Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 1262—1279

Contents lists available at ScienceDirect

Journal of Rock Mechanics and
Geotechnical Engineering

CSRME

journal homepage: www.jrmge.cn

Full Length Article

Anisotropic time-dependent behaviors of shale under direct shearing and N
associated empirical creep models

Yachen Xie *™¢, Michael Z. Hou®, Hejuan Liu €, Cunbao Li*"

2Shenzhen Key Laboratory of Deep Engineering Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
b Institute of Subsurface Energy Systems, Clausthal University of Technology, Clausthal-Zellerfeld, 38678, Germany
€ State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China

ARTICLE INFO ABSTRACT

Article history:

Received 12 February 2023
Received in revised form

15 April 2023

Accepted 30 May 2023
Available online 1 June 2023

Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue. In
this context, we conducted shear-creep and steady-creep tests on shale with five bedding orientations
(i.e. 0°,30°, 45°, 60°, and 90°), under multiple levels of direct shearing for the first time. The results show
that the anisotropic creep of shale exhibits a significant stress-dependent behavior. Under a low shear
stress, the creep compliance of shale increases linearly with the logarithm of time at all bedding ori-
entations, and the increase depends on the bedding orientation and creep time. Under high shear stress
conditions, the creep compliance of shale is minimal when the bedding orientation is 0°, and the steady-
creep rate of shale increases significantly with increasing bedding orientations of 30°, 45°, 60°, and 90°.
The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing
and then decreasing trend with the bedding orientation. A semilogarithmic model that could reflect the
stress dependence of the steady-creep rate while considering the hardening and damage process is
proposed. The model minimizes the deviation of the calculated steady-state creep rate from the observed
value and reveals the behavior of the bedding orientation’s influence on the steady-creep rate. The
applicability of the five classical empirical creep models is quantitatively evaluated. It shows that the
logarithmic model can well explain the experimental creep strain and creep rate, and it can accurately
predict long-term shear creep deformation. Based on an improved logarithmic model, the variations in
creep parameters with shear stress and bedding orientations are discussed. With abovementioned
findings, a mathematical method for constructing an anisotropic shear creep model of shale is proposed,
which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the
bedding orientation.
© 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

The technical innovation of hydraulic fracturing and horizontal
drilling has made the exploitation of shale gas economically
feasible (Bellani et al.,, 2021). In engineering practice, the key to
achieve long-term and sustainable shale gas production is to
maintain the long-term effectiveness of the reservoir fracture
network. However, field data from shale gas wells in major shale
gas reservoirs in USA (such as the Barnett, Fayetteville, Woodford,
Haynesville, and Eagle Ford) show that shale gas production
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exhibits a noticeable decreasing trend after 6—8 months of pro-
duction (Baihly et al., 2010; Li et al., 2019). One of the critical causes
of this decrease is the gradual reduction in fracture width and
decrease in reservoir fracture network permeability due to long-
term creep (Rassouli and Zoback, 2018). From a rock mechanics
perspective, the primary types of loads that cause creep are
compressive/tensile stress and shear stress (Zhao et al., 2011; Guner
et al., 2022). Studies show that shale gas reservoirs are subjected to
shearing during and after reservoir stimulation (Palmer et al., 2007;
McClure and Horne, 2014). This shear stress can induce more
complex fracture networks during shale gas reservoir stimulation,
and has a substantial impact on the closure of reservoir fractures,
stability of wellbore (Carey et al., 2015), and accurate measurement
of ground stress (Geng et al., 2017) due to its long-term effects such
as creep (Sone and Zoback, 2014). In addition, the inherent
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anisotropic properties of shale caused by bedding further compli-
cate the anisotropic creep behavior of shale under shearing.

At present, few studies are reported on the anisotropic creep of
shale under direct shearing. Most studies have used conventional
uniaxial/triaxial compression creep tests to analyze the creep
properties of shale (Geng et al., 2017; Trzeciak et al., 2018;
Wilczynski et al.,, 2021). For example, Chang and Zoback (2009)
found that shale exhibits significant viscous creep behavior under
hydrostatic pressure and triaxial compression, and the creep
deformation increases with increasing clay/organic matter content.
Sone and Zoback (2013b), Yang and Zoback (2016), and Herrmann
et al. (2020) obtained similar conclusions using similar experi-
mental methods. Based on nano-indentation creep tests of shale,
Slim et al. (2019), Shi et al. (2020), Du et al. (2021), and Liu et al.
(2021b) found that shale samples rich in weak components (clay/
organic matter) have significantly lower creep moduli than quartz-
rich samples and thus a higher creep strain, suggesting that creep
behavior depends on shale composition. Similar to the conven-
tional rock creep properties, shale creep deformation increases
significantly under water-saturated or high-temperature condi-
tions (Liang et al., 2020; Wang et al., 2022b). Li et al. (2022) con-
ducted graded unloading creep tests on shale samples with
different water saturations and found that both creep deformation
and creep rate increase with increasing water content. Rybacki et al.
(2017) and Herrmann et al. (2020) studied the creep behavior of
Posidonia shale and found that the temperature conditions related
to the depth of the reservoir have a similar effect on shale creep
deformation upon the changes in composition and water content.
Furthermore, Voltolini (2021) revealed the microscopic mechanism
of temperature-driven shale creep by in situ synchrotron X-ray
micro-computed tomography (CT) scanning technology, and found
that temperatures as low as 75 °C could lead to rapid creep, with
significantly accelerated crack aperture closure velocity. Concern-
ing the confining pressure dependence of shale creep, some studies
(Kamali-Asl and Ghazanfari, 2017; Sone and Zoback, 2014) indicate
a weak dependence on hydrostatic stress, while others (Chang and
Zoback, 2009; Herrmann et al., 2020) show a direct dependence.
Nevertheless, these studies only focus on the creep deformation
behavior of shale under compressive loading, and it is difficult to
explain the creep mechanism of shale under direct shear paths.

The above-mentioned studies ignore the impact of shale
anisotropy on its creep deformation. Some studies (Geng et al.,
2018; Traore et al., 2022) show that inherent anisotropy has sig-
nificant influences on the mechanical behaviors, and the degree of
anisotropy has a significant effect on the acceleration of creep. Most
of the shale creep tests only consider bedding horizontal or vertical
to loading. Li et al. (2020) conducted triaxial multistage compres-
sion creep tests on shale samples with four bedding orientations
(0°, 45°, 75°, and 90°) for the first time and found that under the
same shear stress conditions, the creep deformation and steady-
state creep rate are maximized and minimized at bedding orien-
tations of 45° and 90°, respectively. They proposed three different
mechanisms of shale creep under various bedding orientations.
This also proves that the creep behavior under shearing differs from
that under compression, and it seems that the anisotropy resulting
from bedding can significantly affect the creep behaviors (Li et al.,
2019). However, the anisotropic creep behavior of shale under
direct shear is rarely investigated.

