDNet used the existing mine
seismic model to extract explicit features and employed deep
learning to automatically extract implicit features from mine
microseismic data. This approach provided new insights in coal
burst prediction. In addition, decision tree (Wang, 2021; Zhao et al.,
2021), support vector machine (Ji et al., 2020; Jin et al., 2022),
neural network (Feng et al., 2019), and other algorithms have also
been used to establish new multi-indices fusion early warning
models for rockburst.

Although significant advancements have been made in rock-
burst early warning models, the currently available single-indicator
or multi-indicator warning methods mostly rely on threshold
values to determine whether an alarm is triggered. However, the
occurrence of rockburst is a complex nonlinear process with
mechanisms that are not fully understood. This lack of under-
standing has created a challenge in improving the accuracy of
existing rockburst warning methods. On-site empirical evidence
indicates that there are anomalous patterns preceding rockburst
incidents. However, these patterns are often less considered in
existing warning methods. Therefore, to enhance the accuracy of
warnings, it is crucial to establish a rockburst early warning model
that incorporates multidimensional warning indicators and cap-
tures real-time changes in these indicators.

To address the aforementioned limitations, this paper proposes
a multi-indices fusion rockburst early warning model based on the
Mann-Kendall trend test method (MKT). The model aims to
improve the rockburst early warning precision by incorporating
multiple indicators and utilizing MKT for trend analysis. The model
initiates by applying MKT to capture the temporal changes of
multidimensional rockburst precursory indices. It evaluates
whether the changing trends conform to the characterization law
of rockburst precursors, forming the foundation for early warning.
Themodel continuously updates and selects the indices by utilizing
the confusion matrix to reevaluate the early warning effectiveness
of each index. This process ensures that the most effective indices
are chosen for optimal performance in predicting rockburst events.
The effectiveness of early warnings serves as the data fusion
weight, leading to a quantified comprehensive rockburst hazard
evaluation index. The proposedmodel has demonstrated successful
applications at Kuangou Coal Mine in China, providing a timely and
accurate decision-making tool for the prevention and control of
underground rockburst incidents.
2. Principles and methodology

Pu et al. (2019, 2020) have found that rockburst is a complex
nonlinear process; that is, there is a degree of uncertainty in the
occurrence of precursor anomalies of rockbursts. This uncertainty
arises from the incomplete understanding of the mechanism and
the difficulty in specifying relevant measurement parameters
during the rockburst evolution. Nevertheless, rockburst is funda-
mentally the result of failure stress in coal and rock masses, leading
to the formation of large internal cracks and energy release.
Extensive research has identified various precursory indices that
reflect the process of fissures initiation, propagation, convergence,
and connection into macro-fractures in coal and rock masses. The
abnormal change trend of each precursory index before rockburst
can be regarded as a danger signal and has achieved good appli-
cation results in infield practice. However, the complex geological
environment and mining conditions in each mine give rise to
unique characteristics for the application of individual indices in
different regions. To enhance the accuracy of rockburst prediction,
this paper proposes a multi-indices fusion rockburst early warning
model based on the MKT.
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2.1. Overview of the multi-indices fusion rockburst early warning
model

As illustrated in Fig. 1, the proposed model begins by collecting
real-time monitoring data from the online rockburst monitoring
system and then uses a certain length of the time window and
sliding step to calculate the multidimensional rockburst precursory
indices, which reflect the rockburst development process infor-
mation. The model utilizes MKT to determine the trend of each
index, ensuring adherence to the characterization law of rockburst
precursors for early warning. The effectiveness of each index is
evaluated and ranked using the confusion matrix. Selected indices
with high effectiveness are combined to form the integrated rock-
burst hazard index Q. Q is categorized into four levels of rockburst
risk: no risk, weak risk, medium risk, and high risk, corresponding
to specific ranges. More details about the development of the early
warning model can be found in the following section.

2.2. Details of the multi-indices fusion rockburst early warning
model

2.2.1. Pre-processing of real-time monitoring data
Currently, online monitoring systems for underground dynamic

disasters, such as MS, electromagnetic radiation, and acoustic
emission, are widely used. These systems capture real-time infor-
mation on the energy release of coal-rock mass breakage, seismic
source location, roof pressure, and other parameters, providing
insights into the evolution of coal-rock dynamic hazards. However,
the data obtained from these monitoring systems often show
irregular time intervals, making it challenging to perform data
Fig. 1. Multi-indices fusion rockburst early warning model.
mining and analysis. To address this challenge, it is necessary to
standardize the data obtained from different sources by structuring
them with consistent dimensional granularity and attributes.