The constitutive model serves as a bridge connecting funda-
mental theories, experimental data, and engineering practices (Li
et al., 2017; Kong et al., 2023). To date, numerous scholars have
proposed various constitutive equations based on different as-
sumptions to characterize the creep behavior of rocks, which can be
divided into three categories: empirical formula models, compo-
nent combination models, and creep models based on plastic

mechanics, damage mechanics, or endochronic theory (Li et al.,
2017). Although the second and third types of creep models have
more rigorous physical foundations, they involve numerous model
parameters and cannot comprehensively address the complex
mechanisms of the multiple microscopic deformation-related in-
teractions during the creep process of bedded shale. This suggests
that the proposed creep models may be impractical for engineering
applications. In this case, empirical models are widely applied due
to their simplicity and practicality. The power law function model
has been suggested to describe the variation in creep deformation
of shale over time in some experiments (Rassouli and Zoback, 2018;
Herrmann et al., 2020; Wang et al., 2022a). Although the power law
model can be used to describe stress corrosion at the contact be-
tween rock particles, which is not caused by frictional sliding or
subcritical crack expansion, the power law function model cannot
reflect the creep mechanism. Some studies (e.g. Mighani et al.,
2019; Liu et al., 2021a) use the logarithmic function model to
characterize the time-dependent properties of shale deformation;
while some scholars (e.g. Chau et al,, 2017; Mighani et al., 2019)
believe that the creep behavior of shale under different stresses and
temperatures is a statistical behavior represented by a logarithmic
function, which may be attributed to the significant number of
displacement activation points commonly observed in rock creep.
Other scholars (e.g. Hilsdorf and Miiller, 1983; De Schutter, 1999)
have also proposed exponential or hyperbolic function empirical
constitutive equations for creep, assuming the existence of a
bounded creep threshold. Microscopic research on rock creep has
shown that the macroscopic time-dependent behavior of rocks is
closely related to the time-dependent process of microscopic (grain
size) crack propagation, based on which Brantut et al. (2014) pro-
posed an empirical creep equation considering the damage evolu-
tion function of cracks. The commonly used empirical creep models
can approximately describe creep deformations occurring within a
few hours to a few weeks. However, these models are primarily
applied to characterize creep deformations under compressive
loading paths, and their capability to describe creep properties
under shear loading needs to be investigated. Moreover, few of the
existing models consider the effect of anisotropy on the predictive
capability of the models.

To analyze the anisotropic creep behaviors of shale under direct
shear and to identify more reasonable creep models for predicting
the long-term shear mechanical behaviors of shale, this study
conducts anisotropic creep tests on shale samples with five bedding
inclinations (0°, 30°, 45°, 60°, 90°) under different levels of direct
shear stress. In addition, an empirical model is proposed that im-
proves some shortcomings of previous empirical models and can
better characterize the shear creep behavior of shale. Based on the
proposed empirical model, a mathematical method for construct-
ing a reliable anisotropic shear creep model for shale is presented.

2. Shale creep test scheme under direct shearing
2.1. Specimen preparation and experimental set-up

All the shale samples used in this study were obtained from the
same unweathered and intact outcrop of the lower Silurian Long-
maxi Formation, Chongqing, China. The outcrop exposes dark
brown carbonaceous shale with a dry density of approximately
2640 kg/m>, a porosity of approximately 5%, and an apparent
laminated structure. An X-ray diffraction analysis (Li et al., 2020,
2023) showed that the mineral composition of this shale is quartz
(approximately 37 wt% by weight), clay (approximately 34.2 wt%),
and carbonates (approximately 13 wt%). The shale outcrop mate-
rials were preserved in several layers by polyvinyl chloride (PVC)
film to prevent it from weathering. The outcrop shale was finely
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lathed, with compressed air as the cooling fluid to produce cubic
specimens with five bedding inclinations (« = 0°, 30°, 45°, 60°, and
90°). The bedding inclination « is defined as the angle between the
bedding plane and the predetermined shear failure plane, as shown
in Fig. 1a. The side length of the cubic samples was 50 mm. The
surface flatness of the six faces of each cubic specimen was within
+0.02 mm. The front and back, top and bottom, and left and right
faces of the specimens were parallel to each other, and any two
adjacent faces were perpendicular to each other (see Fig. 1b). In
addition, to reduce the error caused by the dispersion of the
specimens, the processed shale specimens were measured by ul-
trasonic waves, and specimens with similar longitudinal wave ve-
locities were selected for creep testing.

The creep tests were conducted using the rock shear test system
developed by Sichuan University, China, as shown in Fig. 2. The test
system features high axial and horizontal stiffness, high accuracy
and reliable performance, with a maximum axial load of 1000 kN
and a maximum horizontal load of 2500 kN. The vertical and shear
deformations were measured by two linear variable displacement
transducers (LVDTs), with a deformability measurement range of
+3 mm and a measurement accuracy of =1 um. This system could
continuously record the deformation and stress data of the sample
during the experiment at a maximum acquisition frequency of 5 Hz.

2.2. Experimental methodology

To simulate the geologic conditions, the normal stress o, was set
to 30 MPa. Three direct shear tests were conducted on shale
specimens with 5 different bedding inclinations to ascertain the
multiple levels of direct shear creep stress. Fan et al. (2022) showed
that the crack initiation stress of shale under a direct shearing path
is generally 40% of its shear strength approximately. Thus, in this
paper, the first level of shear creep stress in the shear creep test was
50% of the average shear strength of the shale for each bedding
orientation, and then the creep stress was increased at a rate of 10%
for subsequent stress levels until failure of the specimen. The shear
stress path is shown in Fig. 3. First, the normal stress was loaded to
the design stress level g, at a constant rate of 4.8 MPa/min and then
maintained constant; and then, the first level of shear load 7, was
applied at a constant rate of 4 MPa/min. A 24-h creep test is
considered to be sufficient for understanding the long-term me-
chanical behavior of shale (Wang et al., 2022a). Therefore, a con-
stant shear stress was applied for 48 h, and the shear creep was
recorded during this time period. If the specimens did not show
failure under the current shear stress level for more than 48 h, the

Shear plane

@) (b)

Fig. 1. (a) Schematic of shale sample bedding orientation « and direct shear loading
method (F, is the normal load and Fs is the direct shear load); and (b) Typical
50 mm x 50 mm x 50 mm cubic shale specimen with well-developed bedding.

-——-—_-—_.— Rock shear testsystem -— — —_ —_ —_=°-

rigid servo machine >
———— e

Pressure apg}icaﬁon
) direction

Fig. 2. Rock shear mechanics testing system: (a) Layout of the entire test system; (b) A
close shot of the bidirectional rigid servo machine; and (c) Specimen installation and
pressure application direction.

shear stress was increased to the next level and maintained for
another 48 h. The above steps were repeated until failure of the
tested specimen. Table 1 lists the shear stress values corresponding
to the shear-creep stress path under different bedding orientations.
Furthermore, to obtain the elasto-viscoplastic creep properties
(Zhao et al., 2017) of shale under shear stress conditions, unloading
shear creep tests are also conducted on shale specimens with
bedding inclinations of 30° and 60°, and the relevant shear stress
paths are shown in Fig. 3. In all of the shear creep tests, the vertical
compressive load, vertical compressive displacement, horizontal
shear load, and shear displacement were measured. All tests were
conducted in a laboratory with a constant temperature (25 °C) to
eliminate the thermal effect on the creep behavior.