By dividing the original monitoring data into fixed-length time
windows and calculating the feature of each sample within the
windows, it is possible to transform irregular time series into reg-
ular time series and obtain the trends of the features. This process is
illustrated in Fig. 2. Firstly, a sliding time window of length Dt is
defined, and themonitoring data time series is divided into n sets of
data, each with a length Dt and corresponding to the end moments
the time window. The data set for the moment Ti is denoted as Xi

[x1, x2, x3,., xk] (k� t, 0< i� n). The features of all samples in Xi are
calculated and arranged in order, resulting in a transformed regular
time series. The interval of the transformed time series corresponds
to the sliding step size of the time window. The size of the sliding
step determines the granularity of the data, and the sliding step size
needs to be smaller than the time window length to ensure that no
data is omitted.
2.2.2. Trend determination of precursory indices
Extracting meaningful precursory indices from original under-

ground monitoring data is an effective approach for disaster pre-
vention and control in coal-rock dynamic environments. Various
precursory indices have been widely utilized, including the b value
(Gutenberg, 1956), total fault area A(t) (Lu et al., 2015), lack of
seismic Mm (Utsu et al., 1995), energy deviation DE (He et al., 2019),
among others. These indices often exhibit a continuous trend of
increase or decrease before the occurrence of disasters like rock-
bursts, enabling timely hazard level assessment. However, the
range of each index varies significantly under complex mining
conditions and geological environments. Consequently, the con-
ventional approach of using a single critical value lacks scalability,
as it varies with specific mine conditions. This limitation necessi-
tates a more effective time series trend test method for practical
application of precursory indices, as relying solely on human
experience to identify abnormal trends hampers the utilization
efficiency of these indices.

We performed MKT to determine the monotonic trends in the
time series of precursory indices. MKT is rank-based and
nonparametric, which means it does not rely on specific data dis-
tribution and emphasizes the relative order of magnitude rather
than the actual data values. Furthermore, MKT is capable of
handling extreme values, making it highly suitable for analyzing
underground mine monitoring data. The MKT can be defined as
Fig. 2. Pre-processing of irregular monitoring data (Cai et al., 2018).
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where n presents the length of dataset Xi [x1, x2, x3, ., xn], xk cor-
responding to the rank for the kth observations (k¼ 1, 2, 3,., n�1),
and xj represents the rank for the jth observations (j ¼ kþ1, 2, 3, .,
n).

According to Mann and Kendall (Mann, 1945; Kendall, 1948),
when the value of n is greater than or equal to 10, the statistic S
follows an approximate normal distribution with the following
mean and variance:
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where n represents the length of dataset Xi [x1, x2, x3, ., xn], g
represents the number of these equal trend values or groups, and tp
represents the number of data values in the pth group.

The Kendall standardized test statistics Z is calculated as

Z ¼

8>>>>>>><
>>>>>>>:

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðSÞp ðS > 0Þ

0ðS ¼ 0Þ

Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðSÞp ðS < 0Þ

(5)

If the calculated value of Z is greater than zero and passes the
significance test (with a significance level of a ¼ 0.05 and
Z¼�1.96), it indicates an increasing trend in the data. Conversely, if
the calculated value of Z is less than zero, it suggests a decreasing
trend in the data. However, if Z does not pass the significance test, it
implies that the data does not exhibit an obvious change trend. This
approach allows for the statistical analysis of trend behavior in the
data, providing valuable insights into the temporal variations of
rockburst-related indicators.
2.2.3. Evaluation of early warning effectiveness and preference of
indices

Numerous studies have focused on rockburst precursory
indices, offering valuable insights into the evolution of rockbursts
frommultiple perspectives such as time, space, and intensity. These
indices exhibit different response characterization laws influenced
Table 1
Calculation of the confusion matrix and early warning effectiveness (Fawcett, 2006).

Total population Actual condition

Rockburst or high energy tr
(Positive)

Early warning
condition

Rockburst or high energy tremor
(Positive)

True Positive (TP)

No rockburst or high energy tremor
(Negative)

False Negative (FN)

Recall ¼ TP/(TP þ FN)
by various contributing factors. Consequently, the evaluation and
selection of precursory indices play a crucial role in determining
early warning levels during field applications. To enhance decision-
making efficiency for underground personnel, it is important to
choose appropriate indices and assign them appropriateweights. In
this study, the effectiveness of each precursory index is evaluated
and optimized using F_score in Table 1. The matrix includes true
positive (TP) and true negative (TN) values, representing correct
warnings, and false positive (FP) and false negative (FN) values,
representing false andmissed warnings. Initially, actual monitoring
data and records of high-energy tremors and rockburst events are
used to calculate and rank the F_score for each index in the pre-
cursory database. Indices with high F_scores are selected as the
foundation for the model. The indices are periodically re-evaluated
and selected to ensure their efficiency in assisting the model’s early
warning decisions. Further details can be found in Fig. 1.

2.2.4. Multi-indices fusion and rockburst risk classification
Integrating various multidimensional coal-rock dynamic

disaster early warning indices that consider temporal, spatial, and
intensity aspects is crucial for creating a unified and quantitative
real-time warning system with consistent criteria and thresholds.
By applying the comprehensive anomaly index method (Cai et al.,
2014), the integrated rockburst hazard index Q is constructed,
and its calculation method is shown in Eq. (6):

Q ¼
Xn
k¼1

0
BBB@
e� e1�Wkðþ=�Þ

e� 1
FkPn

k¼1
Fk

1
CCCA (6)

where n represents the total number of preferred precursory
indices, Fk represents the F_score, which reflects the early warning
effectiveness of the k-th indicator. Wk(�) represents the anomaly
membership of the k-th index, and they range from 0 to 1. The
calculation of Wk(�) can be performed using the following method.