3. Results and analysis

3.1. Anisotropic properties of shale creep deformation under direct
shearing

Fig. 4 shows the trend of multilevel shear-induced creep
deformation of the shale specimens with different bedding orien-
tations. All specimens show apparent time-dependent creep
deformation above the crack initiation stress under direct shearing
path. Regardless of the bedding inclination angle, the creep defor-
mation at each level of shear stress generally goes through two
stages: an initial creep stage, in which the shear strain increment
per unit time decreases rapidly; and a steady-state creep stage,
where the shear creep rate remains essentially constant. Never-
theless, there is a substantial difference in the creep deformation at
the same stress ratio level for specimens with different bedding
orientations, indicating that shale’s anisotropic properties signifi-
cantly affect time-dependent deformation. Under a higher shear
stress, the shale specimens exhibit an acceleration creep stage until
failure. Notably, the creep deformation curve in this paper was
plotted using all recorded deformation data. The creep deformation
increases with elapsed time in an oscillating fashion. However, the
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Fig. 3. Schematic diagram of the loading path of the multilevel shear creep and
unloading shear creep tests. The solid purple line indicates the normal stress-loading
path; the solid blue line indicates the direct shear stress loading path, and the red
dashed and dotted lines indicate the unloading path.

Table 1
Shear stress in multilevel shear creep tests of shale specimens with different
bedding inclination angles.

Bedding inclination angle, « (°) Ta T Tc T4 Te
0 22.82 28.09 3336 38.62 49.15
30 2722 3351 39.79  46.07 52.36
45 27.92 3437  40.81 4726  53.70
60 2820 3470 41.21 47.71 54.22
90 31.76  39.08 46.41 5037 —

Note: Ta, T, T, Tq and te are the first, second, third, fourth and fifth levels of direct
creep stress, respectively.

amplitude of fluctuation does not affect the processing of creep
data (Geng et al., 2017; Herrmann et al., 2020). Fig. 5 shows the
evolution of partially enlarged creep deformation over elapsed
time. The creep curve suddenly increases at specific time periods, a
phenomenon also known as "pop-ins" (Wang et al., 2020). This is
caused by local fracture occurrence in the specimens during the
shear creep process (Li et al., 2017).

Rock creep deformation is dependent on the magnitude of stress
(Naumenko et al., 2009; Zhao et al., 2018). However, there is a
scarcity of literature investigating the stress dependence of direct
shear anisotropic deformation behavior for shale. To obtain the
elasto-visco-plastic deformation properties of shale under low
shear stress conditions (see Figs. 4), Fig. 6 presents the time-
dependent deformation properties of shale with five different
bedding inclinations. Since each set of deformation data was
recorded at a different stress level, the creep compliance of shale
with five different bedding orientations was calculated to compare
the shear creep deformation response of shale with varying in-
clinations of bedding under a low shear stress. The results include
characteristics of the long-term shear deformation behavior, as
shown in Fig. 6a. Under all bedding inclinations, the creep
compliance of shale rises approximately linearly with logarithm of
time. The creep compliance exhibits anisotropic properties under
different bedding inclinations, similar to the elastic properties
(Sone and Zoback, 2013a; Geng et al., 2017). To analyze the change
in creep compliance with bedding inclination over time, Fig. 6b
shows the creep compliance at different creep time scales (t = 0.5, 1,
2, 4, and 8 h). Regardless of the bedding orientation, the creep
compliance increases with elapsed time, indicating that the

damage of shale during deformation is continuously accumulating.
The difference in creep compliance change is significant under
different bedding inclinations. When the deformation time is 8 h,
the creep compliance of the shale specimens with a = 30° is the
largest, and the creep compliance of specimens with a = 60°, 90°,
0°, and 45° decreases successively. Furthermore, the relative
magnitude of shale creep compliance varies with creep time scales
and bedding inclination angles. For example, at shorter time scales
(e.g.t =1 h), the creep compliance of shale specimens with « = 60°
is greater than that of shale specimens with « = 30°. However, as
the creep time increases, the creep compliance of shale specimens
with « = 30° begins to exceed that of shale specimens with « = 60°.
This gap becomes more prominent with elapsed time. Thus, it is
necessary to analyze the evolution of the anisotropic creep
compliance of shale at different creep time intervals. As shown in
Fig. 6¢, during the creep time interval of t = 0.5—8 h, the increment
of creep compliance of shale specimens at « = 30° is the greatest,
and those of the creep compliance of the specimens at a = 90°, 0°,
60°, and 45° decrease consecutively. It is noticeable that the in-
crease percentage and increasing rate of the creep compliance at
a = 0° exceed those at « = 30° after 4 h of creep. Thus, under en-
gineering time scales (shale gas extraction generally lasts for
several years or even decades), the shear creep deformation of
shale at @ = 0° may be the most significant. In summary, bedding
inclination has a substantial control of the direct shear creep
behavior of shale, even under low shear stress conditions.

To distinguish the elastic and viscous components from the total
strain during the shear loading and unloading stages, this study
conducted unloading creep tests on shale with « = 30° and 60°.
Fig. 7a plots the shear stress-strain curves during the pure loading
and unloading stages (excluding creep). For the unloading stage,
the rate of recovery of shear strain exhibits a trend of a gradual
increase to a constant value, and the shear modulus g, during the
constant stage of strain recovery rate satisfies g3g->ggo°. As a resul,
the recovery shear strain value of shale specimen with & = 30° in
the unloading stage is greater than that of « = 60°. The instanta-
neous plastic strains of shale at « = 30° and 60° are 17% and 20% of
the peak shear strain during the loading stage, respectively, which
also causes the loading-unloading shear stress-strain curve to
form a hysteresis loop. Fig. 7b further analyzes the energy dissi-
pation during loading and unloading for these two bedding ori-
entations. The energy dissipation of @« = 30° and 60° shale
respectively accounts for 36% and 40% of the total strain energy
during the loading and unloading stages. This indicates that more
energy is used to generate nonelastic strain in the specimen with
a = 60° during the shear loading and unloading process. It is
impossible to distinguish between viscoelastic and viscoplastic
creep due to the lack of creep tests after unloading in most shale
creep studies (Chau et al., 2017). Based on the deformation curve
when unloading to 0.8 MPa (see Fig. 3), the time-dependent
deformation curves in the creep stage and the delayed elastic re-
covery stage are plotted in Fig. 7c (for comparison, the sign of the
delayed recovery strain in Fig. 7c is reversed). The creep and
delayed recovery strains of specimens with « = 30° and 60° exhibit
a linear relationship with the logarithm of time. As shown in Fig. 7d,
within the initial 4 h, the delayed elastic recovery strains of spec-
imens with « = 30° and 60° are 9.4 x 107 and 2.5 x 1074,
respectively, whereas the creep strains of shale during the same
time period are 6.5 x 10~% and 5.2 x 1074, respectively. At o = 30°,
the delayed elastic recovery strain of shale during the initial 4 h is
significantly greater than the creep strain, indicating that recover-
able deformation is also generated during the process of pure
loading of the creep stress. Overall, the shear deformation is pri-
marily of elastic and viscoelastic deformation. At certain bedding
orientations (such as 30°), it is challenging to separate viscoelastic
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Fig. 4. Creep deformation evolution of shale with different bedding orientations under multiple levels of shear stress. The legend is labeled as number-number; the first number is

the bedding inclination angle while the second number is the level of shear creep stress. For example, 60—34.70 means the shear strain of the specimen with bedding inclination
angle of 60° under the direct shear stress of 34.70 MPa.
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strain and viscoplastic strain merely by unloading creep tests. This
may be attributed to the fact that the shear stress applied does not
follow a specific stepwise function of time (Hilsdorf and Miiller,
1983), or it may be caused by the complex failure mechanisms
associated with shale anisotropy, which requires further
investigation.