For the positive precursory index, using MKT to determine its
trend in the previous period and get

WkðþÞ ¼
�
1 ðincreasingÞ
0 ðothersÞ (7)

For the negative precursory index, the same reasoning yields

Wkð�Þ ¼
�
1 ðdecreasingÞ
0 ðothersÞ (8)

Based on theoretical analysis and numerous field experiments,
the coal-rock dynamic hazard level can be categorized into four
levels (Dou and He, 2007). These hazard levels align with the
classifications specified in the “Rules for Prevention and Control of
Coal Mine Rockburst, China.” The corresponding hazard levels are
presented in Table 2.
F score ¼ 2,Recall,Precision
Recallþ Precisionemor No rockburst or high energy tremor

(Negative)

False Positive (FP) Precision ¼ TP/(TP þ FP)

True Negative (TN) Negative precision ¼ TN/(TN þ FN)

Specificity ¼ TN/(TN þ FP) Accuracy ¼ (TP þ TN)/
(TP þ TN þ FP þ FN)



Table 2
Classification standard for coal-rock dynamic hazards.

Integrated rockburst hazard index
Q

Levels of rockburst
risk

State of rockburst
risk

0 � Q < 0.25 I No rockburst risk
0.25 � Q < 0.5 II Weak rockburst risk
0.5 � Q < 0.75 III Medium rockburst

risk
0.75 � Q � 1 IV Strong rockburst risk
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3. Case study

3.1. Engineering description and rockburst contributing factor
analysis

Kuangou Coal Mine (KCM) is situated in Urumqi, Xinjiang
Province, China. The mine has six mineable coal seams ranging
from shallow to deep: B4-2 (mined out), B4-1 (mined out), B3, B2
(under mining), B1, and B0. Currently, mining activities are mainly
concentrated in the I010203 working face of the B2 coal seam, and
the general layout and stratigraphic structure diagram of KCM are
shown in Figs. 3 and 4. In Fig. 3, the black line represents the
working face and roadway in the B2 seam, while the blue line
represents the working face and roadway in the B4-1 seam. The
I010203 working face has an inclinationwidth of 192m and a strike
length of 1,469 m. It employs the fully mechanized caving mining
method, with a coal cutting thickness of 3.2 m and a roof coal
release thickness of 6.3 m. The average burial depth is approxi-
mately 350 m. The working face is situated on the west side of the
safety coal block, with a 15 m section pillar reserved between its
north side and the I010201 goaf of the same coal seam. Moreover,
the I010403 and I010405 goafs are situated around 70 m above the
I010203 working face in the B4-1 coal seam, forming a “knife-
handle” boundary. The B1 coal seam, which is yet to be mined, lies
approximately 30 m below the B2 coal seam. Within the working
face, there is a significant fault labeled F2-1, which has an inclina-
tion of 60� and a fault displacement of 2.9e6.8 m. According to the
Fig. 3. Geological condition of KCM and the layout of M
test, the average duration of dynamic fracture DT of B2 coal seam at
different locations is 250.33ms, the elastic strain energy index WET

is 3.43, the bursting energy index KE is 2.79, the uniaxial
compressive strength RC is 26.34 MPa, according to the Methods for
Test, Monitoring and Prevention of Rockburst (GB/T 25217.2e2010),
B2 coal seam has weak bursting liability. In the same way, the roof
of B2 coal seam has strong bursting liability and the floor has weak
bursting liability.

KCM is equipped with the ARAMIS M/E MS monitoring system.
The MS sensors have a sampling frequency of 500 Hz and a sensi-
tivity of 110 Vs/m � 10%. These sensors are capable of monitoring
low-frequency high-energy MS events with an energy threshold of
100 J and a frequency range of 0e150 Hz. The positioning accuracy
of the sensors is�20m in the X and Y directions and�50 m in the Z
direction. Based on the geological conditions and characteristics of
the surrounding rocks at location I010203, 2 MS sensors were ar-
ranged in the haulage roadway of the working face with a spacing
of 150 m, marked as S2 and T3; 1 MS sensor was arranged in the
craft lane, marked as T16; 2 MS sensors were arranged in the
ventilation roadway with a spacing of 150 m, marked as T10 and
T11 (see Fig. 3). To ensure that the working face remains within the
detection range of the MS sensors, a specific adjustment is made
when the sensors are located less than 50m away from theworking
face. In such cases, the sensors are shifted 300 m ahead of the
working face. This adjustment ensures that the working face re-
mains within the coverage area of the MS sensors for effective
monitoring. (Please refer to Khan et al., 2022 for more details about
the MS system). From February 1, 2018, to January 31, 2019, a total
of 15 rockburst events have occurred at the I010203 working face
during this period, and the location of each event source is shown
in Fig. 5, and the information is shown in Table 3, which shows that:

(1) Rockburst events occur at varying focal locations, with the
majority concentrated within the range of 0e365 m from the
leading working face. The density of focal locations is high
both before and after the fault location, with a significant
number of events occurring in the haulage roadway and
S monitoring system installed until March 7, 2018.