To analyze the creep properties under different shear stress
levels, the creep deformation of anisotropic shale specimens un-
der high shear stress conditions is analyzed. Since shale speci-
mens at « = 45° and 90° entered the accelerated creep stage
directly after the final level of shear stress was applied, the pre-
level creep deformation data of the shale specimens were selected
for analysis under these two bedding inclinations. Fig. 8a and b
shows the development of the shale specimens’ creep compliance
in the initial, steady-state, and accelerated stages with different
bedding orientations over elapsed time in semilogarithmic and
double-logarithmic coordinates, respectively. Compared with
those under low shear stress conditions (see Fig. 6), the aniso-
tropic properties of the shale creep compliance under high shear
stress conditions are more complex. The values of the shale creep
compliance at different creep time scales (such as 0.5, 1, 2, 4, and
8 h) under different bedding orientations are significantly
dispersed, making it difficult to qualitatively and quantitatively
characterize the control of bedding orientation on the direct shear
creep behavior of shale. Further analysis shows that in the co-
ordinates (see Fig. 8a), the slope of the creep compliance variation
curve increases gradually in the initial creep stage, then stabilizes
at a particular value in the steady-state creep stage, and ultimately
rises dramatically in the accelerated creep stages. In contrast, in
double-logarithmic coordinates (see Fig. 8b), the rate of increase
in the creep compliance in the initial and steady-state creep stages
slows, the attenuation rate decreases gradually, and it eventually
rises dramatically in the accelerated creep stage till failure. The
trends of change in the creep compliance in different coordinate
systems present opposite phenomena in the initial and steady-
state creep stages, suggesting the complexity of the creep mech-
anism of shale under shear. Simultaneously, without considering
accelerated creep, the creep compliance of the shale specimens
with & = 0° remains at the minimum within more than 98% of the
creep time, followed by 90°. However, the dispersion of creep
compliance at other angles remains high, making it difficult to
intuitively identify the relative magnitude of creep compliance at

a = 30°,45° and 60° under high shear stress conditions. To further
characterize the anisotropic properties of creep deformation un-
der a high shear stress, Fig. 8c presents the evolution of the overall
slope of the creep compliance curve (without considering the
accelerated creep stage) with respect to the bedding orientation in
semilogarithmic and double-logarithmic coordinates, K; and K>,
respectively. Both K; and K> show an increasing trend at first
before decreasing with bedding orientation. K reaches its mini-
mum and maximum at ¢ = 0° and 45°, respectively, while K>
reaches its minimum and maximum at o = 90° and 60°, respec-
tively. This is because, compared with K3, K in double-logarithmic
coordinates places more emphasis on describing short-term strain
(Bazant and Chern, 1983), which results in a large curvature in the
creep compliance curve of shale with some bedding orientations
in double-logarithmic coordinates, i.e. using a larger K> value to fit
short-term creep compliance data. However, the primary objec-
tive of conducting rock creep studies is to predict the long-term
mechanical properties of rock. Therefore, we need to discuss the
practical application of Ky and K. If Kj is an effective metric, shale
with @ = 0° would have the minimum creep compliance under
direct shearing, with the creep compliance increasing succes-
sively in the order of @ = 90°, 30°, 60°, and 45°. If K5 is an effective
metric, it yields that shale with a = 90° would have the minimum
creep compliance, which rises successively at « = 0°, 30°, 45°, and
60°. Compared with the test data, it is apparent that K; provides
more consistent predictions than K,. This suggests that for the
quantitative characterization of shale anisotropic creep behavior
under direct shearing, a logarithmic model is acceptable (superior
to the power law model). This will be discussed in Section 4.1.
The determination of the inception of accelerated creep has a
significant impact on engineering practice, such as wellbore
instability. The starting point of accelerated creep can determine
the threshold of the mechanical parameter evolution of shale. Fig. 9
shows the stress 7. and strain v; corresponding to the shear-
induced accelerated creep onset in anisotropic shale samples. As
the bedding orientation increases, both 7. and 7y; show an
increasing trend followed by a decreasing trend. Both 7. and v,
reached their minimum values at & = 0° and maximum values at
a = 60°. This indicates that time-dependent fractures along
bedding planes can be easily activated when the bedding plane is
parallel to the shear loading. Shear accelerated creep is most
difficult to occur at an angle of « = 60° because the maximum
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Fig. 6. (a) Creep compliance evolution of shale with five bedding orientations under a
low shear stress (the legend is the same as that of Fig. 4); (b) Creep compliance of shale
with five bedding orientations under different creep time scales (t = 0.5, 1, 2, 4, and
8 h) and a low shear stress; and (c) Creep compliance increment of shale with five
bedding orientations in different time periods AJ under a low shear stress.

deformation is required to activate time-dependent fractures at this
bedding orientation. For comparison, the normalization method is
used to describe the variation trend of ¢ (the ratio of 7e to ;) with
respect to bedding orientations. In the normalization process, £ was
set to 1 at « = 0°, based on which ¢ at other bedding orientations is
calculated (see Fig. 9). The results show that £ value decreases with
increasing bedding orientation «. When « changes from 0° to 30°,
the £ value decreases rapidly; the £ value at o = 30° is 75% of that at
o = 0°. When « increases from 30° to 90°, the ¢ value decreases
linearly at a constant rate with increasing bedding orientation, i.e. £
can be considered a monotonically decreasing function of bedding
orientation «. This indicates that the data processing method in this
study can effectively simplify the construction of functions to
represent anisotropic creep. Moreover, the minimum £ value of the
shale specimens is approximately 70% of the maximum value,
providing a critical boundary condition for quantitatively evalu-
ating the anisotropic function of creep failure.