Fig. 4. Schematic diagram of stratigraphic structure.
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some in the surrounding rock near the ventilation roadway.
The range of rockburst events typically falls within 100e
550 m from the working face. This indicates that the highest
rockburst risk is observed within the 100e550 m range from
the cutting hole.

(2) The majority of rockburst sources are located in the coal
seam and roof in the middle and lower sections of the
working face. They also occur in the roof and section coal
pillar in the lateral goaf. These areas are identified as the
main elastic energy concentration areas, and the event
density of the roof in the vertical direction is significantly
higher than that of the floor (11 out of 15 times). The
breaking of the hard roof is the main inducing factor of the
rockburst of KCM.

The analysis results show that the hard roof breakage at I010203
is the main inducing factor of rockburst events, and rockbursts are
often preceded by high-energy tremors (energy>106 J), which are a
direct cause of rockbursts as a dynamic load disturbance
(Manouchehrian and Cai, 2017; Wang et al., 2018). Based on this,
the MS data collected by the MS sensors at the I010203 working
face are used as the basis for extracting the precursor indices of



Fig. 5. Source location diagram of each rockburst events.
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coal-rock dynamic hazards to predict the occurrence of high-
energy tremors. These indices enable the prediction of high-
energy tremors and subsequently facilitate the monitoring and
warning of rockburst hazards.
3.2. Rockburst precursory indices

The effective utilization of MKT for monitoring and early
warning of rockbursts relies on the availability of accurate precur-
sory indices that possess clear physical significance. Numerous
researchers (Cai et al., 2014, 2018; He et al., 2019, 2021; Liu et al.,
2019; Lu et al., 2015; Ma et al., 2019; Qin et al., 2019; Xu et al.,
2017; Yu et al., 2017) have proposed multidimensional precursory
indices based on the “temporal-spatial-intensity” framework and
these indices can effectively capture the evolving patterns pre-
ceding rockburst events, and their practical application in mining
has yielded positive results. Therefore, KCM adopts a library of 18
precursory indices to monitor and predict rockburst events, as
shown in Fig. 6. For detailed descriptions each warning index,
please refer to Xue et al. (2023).

From February 1, 2018, to January 31, 2019, the I010203 working
face experienced a series of rockburst events, making it an ideal
case study site. During this period, a total of 30065 MS events
(Except September 24 to October 19, 2018, with no data recorded
because of working face closure) and 15 rockburst events (see
Table 3). A time window of 15-d and a sliding step of 1-d are
employed to calculate of the actual values for each index, and its
time-sequence evolution graphs are shown in Fig. 7.



Table 3
Overview of each rockburst event.

No. Date The distance
ahead of
working face (m)

Energy
(J)

Main damage

1 2018.03.07 60 3.1 � 105 Local collapse on the lower wall.
2 2018.03.08 210 9.7 � 106 The floor bulges about 20 cm, and

the local top coal sinks about
30 cm

3 2018.03.26 105 5.2 � 105 Local collapse on the south wall
4 2018.04.08 200 4.7 � 105 Slight slag dropping in the affected

area
5 2018.04.14 70 1.7 � 105 Slight slag dropping in the affected

area
6 2018.04.16 118 3.3 � 105 The roof collapses locally, the

roadway floor bulges about 30 cm
7 2018.04.27 90 2.1 � 104 The roof collapses locally, the

roadway floor bulges about 30 cm
8 2018.05.07 365 3.2 � 106 The roadway floor bulges 20

e40 cm, and three anchor bolt
supporting plates fall

9 2018.05.20 110 9.5 � 105

10 2018.06.13 132 1.4 � 105 Strong tremors at the working face
11 2018.06.25 84 4.0 � 106 One support sinks by 17 cm, the

width of the roadway is deformed
by 10 cm

12 2018.07.23 116.9 4.6 � 106 The width of the roadway is
deformed by 10 cm

13 2018.09.16 19 8.5 � 105 Six bolts fail at the transfer
machine; Roof subsidence in 1000
e1030m area of haulage roadway
is 20e30 cm, and the lower wall
sinks about 20 cm

14 2019.01.22 184 5.1 � 104 The roof of the haulage roadway is
broken, and the wall protrudes by
15 cm