3.2. Anisotropy of shale steady-state creep rate under direct
shearing

The test results indicate that the steady-state creep stage
dominates the longest time in the entire creep process. Since shale
gas production typically lasts for several years or even decades, it is
imperative to further investigate the anisotropic steady-state creep
behavior of shale samples. Fig. 10 shows the shale steady-state
creep rate variation trend with bedding orientations and shear
stress plotted on semilogarithmic coordinates. As shown in Fig. 10a,
the steady-state creep rate of shale rises with increasing shear
stress, irrespective of the bedding orientation. Under low shear
stress levels (1 < 41 MPa), the steady-state creep rate of shale at
« = 0° is approximately ten times higher than that at other bedding
orientations. Under high shear stress levels (t > 41 MPa), the
steady-state creep rate of shale at « = 30°, 45°, 60°, and 90° in-
creases significantly with bedding orientation, and the difference
with the steady-state creep rate of shale at « = 0° decreases to
within one order of magnitude. This indicates that anisotropy and
shear stress significantly affect the shale steady-state creep rate.
Based on previous studies (e.g. Bazant and Chern, 1984; Brantut
et al., 2014), the power law function and the exponential function
are used to quantitatively analyze the relationship between the
anisotropic steady-state creep rate of shale and shear stress:

Yste = ar? (1)

Yste = hexp(ur) (2)

where 7. is the steady-state creep rate; a, b are the fitting pa-
rameters of the power law function; and h, u are the fitting pa-
rameters of the exponential function.

Fig. 10b and c shows the fitting results of Egs. (1) and (2),
respectively. The fitting coefficient R?> for both functions is
greater than 0.8 in most cases, indicating that both functions can
adequately describe the trends of steady-state creep rate with
changing shear stress and bedding orientation. Notably, in
semilogarithmic coordinates, when the shear stress is high, the
power law function (see Eq. (1)) tends to underestimate the
steady-state creep rate, while the exponential function (see Eq.
(2)) has a better fitting effect. Conversely, at a lower shear stress,
the exponential function significantly underestimates the steady-
state creep rate, whereas the power law function more accurately
describes the development of the steady-state creep rate. The
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analysis shows that the power law function and exponential
function can characterize the relationship between the steady-
state creep rate and shear stress within only a specific stress
range. Unfortunately, both cannot reflect the stress dependence
of the steady-state creep rate during the hardening and damage
process of shale (Sone and Zoback, 2013a). This is because some
studies (e.g. Bazant and Chern, 1983) uniformly plot the original
data obtained from shale creep tests and the calculated values of
the theoretical model in logarithmic space, which largely disre-
gards the deviation of the calculated values from the experi-
mental data. To predict the variation in the shale steady-state
creep rate under any shear stress, a semilogarithmic model is
proposes in the study that can characterize the evolution of the
steady-state creep rate with shear stress, based on the linear
relationship between the logarithm of the steady-state creep rate
and shear stress:

lOglo'Yste =c+dt (3)
where ¢ and d are the fitting parameters of the semilogarithmic
model.

In Eq. (3), the intercept c represents the logarithmic form of
the steady-state creep rate of the shale specimens when the
shear stress approaches 0. Despite the challenge of directly
testing ¢ with current experimental testing techniques, this
approach indicates that the initial creep stage will inevitably
evolve into the steady-state creep stage under a particular shear
stress, regardless of the variations of the bedding orientations
and shear stress. This is because new stress concentration points
are inevitably generated during creep deformation, continuously
activating new creep (Chau et al., 2017). The slope d reflects the
stress dependence of the steady-state creep rate of shale at
different bedding orientations. The larger the slope d, the higher
the stress dependence of the steady-state creep rate of shale.
Additionally, it is noted that in a semilogarithmic coordinate
system, when the shear stress approaches the failure stress, the
slope of the steady-state creep rate—stress curve at « = 0° is the
greatest (see Fig. 10a). Thus, taking steady-state creep rate data at
a = 0° as an example, Fig. 10d compares the newly proposed
semilogarithmic model (Eq. (3)), the power law function, and the

exponential function with experimental data. Compared with the
power law and exponential function, the semilogarithmic model
can better characterize the steady-state creep rate evolution
under shear stress, reducing the deviation of the calculated re-
sults from the experimental steady-state creep rate data.

To better unserstand the capacity of the semilogarithmic
model (Eq. (3)) to represent the anisotropic steady-state creep
rate of shale under different shear stresses, Fig. 11a shows the
representation of the semilogarithmic model for the steady-state
creep rate evolution of shale specimens with five different
bedding orientations. It seems that the trend of the steady-state
creep rate of shale, with various bedding orientations, can be
characterized by the semilogarithmic model at the changing
shear stress. However, the slope and intercept of the fitting curve
show significant differences. Fig. 11b further shows the evolution
of the semilogarithmic model parameters ¢ and d with bedding
orientation «. As « increases, the intercept c of the semi-
logarithmic model shows a downward trend before rising. The
value of c is the greatest when a = 0° and is the least when
a = 60°. This indicates that shale is most prone to shear creep
deformation at & = 0°, while « = 60° is the bedding orientation
where it is most difficult for shale to undergo creep deformation.
The slope of the semilogarithmic model, d, increases initially and
then decreases with increasing «. The value of d peaks when
a = 60°, at approximately twice its minimum value (a = 0°). This
is because the propagation of shear sliding through the bedding
and matrix is more complex than that of simple shear sliding
along the bedding. Simultaneously, the intercept of the semi-
logarithmic model, c, and the slope, d, are not monotonic func-
tions of the bedding orientation «. This is because the tensile
action induced by direct shear stress further promotes shear
sliding along the bedding with increasing shear stress, reducing
to some extent the energy required for shear penetration
through the bedding and matrix along the predetermined shear
plane. In addition, the bedding orientation significantly affects
the energy distribution applied to the specimen, resulting in a
significant anisotropy in the steady-state creep rate of shale. The
above analysis shows that the newly proposed semilogarithmic
model can effectively characterize the shale steady-state creep
rate at different bedding inclinations and shear stress levels.
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Fig. 8. (a) Evolution of anisotropic creep compliance of shale with five bedding ori-
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4. Discussion

4.1. Applicability of empirical creep models for representing shear
creep behavior

Empirical creep models have been extensively studied due to
the simplicity, ease of understanding and application. While
empirical creep models can adequately fit experimental data, the
ability to predict long-term creep deformation is questionable.
Moreover, it is difficult to determine the superiority of different
empirical models in some cases. For shale, there is also controversy
over the consideration of shale’s intrinsic anisotropic properties by
empirical models. Consequently, it is necessary to evaluate the
empirical creep models in representing shale’s anisotropic creep
behavior under direct shear. Currently, the commonly used equa-
tions for empirical creep models include the following equations
(Bazant and Chern, 1983, 1984; De Schutter, 1999; Brantut et al.,
2013; Sone and Zoback, 2014):

(1) Power law model

v = Apt™ (4)

(2) Logarithmic model

v =A1 +Byloggt (5)

(3) Exponential model

7= Ay (1-Bye %) (6)
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Fig. 9. The shear stress 1, strain vy, and the corresponding normalized stress-strain
ratio ¢ of shale specimens with different bedding orientations upon accelerated creep.
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Fig.10. (a) Variation in shale steady-state creep rate with shear stress in semilogarithmic space at different bedding orientations; (b) Power law function fitting of the shale steady-
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(taking the steady-state creep rate data of shale at « = 0° as an example).

(4) Hyperbolic model:

t
T= A3 -+ B3t (7)
(5) Crack damage creep model (Zhao et al., 2017)
v = A4e—B4/ln(kt) (8)

where vy represents the creep strain; t is the creep time; and A;
(i=0,123,4),B (i=12,3,4), m ty, and k are the fitting
parameters.

Notably, most researchers have verified empirical creep models
merely from the perspective of creep deformation. However,
compared with creep deformation, the creep rate is more sensitive
to experimental conditions (Liu et al., 2021a). The evolution of the
creep rate is equally important from a physical mechanism
perspective, and its study facilitates the connection between the

macroscopic creep behavior of rocks and the microscopic mecha-
nisms (Ishibashi et al., 2016). Thus, it is also crucial to study the
rationality of the empirical creep models by analyzing the evolution
of the creep rate throughout the entire direct shear creep process.
The corresponding formulas for calculating the creep rate for the
five empirical creep models mentioned above are as follows:

= Agmt™! 9)
. B
Y= tinio (10)
7 = AgBye % /g (11)
¥ = A732 (12)
(As + Bst)
—By/In(kt)
y A4B4e 4 (13)

(In(kt))*t
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Fig. 12 shows the creep and creep rate fitting curves obtained
using different empirical creep models (using the shale creep test
data under « = 45° and 1 = 47.26 MPa as examples; creep time of
48 h). The corresponding fitting parameters and fitting correlation
coefficients R? are given in Table 2. Fig. 12a and b shows that all the
tested empirical creep models can accurately fit the creep strain
data after a creep time of t > 5000 s. In particular, the fitting co-
efficient R? of the crack damage creep model is as high as 0.9862 at
48-h testing time, and the power law model with the lowest fitting
coefficient still returns an R? value as high as 0.8848. This indicates
that it is difficult to directly evaluate the advantages and disad-
vantages of the five empirical creep models based on the creep
strain—time curves. The evolution curves of the creep rate corre-
sponding to the five empirical creep models are obtained (see
Fig. 12c and d) by substituting the parameters obtained from the
creep strain fit into Eqs. 9—13. From Eqs. (9) and (10), we know that
in double-logarithmic space, the slope of the creep rate predicted
by the power law model is m-1, and the slope of the creep rate
predicted by the logarithmic model is —log1o(In(10)). Fig. 12c shows
that these two types of models seem to fit the experimental data
well; but in semilogarithmic space (Fig. 12d), these models still
deviate from the test data. However, these two models are closer to
the test data than the other empirical models. In addition, the curve
of the logarithm of the exponential model-predicted creep rate
with time is a straight line with a constant slope of —logig(e/to), but
the constant slope obviously disagrees with the experimental re-
sults (see Fig. 12c and d). Notably, the exponential model assumes
that the mechanical behavior is independent of the deformation
history, which is inconsistent with the fact that the creep behavior
of shale depends on the deformation history and stress path
(Palmer et al., 2007). The hyperbolic model predicts that the square
of the creep rate is inversely proportional to time and that its
characterized creep rate decays with time at an accelerating rate far
greater than those of the power law and logarithmic models. This
ultimately leads to the creep deformation approaching its final
value in a short period of time, which is apparently inconsistent
with the creep rate change pattern shown in Fig. 12c and d. At the
same time scale, no evidence of creep deformation termination has
been found in existing creep experiments of exceptionally long
durations. This is because there will always be a location of stress
concentration that causes the propagation and creep of microcracks

Table 2

Five empirical creep model parameters and their correlation coefficients R? based on
4-h and 48-h creep data fitting (taking the direct shear creep data of shale specimen
45—47.26 as an example).

under constant stress (Chau et al., 2017; Kong et al., 2023). The
crack damage creep model predicts that the creep rate will rapidly
increase to a maximum value in a short period of time, followed by
a dramatic decrease, which contradicts the experimental trends
shown in Fig. 12c and d. In summary, all five commonly used
empirical creep models can approximate the evolution of the creep
strain with elapsed time. However, only the power law and loga-
rithmic models can predict the creep rate effectively.

Notably, the above analysis is limited to the fitting ability of
empirical models to creep deformation. It is also necessary to
evaluate the capability of these empirical models to predict the
long-term shear creep behavior of shale, which is more critical for
engineering practice and application. In this study, the parameters
of the five empirical creep models were fitted using the initial 4-h
creep test data. Using specimen 45°-47.26 as an example, Table 2
tabulates the corresponding fitting parameters and correlation
coefficient R%. Then, the same parameters are used to predict the
creep behavior from 4 h to 48 h, as shown in Fig. 13. Fig. 12 shows
that the creep strain of shale at « = 45° measured at 48 h under
T = 47.26 MPa is 0.129%, which is used as the benchmark for pre-
dicting the 48-h shear creep deformation by the five empirical
models. It shows that long-term direct shear creep predicted by the
power law model significantly overestimates the time-dependent
deformation, while the exponential model and the crack damage
model predicted values are considerably lower than the benchmark
value. This is because when using Eqs. (6) and (7) to predict direct
shear creep deformation, the direct creep rate calculated by these
two formulas approaches 0 at creep time t > 24 h (several orders of
magnitude smaller than the power law and the logarithmic
models), leading to a minimal increase in the subsequent creep
strain. The 48-h creep deformation (0.123%) calculated using the
hyperbolic model is slightly lower than the benchmark value. As a
bounded formula, the hyperbolic model calculates a "final creep
value"; however, the creep is likely to continue indefinitely (Brantut
et al., 2013). The logarithmic model calculated a prediction value
slightly higher than the benchmark value (0.136%); this is because
the initial short-term (e.g. 4 h) accumulated strain is not purely
"creep behavior”, but is influenced by the instantaneous loading
stages, which increases the initial slope of the creep strain-time
curve. Some scholars (e.g. Geng et al., 2017) simply discard the

Empirical creep

Parameter for

14,400 s (=4 h)

172,800 s (=48 h)

model time interval
Power law model Ao 3.076 x 107> 1.468 x 10~
M 0.362 0.1836
R? 0.9754 0.8848
Logarithmic model A, —-8.612 x 107 —6.086 x 107
By 4248 x 1074 3.628 x 1074
R? 0.9662 0.9834
Exponential model A, 9.192 x 1074 1.228 x 1073
B, 0.7843 0.5643
to 4078 23318
R? 0.9917 0.9376
Hyperbola model As 2,063,662 4,073,172
Bs 972.5 789.9
R? 0.9755 0.9485
Crack damage A4 1.626 x 1073 3.643 x 103
creep model By 5.248 11.35
K 0.1402 0.2776
R? 0.7557 0.9862