15 2019.01.23 254 5.7 � 105 The roof at the head of the transfer
machine is slightly broken
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Prior to the occurrence of a rockburst, each precursory index
shows abnormal changes, characterized by a continuous increase or
decrease. The values of these indices fluctuate within a range of
high or low values until the rockburst event eventually takes place.
For example, A(t) (see Fig. 7l) demonstrates a rapid increase in the
period leading up to a rockburst event, exhibiting a notable high-
value anomaly, indicating that the internal crack propagation de-
gree of coal and rock mass increases rapidly, the number of large
Fig. 6. The library of p
cracks increases, and the fracture of coal and rock mass intensifies,
which induces a high-energy mine tremor, and its value falls back
to the normal level after energy release; when SD (see Fig. 7i) in-
creases rapidly in time series, signifies a rapid increase in both the
frequency and energy level of MS events. This increase indicates a
more concentrated spatial distribution of these events and a
heightened degree of internal rupture within the coal and rock
mass. Consequently, it is accompanied by the occurrence of rock-
bursts; b (see Fig. 7p) decreases rapidly before the occurrence of a
rockburst, and then fluctuates in the low value range, indicating
that the level of stress concentration within the coal rock mass and
the degree of elastic energy accumulation increase, leading to a
rapid increase in the proportion of large rupture, and the possibility
of a high-energy tremor increases, making it more likely to induce a
rockburst. Each index in the rockburst precursory indices library
reflects the precursor evolution law of rockburst from the multi-
dimensional “temporal-spatial-intensity” and corresponds to the
existence of certain characterization laws, which can monitor and
warn the rockburst risk.
3.3. Evaluation of the early warning effectiveness and selection of
indices

To monitor the rockburst hazard in the mine, the study
employed the MKT with a 15-d timewindow and a 1-d sliding step.
This analysis was conducted to evaluate the change trend of each
precursory index, considering the rockburst characterization law
outlined in Section 3.2 and the associated change characteristics.
For ease of reference, the 15 rockburst events mentioned in Table 3
were assigned numbers from 1 to 15 in chronological order. The
results of assessing the trend of the precursory indices within a 15-
d period preceding each rockburst event are presented in Table 4,
where “I" indicates that the index has an increasing trend, “D" in-
dicates that the index has a decreasing trend, and "-" indicates that
the index does not pass the significance test and without a signif-
icant change trend.

The results depicted in Fig. 7 and Table 4 demonstrate that the
change trends of the precursory indices, as determined by MKT,
largely align with the qualitative judgment results and adhere to
the characterization law derived for the precursory indices. This
indicates that the MKT method is effective in monitoring and
providing warnings for rockburst hazards. However, it should be
noted that a single precursory index has limitations in capturing
recursory indices.



Fig. 7. Temporal evolution of MS precursory indices before and after rockburst events.
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Table 4
Trend determination results of each precursory index before rockbursts and its early warning effectiveness.

Precursory indices Rockburst events Recall Precision F_score Ranking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Emax e e I e e e e I e e e e e e e 0.500 0.563 0.529 1
Esum e I e e e e e I e e e e e e e 0.444 0.308 0.364 4
Fsum e I e e e e D e e e e e e D D 0.556 0.192 0.286 6
Eavg e e e e e e e e e I e e e e I 0.389 0.350 0.368 3
DE e e I e e e e I e e e I e D e 0.611 0.239 0.344 5
DF e e e e e e e I e e I e e D D 0.667 0.316 0.429 2
DE e I D I e e D e e D I e I I I 0.278 0.044 0.076 14
SD I I e e I I D e e e e e I I I 0.222 0.030 0.053 18
Mm e e D e D e e D I e D e e I I 0.222 0.033 0.058 16
A(b) e e D e D e e D I e D e e I I 0.222 0.034 0.058 16
A(t) I I D I I I D e D D I e I I I 0.278 0.035 0.062 15
DF I I I I I I D D D e D e e I I 0.389 0.044 0.079 13
F e I D I e D D e e D I e I e e 0.444 0.101 0.165 9
AC D D D D D D I I I e I D D D D 0.611 0.172 0.268 7
B e e I I I I e I D e I e e D D 0.444 0.072 0.124 10
Qt D D D D D D I I I D I D D D D 0.444 0.052 0.092 12
L e e D D e e I I e D I D D I I 0.444 0.057 0.101 11
P(b) I I I I I I D D D I e I I I I 0.611 0.172 0.268 7

Note: Rockburst events serial numbers correspond to that in Table 3.

Fig. 7. (continued).
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the complete evolutionary patterns of rockburst precursors.
Consequently, relying solely on a single index may not always yield
accurate early warnings for every rockburst event. For example, Qt

exhibits a declining trend prior to events 1e6, 10, and 12e15, and it
has good early warning effectiveness as a negative rockburst pre-
cursory index accurately warning 11 out of 15 rockburst events.
Furthermore, the different dimensions of each early warning index
may contribute to vary early warning results for the same event. For
example, prior to the onset of rockburst 8, DE in the intensity
dimension and DF in the temporal dimension show an increasing
trend as positive indices warn the danger, while l in the spatial
dimension also shows an increasing trend as a negative index and
does not successfully warn of the occurrence of rockburst 8.
Therefore, it is necessary to fuse the indices in the precursory li-
brary, the advantages of different dimensions of indices comple-
ment each other, which can be more efficient and accurate
monitoring and warning of rockburst hazards.