-2
10 E ==« = Power law(4 h) Power law(long-term forecast)
j Logarithmic(4 h) Logarithmic(long-term forecast)
Exponential(4 h) Exponential(long-term forecast)
= =Hyperbola(4 h)  «eee= Hyperbola(long-term forecast)
Crack damage(4 h) «+ -+ Crack damage(long-term forecast) ..-
107 5
.g i
: i
7] [}
o i
] K 1
&) 4 i
1044 _.-9® 17 | :
1 .~ - ’ i '
> ° , H '
i i4h 148 h
. [}
) K4 I i .
KA i :
- i :
107 A — T ——rrr— ey
10' 10? 10° 10" 10° 10°

Time (s)

Fig. 13. Five empirical creep model parameters obtained using the initial 4-h test data
to predict shear creep deformation results (taking specimen 45—47.26 as an example).
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initial short-term accumulated creep strain as instantaneous strain.
However, the initial short-term strain contains a significant amount
of creep strain, and directly excluding this short-term strain from
the logarithmic model significantly reduces the applicability of the
model. It suggests that the self-similar characteristics of the loga-
rithmic model can be used to address this deficiency. As the test
time increases, the logarithmic model can more accurately rectify
the slope of the creep strain-time curve. Due to the limitations of
the test conditions, a creep test over an infinite period of time is
impractical. For this, it is necessary to analyze the time of the creep
test needed to fit the logarithmic model parameters.

Fig. 14 shows the difference between the predictions of the
logarithmic model and the test data. The fitting of the parameters
of the logarithmic model is obtained with the experimental data
under different time scales (t = 8 h, 16 h, 24 h, 32 h, 40 h, and
48 h). Fig. 14 shows that the longer creep test data are used to fit
the model parameters. The predicted creep deformation value of
the logarithmic model is closer to the real experimental value.
Fig. 15 shows the fitting parameters calculated by the logarithmic
model using different time scale test data, fitting correlation
coefficient, and margin of error between the predicted value and
test value at t = 48 h. Fig. 15a shows that the intercept A; of the
logarithmic fitting function increases with increasing time; slope
B1 decreases continuously with increasing time scale, but the rate
of decay shows a changing pattern of first increasing and then
decreasing with increasing time scale. When the creep time
t > 44 h, the decay rate of slope B; over time is below 1%.
Rassouli and Zoback (2018) considered that a 24-h creep test is
sufficient to characterize the real creep compliance of shale
through short-term (4 h) and long-term (4 weeks) creep tests. It
can also be seen from Fig. 14 that when the creep time t > 24 h,
the prediction curve of the logarithmic model begins to coincide
highly with the test data. In addition, as shown in Fig. 15b, the
logarithmic model has an excellent fitting effect for the experi-
mental data under different time scales, and the fitting correla-
tion coefficient R? is larger than 0.96. The margin of error
between a predicted value of the fitting function and the corre-
sponding experimental data is reduced from 5.7% at t = 4 h to
0.5% at t = 48 h. Evidently, the continuous creep test time of 48 h
meets the prediction accuracy of the logarithmic model. In other
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Fig. 14. The logarithmic model parameters calculated based on test data collected at
different time scales to predict shear creep deformation results (taking specimen 45—
47.26 as an example).

words, compared with the power law model, exponential model,
hyperbolic model and crack damage creep model, the logarithmic
model can better explain the creep strain and creep rate
measured by the test and can more accurately predict long-term
shear creep deformation.

It shows that examining shale’s direct shear creep behavior
solely in specific relational diagrams may be misleading and raise
inevitable doubts. For example, in the creep strain-time graph in
log-logarithmic coordinates, extrapolation over a long period of
time will obscure larger errors in creep deformation (points
farther from the origin in Fig. 13, where smaller changes in the
vertical coordinate represent significant changes in strain). To
avoid the potential illusion of good consistency between the fitted
(or predicted) values of the creep model and experimental data,
this paper endeavors to compare the predicted values of creep
with experimental data in as many coordinate systems as possible
to ensure the rationality and applicability of the selected creep
model.
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Fig. 15. (a) Evolution of the logarithmic model parameters based on fitting test data
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value (taking specimen 45°-47.26 as an example).



Y. Xie et al. / Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 1262—1279

4.2. A new mathematical method

In Section 4.1, it indicates that the anisotropic creep behavior of
shale under direct shear can be described by the logarithmic
empirical model (see Eq. (5)). However, one limitation of Eq. (5) is
that it predicts an infinite creep rate at t = 0. To eliminate this
defect, the logarithmic empirical model can be modified to:

v =06+vlogp(t+1) (14)
where ¢ and » are the fitting parameters for the modified loga-
rithmic model.

By fitting the creep test data of shale with five different bedding
orientations under different shear stresses using Eq. (14), Fig. 16a
and b shows the variations in the parameters ¢ and v, respectively.
The parameters 6 and » exhibit significant scattering, making it
challenging to determine the relationship between the fitting pa-
rameters and bedding orientation or shear stress. In fact, due to the
variation in the shale specimens, some specimens may have more
initial microcracks, which may not be fully consolidated under the
first level of shear stress (low shear stress). This could result in
smaller 6 and larger » values; while under a high shear stress, some
specimens may form significant local fractures from microcracks
(see Fig. 5), resulting in larger ¢ and smaller v values. Under these
special circumstances, the discussion of shear creep behavior of
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shale must consider its internal crack geometry and corresponding
mechanical properties. If the data points under these particular
circumstances in Fig. 16a and b are not considered, the fitting pa-
rameters ¢ and » approximate a linear relationship with shear
stress, as shown in Fig. 16c and d. The relationships between the
parameters ¢ and v and shear stress can be represented by the
following linear equations:

0 =AM + 471 (15)

V= iy + fpT (16)
where A1, A2, w1 and uy are the fitting parameters.

The fitted correlation equations of Egs. (15) and (16) are shown
in Fig. 16c and d. Although it shows that the dependence of creep on
stress is nonlinear, this nonlinearity inevitably complicates the
construction of an anisotropic creep model for shale. However, Egs.
(15) and (16) and Fig. 16¢ and d shows that both the fitting pa-
rameters ¢ and v have some linear dependence on the shear stress.
Thus, it assumes that the nonlinear problem of shear creep stress
dependence can be transformed into a linear problem by Egs. (15)
and (16), which significantly reduces the difficulty of quantitatively
characterizing the anisotropy of shale shear creep deformation.

To analyze the ability of Eqgs. (15) and (16) to consider the
anisotropic intrinsic properties of shale, Fig. 17 shows the
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and (c) and (d) the linear fitting equations of parameters ¢ and » and the fitting correlation coefficient R?, respectively.
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variations in the parameters A3, A2, w1 and up with bedding
orientation. As the bedding orientation changes from 0° to 90°, 44
and u, show a trend of first increasing and then decreasing, while
A> and uq show an initial decrease followed by an increase.
Notably, there is a clear synchronization in the variations in A; and
w1 and the variations in Ay and wy, indicating that there is some
coupling relationships in between A; and u; and between 4, and
uz. From a mathematical perspective, this is a problem of related
rates. Once the variation in v with shear stress and bedding
orientation is known, the corresponding ¢ can be derived, further
reducing the difficulty of considering anisotropy in constructing
the shear creep model.