Fig. 8. Warning results of Q.

Fig. 9. Comparing the effectiveness of early warning indices.
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The precursory index is deemed accurate if it exhibits an
abnormal trend within 5 d before the occurrence of a high-energy
tremor (with energy greater than 106 J). Specifically, positive pre-
cursory indices should demonstrate an increasing trend, while
negative precursory indices should show a decreasing trend. Any
deviation from these criteriawould be classified as amissed or false
alarm. The choice of a 5-d period for early warning indices is in
accord with the practical experience of KCM, and it can be adjusted
for other mines based on their specific requirements. To evaluate
the early warning effectiveness of each index, the confusion matrix
(refer to Table 1) is utilized. From the confusion matrix, the Recall,
precision, and F_score of each index can be calculated. Table 4 pre-
sents the results of the early warning effectiveness for each index.

Based on Table 4, the precursory indices can be ranked in terms
of their early warning effectiveness as follows:
Emax > DF > Eavg > Esum > DE > Fsum > AC ¼
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P(b) > F > b > l > Qt > DF > DE > A(t) > Mm ¼ A(b) > SD. Notably,
the indices in the intensity dimension generally exhibit higher early
warning effectiveness compared to those in the temporal and
spatial dimensions. These findings suggest that the precursory
indices related to intensity in rockburst events carry a higher level
of information entropy compared to the temporal and spatial
indices. The energy characteristics of MS play a crucial role in
capturing the evolutionary process of rockburst precursors. These
intensity-based indices demonstrate a high level of effectiveness in
reflecting the underlying dynamics of rockburst events. As a result,
they hold significant importance and should receive increased
attention in practical applications for improved rockburst predic-
tion and early warning systems.

To maximize the effectiveness of early warning, the model
selected preferred indices from each dimension. Out of the pre-
cursory indices library, eight indices (Emax, DF, Eavg, Esum, DE, Fsum,
AC, P(b)) were chosen based on their F_scores exceeding 0.2. These
selected indices accounted for 74.9% of the total warning effec-
tiveness and covered a significant portion of the intensity di-
mensions of rockburst hazard precursory indices. This selection
ensures a strong foundation for the overall warning capability of
the model. Regular re-evaluation and optimization of the early
warning performance of each index in the precursory indices li-
brary are important to maintain the scalability and robustness of
the model. Ideally, this re-evaluation should occur at least once
every month. By dynamically updating the model based on actual
field data, it can effectively assist relevant personnel in making
rockburst warning decisions. This approach ensures that the model
remains adaptable to changing conditions and maintains its effi-
ciency in real-world applications.
Fig. 10. Results of previous earl

Table 5
Early warning results of the previous model.

Total population Actual con

Rockburst

Early warning condition Rockburst or high energy tremor (Positive) 5
No rockburst or high energy tremor (Negative) 13
3.4. Multi-indices fusion early warning of rockburst

3.4.1. Application effect test
The F_score of each rockburst precursory index is utilized to

calculate the weight assigned to each index. This approach ensures
that indices with higher warning effectiveness receive higher
weights, while indices with lower warning effectiveness are given
lower weights. By combining these weights with Eq. (6), Q is
calculated. The time-series of Q is depicted in Fig. 8. Observing the
curve, it is evident that the majority of Q values exceed 0.5 within a
5-d period prior to the occurrence of high-energy tremors. This
corresponds to the medium or strong rockburst hazard category
described in Table 2. The results indicate a strong correlation be-
tween the index and the occurrence of rockburst. Moreover, it
demonstrates the capability of the index to provide effective
monitoring and early warning for rockburst events.

The Q demonstrated strong performance in terms of F_score,
Recall, and Precision, with values of 0.563, 0.500, and 0.643, respec-
tively. These metrics indicate that Q outperformed individual
warning indices, exhibiting higher F_score and Precision. This sug-
gests that Q has improved warning effectiveness, as depicted in
Fig. 9. However, the Recall of Q is lower than the 5 single precursory
indices DF (Recall ¼ 0.667), P(b) (Recall ¼ 0.611), AC (Recall ¼ 0.611),
DE (Recall ¼ 0.611) and Fsum (Recall ¼ 0.556). This means that the
accuracy of Q’s early warning for the actual occurrence of high-
energy tremors in the original monitoring data is lower than these
five single indices, which are more conservative in the early warning
process compared to the single indices, and will only warnwhen the
predicted outcome is a high probability of rockburst events, which is
shown as Precision is higher than other single indices.
y warning method in KCM.

dition

or high energy tremor (Positive) No rockburst or high energy tremor (Negative)

34
296



Fig. 11. Comparing the effectiveness of warnings under different thresholds.
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In general, Q offers several advantages compared to single pre-
cursory indices. By combining multiple indices from different di-
mensions, Q incorporates the strengths of each index and
establishes warning criteria among the indices. This approach
eliminates the influence of singular values and improves the ac-
curacy of the warning, resulting in higher integrated warning
effectiveness compared to single indices. Furthermore, Q serves as a
unified quantitative evaluation index for rockburst hazard, over-
coming the issue of conflicting early warning results from multiple
sources. It provides clear quantitative classification criteria, as
shown in Table 2, which significantly reduces the management cost
associated with underground rockburst prevention and control.
Moreover, Q is data-driven, as its base indices are regularly upda-
ted. This ensures its adaptability and stability under complex
working conditions. By assisting personnel in making efficient and
accurate disaster prevention and control decisions, Q helps avoid
major casualties and property damage.
3.4.2. Comparison with previous models
Previously, rockburst early warnings at KCM relied on moni-

toring high-energy MS events, specifically those with energy
exceeding 105 J. According to the criterion, if an MS event at the
working face had energy surpassing 105 J, it indicated a dangerous
state, whereas energy below this threshold indicated a safe con-
dition. To assess rockburst warning using this approach, the daily
maximum MS energy data from February 1, 2018, to January 31,
2019, was utilized, and the results are shown in Fig. 10.

The effectiveness of the previous MS warning method was
evaluated based on issuing a hazard warning within the same day.
If a warning was issued on the same day as the hazard occurred, it
was considered as a correct report; otherwise, it was classified as a
missed or false alarm. The early warning results of the previous
method are presented in Table 5, indicating that the method had a
high missing rate. In 13 out of 18 d when actual hazards occurred,
no warning was issued. This high missing rate could lead to severe
consequences as the necessary measures were not taken in a timely
manner. After calculating the metrics, it was found that the previ-
ous model had a significantly lower early warning effectiveness,
with Precision of 0.128, Recall of 0.278 and F_score of 0.175
compared to the multi-indices fusion rockburst early warning
model proposed in this paper.

The low effectiveness of the previous model can be attributed to
several factors. Firstly, the previous model solely relied on the daily
maximum energy (Emax) index in the intensity dimension of rock-
burst hazard precursory indices. This approach neglected the
temporal and spatial dimensions, resulting in the loss of important
information regarding the evolution of rockburst precursors.
Consequently, the overall warning effectiveness was compromised.
Additionally, the previous model utilized a single critical value for
issuing warnings, which limited its ability to fully leverage the
potential of the precursory indices. In contrast, the new model
takes into account the change trend information of the Emax index,
resulting in an early warning effectiveness of 0.529, making it the
most effective single warning indicator. In comparison, the previ-
ous model generated several missed alarms. Consequently, the new
model achieved an early warning effectiveness 3.2 times higher
than that of the previous model.

In summary, the newmodel effectively enhances the accuracy of
rockburst prediction by utilizingmultiple dimensions of precursory
indices and leveraging their full potential.
4. Discussion

Given the unclear mechanism of rockburst hazards in mines
operating under complex working conditions, accurately and effi-
ciently predicting and controlling these hazards remains chal-
lenging. While significant progress has been made in monitoring
and early warning systems, there is still a need for a highly scalable
and accurate rockburst early warning model. To address this, the
present study proposes an MKT-based multi-indices fusion early
warning model for rockburst hazards (refer to Fig. 1). This model
leverages multidimensional warning indicators to capture the
precursor trends that reflect the evolution of rockbursts. It in-
corporates the use of a confusion matrix to evaluate the effective-
ness of individual warning indices and periodically optimizes the
indices based on this evaluation. The integrated rockburst hazard
indexQ (refer to Fig. 8) demonstrates that it can reach amedium- or
high-hazard warning level within 5 d prior to the occurrence of
most high-energy tremors. The warning effectiveness of the model
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reaches 0.563, representing a significant improvement compared to
relying on a singlewarning index (refer to Fig. 9). Themodel has the
capability to dynamically adjust the selection of indices based on
real-time monitoring data in the field. This adaptability allows it to
effectively respond to changing working conditions and ensures
the production of stable warning results. The practicality of the
model is strengthened by providing reliable warning outcomes for
the prevention and control of rockbursts in mining operations.

In contrast to previous studies that primarily relied on
exceeding hazard thresholds or qualitative human judgment to
trigger warnings, this study employs mathematical-statistical
methods to capture the changing trends of multidimensional
warning indicators in real-time. This approach enables a compre-
hensive representation of the overall evolution process, including
fissure initiation, propagation, convergence, and the formation of
macro-fractures in coal and rock masses that ultimately lead to
rockburst occurrences. Warnings are only issued when the in-
dicator’s change trend clearly aligns with the rockburst precursor
response. Furthermore, the study incorporates the use of a confu-
sion matrix to comprehensively evaluate the effectiveness of each
individual precursory index. By considering the warning effec-
tiveness of each index, the model can select the most appropriate
indices that align with the actual conditions of the mine. This se-
lection process enhances the overall warning performance of the
model and ensures that low-effectiveness indices, which may not
adequately represent the mine’s specific conditions, do not nega-
tively impact the warning results. The periodic re-evaluation and
optimization of indices based on data-driven self-feedback further
maintains the model’s effectiveness and sustainability within the
complex underground environment. Moreover, this approach
significantly reduces human operation and management costs. In
practical applications, it is important to note that for mines with
newly installed online monitoring systems, equal weights can be
initially assigned to the warning indices. The remaining calcula-
tions should remain unchanged until sufficient data becomes
available.