Anisotropy is essentially related to the oriented microstructural
arrangement within the rock, and the fabric tensor F;-j can express
anisotropic bodies under true stress as equivalent isotropic bodies
under modified stress, thereby quantitatively describing the
anisotropic mechanical behavior of bedded materials. Therefore,
the fabric tensor can be used in constructing strength failure cri-
terion or constitutive models for the anisotropic mechanical
properties of bedded geomaterials (Pietruszczak and Mroz, 2000;
Lu et al,, 2021).
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Fig. 17. Variations in parameters (a) A; and 4, and (b) u; and u with bedding incli-
nation angle.

The stress state of shale specimens under the direct shear
loading path is shown in Fig. 18a. The stress state of the specimens
can be simplified into a normal component and a tangential stress
traction vector in the two-dimensional (2D) stress field. Therefore,
the direct shear creep test can be simplified into a 2D anisotropic
mechanical problem; hence, the fabric tensor Fj; can be constructed
as follows:

ng = (17)

171+4 0
2 { 0 1- A}
where 4 is the fabric parameter, which is used to quantitatively
describe the degree of the initial anisotropy of the material.

As shown in Fig. 18b, the shear creep behavior of shale is pri-
marily controlled by two stress components (shear stress and
normal stress) and the bedding orientation. It assumes that shear
and normal stresses are uniformly distributed on a shear failure
surface. Therefore, for an element located at any point on a shear
failure surface, the in-plane stress state during shear loading is
represented by a combination of normal stress o, and shear stress ©
components (see Fig. 18b). If the in-plane stress state is further
expressed by the in-plane principal stress, it can be simplified to a
compressive stress g1 and a tensile stress ¢, as shown in Fig. 18c.
Then, the angle # between the normal direction of the bedding
surface and the maximum in-plane principal stress o1 can be
expressed as

= a—%arctan(Zr/cn) (18)

When the principal stress direction is rotated relative to the
material’s principal axis, the fabric tensor should be transformed
into a new fabric tensor determined by the principal stress direc-
tion in the reference coordinate system:

,  1[1— Acos(26
Fiy = QuQF; = 5 Asin(z((a) )

=1,2)

A4sin(26) i
1+ dcos(26) | MY

(19)

where Q is the conversion tensor formed by the cosine value of the
angle between the direction of the fabric tensor and direction of the
principal stress axis.

Furthermore, the deviatoric fabric tensor Fg can be calculated by

sin(20)

4 [ —cos(20)
{ cos(26) (20)

T _ P .. = — .
Fij = Fij — Fud; /2 2 | sin(26)
where ;; is the Kronecker notation.
The in-plane stress tensor at a point on the shear failure surface
can be expressed as follows:

7|7 ] @1)

The corresponding deviatoric stress tensor can be expressed as
follows:

On
7 T

SU = a'ij—a'kkél-j/Z = - (22)
=

At this point, the projection of the fabric tensor F;; on the di-
rection of the unit deviatoric stress tensor is an invariant, which can
be defined as the anisotropic state variable y:
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Fig. 18. (a) Stress state of the shale specimens during shear creep; (b) Stress state of any unit element on the shear failure surface; and (c) Stress state of the unit element rep-

resented by the in-plane principal stress state.
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where ¢ can quantitatively characterize the intrinsic bedding
anisotropy and stress-induced anisotropy in shear creep tests.

With the experimental results of shale anisotropic shear
strength research (also see Fig. 17), it can be found that the change
in material parameters u; and uy with bedding orientation is very
similar to that of shear strength. This change is analogous to the
Mohr-Coulomb strength criterion, which is widely used to
describe the shear strength of geotechnical materials (Ishibashi
et al,, 2016):

t=c+fon (24)

where c is the cohesion and fis the friction coefficient.

Eqgs. (24) and (16) are have a similar form (c is analogous to u1; f
is analogous to uy). Referencing the construction method of the
failure criterion of transversely isotropic geotechnical materials
developed by Pietruszczak and Mroz (2000), the material param-
eters u1 and uy can be written as functions of the anisotropic state
variable y and are approximately given by the following equations:

1 = H1q (1 Y+ pppY? +N131//3> (25)

Ko = Ho1 (1 Y+ gV +M23l//3) (26)

where (11, #12, 13, M21, 22 and up3 are the independent constants.

By substituting Eqgs. (25) and (26) into Egs. (14)—(16), we can
obtain a new shear anisotropic creep model of shale. However, the
specific details of constructing the anisotropic shear creep model
and comparing it with the experimental results need further
studies.

5. Conclusions

In this study, creep tests of shale with five different bedding
orientations (0°, 30°, 45°, 60°, and 90°) under multiple levels of
direct shear stress were carried out. The anisotropic creep behavior
of shale under the combined influence of weak bedding planes and
direct shear loads was analyzed. Based on the experimental data on
shear creep strain and creep rate, an improved logarithmic model
was proposed. Finally, a new mathematical method for construct-
ing anisotropic shear creep models was presented. The main con-
clusions of this paper are drawn as follows:

(1) The shear creep deformation of shale is predominantly
viscoelastic under low shear stress levels. At all bedding
inclination angles, the creep compliance of shale increases
approximately linearly with the logarithmic increase in
elapsed time, and the magnitude of the increase depends on
the bedding orientation and the length of the creep time. The
increment and rate of increase in the creep compliance of
shale specimens with a = 0° are the largest after 4-h
creeping.

(2) The anisotropic properties of shale creep compliance under
high shear stress conditions show that the creep compliance
at a = 0° is the minimum, followed by that at « = 90°. With
semilogarithmic and double-logarithmic coordinates, the
overall slopes K; and K, of the creep compliance curve
(ignoring the acceleration creep stage) show an increasing
and then decreasing trend with the bedding orientation.

(3) The bedding inclination angle significantly controls the
steady-state creep rate of shale under direct shear. At low
shear stress levels, the steady-state creep rate at « = 0° is
approximately ten times higher than at other bedding ori-
entations. A semilogarithmic model is proposed that can
simultaneously reflect the stress dependence of the steady-
state creep rate and reveal the influence of bedding orien-
tation on the steady-state creep rate, which limits the devi-
ation of the calculated result from the observed steady-state
creep rate.
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(4) The power law, logarithmic, exponential, hyperbolic, and
crack damage creep models all can approximately describe
the evolution of creep strain with time, but only the power
law and logarithmic models can fit the creep rate more
effectively. In terms of long-term predictive ability, the po-
wer law model tends to "overestimate creep after loading
durations,” while the logarithmic model based on self-
similar characteristics can give high-precision predictions.
This indicates that the logarithmic model is acceptable for
characterizing the anisotropic creep behavior of shale under
direct shearing.

(5) A mathematical method for anisotropic shear creep model
for shale is proposed, which takes into account the
nonlinear dependence of the anisotropic creep behavior of
shale under direct shear on shear stress and bedding
orientation. The new methodology can significantly reduce
the number of independent parameters and substantially
reduce the computational burden. This is helpful in solving
the anisotropic time-dependent problem of anisotropic
geomaterials.
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