In mining practice, rockburst accidents can lead to significant
losses. Therefore, it is crucial for an early warning model to mini-
mize both missed alarms (where the model fails to predict a
rockburst event that occurs) and false alarms (where the model
issues awarning but no rockburst occurs). The costs associatedwith
these two scenarios can vary significantly for the mine. The eval-
uation of the warning model’s effectiveness relies on the use of the
confusion matrix, specifically focusing on Precision and Recall.
Precisionmeasures the accuracy of the model’s warnings relative to
the total number of warnings issued, while Recall measures the
accuracy of predicting actual rockburst occurrences relative to the
total number of actual rockbursts. The F_score is the harmonic
mean of Precision and Recall, providing a comprehensive assess-
ment of the model’s performance. Maximizing both Precision and
Recall is crucial for achieving optimal performance. However,
achieving high values for both measures simultaneously can be
challenging in practice. Mines often prioritize models with higher
Recall to minimize the risk of significant losses. To address this,
different warning thresholds can be set in the model to determine
the changes in indices. The results of applying different warning
thresholds are presented in Fig. 11. These thresholds allow for fine-
tuning the model’s sensitivity and strike a balance between missed
forecasts and false alarms, taking into account the specific re-
quirements and risk tolerance of the mine.

It can be seen that as the warning threshold increases, the
model’s Precision increases while Recall decreases. The highest
F_score of 0.643 is achieved at a warning threshold value of 0.6.
However, it is important to note that at this threshold, the Recall
decreases to 0.5, indicating that the model issues warnings only
when it is more confident in its predictions, resulting in an
increased number of missed alarms. On the other hand, the F_score
of 0.513 is obtained at a warning threshold value of 0.4, which is
higher than the threshold of 0.5. However, the Recall at this
threshold drops significantly to 0.476 compared to the Recall of
0.643 at the threshold of 0.5. Considering a comprehensive evalu-
ation, a warning threshold value of 0.5 for Q appears to strike a
balance between Precision and Recall, achieving a reasonable
F_score of 0.643 while maintaining a Recall of 0.5. This threshold
value aligns with the concept of “producer equilibrium” for mining
enterprises, taking into account the trade-off between missed
alarms and false alarms. Nevertheless, in practical applications, the
threshold value can be adjusted based on the mine’s own risk
tolerance level to best align with its specific interests and
requirements.

In the next step, we plan to use a “cost-sensitive” approach to
further improve the rockburst early warning model, i.e. to apply a
larger penalty to the model when it generates “missed” alarms and
a smaller penalty when it generates “false” alarms so that the
model can be trained to better suit the actual warning needs in the
field and contribute to creating a safer environment in the mining
industry.

5. Conclusions

Rockburst frequently result in significant casualties and prop-
erty damage. Therefore, accurate monitoring and early warning
systems are crucial for disaster prevention. This paper proposes a
multi-indices fusion rockburst early warning model utilizing the
MKT to enhance the quantitative and precise monitoring and
warning of rockburst disasters. The main findings of this study are
as follows:

(1) A rockburst early warningmodel based onMKT is developed,
incorporating 18 rockburst precursory indices with clear
physical significance. The model assesses the conformity of
their temporal trends with the rockburst precursor charac-
terization law to determine warnings. The effectiveness of
each index is evaluated and ranked using the confusion
matrix, and the indices with higher effectiveness are given
more weight. The multi-indices fusion approach is employed
using a comprehensive anomaly index method, resulting in
the integrated rockburst hazard index Q. The values of Q
correspond to four levels of rockburst hazard: none, weak,
medium, and high.

(2) The field application results demonstrate that Q, serving as a
unified quantitative evaluation index, combines the
strengths of individual early warning indicators. It achieves
an early warning effectiveness of 0.563, surpassing that of
any single early warning index. Moreover, the indices from
different dimensions provide complementary early warning
criteria, mitigating conflicts in the results from multiple
sources. The model outperforms the previous mine’s early
warning model by 3.2 times in effectiveness, effectively
supporting mine personnel in making accurate and efficient
disaster prevention and control decisions.

(3) The model has the capability to undergo periodic updates
through self-feedback using real-time monitoring data from
the field. This allows for the selection of indices that are most
suitable for the complex and dynamic underground working
environment, resulting in higher warning effectiveness. As a
result, the model reduces the costs associated with human
operation and management. Additionally, the model can
provide stable early warning results based on online real-
time monitoring data and exhibits strong scalability,
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making it easily adaptable to other mine sites. Overall, this
model represents an effective and innovative approach for
monitoring and early warning of rockbursts.
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