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Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation
process is crucial for construction safety. This paper proposes a modified back analysis method with
multi-objective optimization procedure, which enables a real-time prediction of horizontal displacement
of retaining pile during construction. As opposed to the traditional stage-by-stage back analysis, time
series monitoring data till the current excavation stage are utilized to form a multi-objective function.
Then, the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter
identification. The optimized model parameters are immediately adopted to predict the excavation-
induced pile deformation in the continuous construction stages. To achieve efficient parameter opti-
mization and real-time prediction of system behavior, the back propagation neural network (BPNN) is
established to substitute the finite element model, which is further implemented together with MOPSO
for automatic operation. The proposed approach is applied in the Taihu tunnel excavation project, where
the effectiveness of the method is demonstrated via the comparisons with the site monitoring data. The
method is reliable with a prediction accuracy of more than 90%. Moreover, different optimization al-
gorithms, including non-dominated sorting genetic algorithm (NSGA-II), Pareto Envelope-based Selec-
tion Algorithm II (PESA-II) and MOPSO, are compared, and their influences on the prediction accuracy at
different excavation stages are studied. The results show that MOPSO has the best performance for high
dimensional optimization task.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In the process of deep excavation, controling the displacement
of retaining pile within a predefined tolerance limit is crucial for
construction safety (Wang et al., 2022). Reliable prediction of
excavation-induced ground movement and pile deflection is one of
the effective solutions (Kung et al., 2009). However, due to the
uncertainties embedded in the soil profiles, it is generally difficult
to determine the soil properties accurately. To address this prob-
lem, many researchers have developed the back analysis approach
for soil parameter identification and subsequent construction
parameter optimization.
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
y-nc-nd/4.0/).
Optimization algorithm can determine the soil and construction
parameters through back analysis using field measurements. Zhu
et al. (1998) combined the two-dimensional (2D) finite element
model (FEM) and inverse analysis algorithm to optimize the pa-
rameters, which can be used to predict the real-time surface set-
tlements and deformation of supporting piles during deep
excavation. Zhao et al. (2015) applied the differential evolution al-
gorithm in the deep excavation project of Taipei State-owned En-
terprise Center (TENC), and effectively identified the suitable soil
parameters. Stone et al. (2023) applied the back analysis method in
design of pile length of a new composite foundation system, so-
called caliche stiffened pile. Application of genetic algorithm (GA)
in back analysis can be found in previous studies (Zhu and Liu,
2003; Park et al., 2015).

When conducting back analysis together with finite element
modeling, intensive evaluations with finite element simulations are
required, which can significantly reduce the efficiency of
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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optimization and prediction. Hence, it cannot guide the real-time
deep excavation in practice. Many researchers proposed surrogate
modeling to substitute the time-consuming numerical calculation,
which can significantly improve the computational efficiency. Jiang
et al. (2011) used support vector machine (SVM) to establish the
correlation between geological parameters and soil displacement,
which serves as a surrogate model in subsequent parameter back
analyses. A deep learning algorithm, called embedded fully con-
volutional neural network (EF�CNN), was proposed by Gao et al.
(2020) to replace the finite difference method for predicting the
in situ stresses using a strain-softening model. Comparison with
the experimental results indicated that their approach was stable
and robust. He et al. (2021) combined the finite element method,
neural network and random field theory to study the effect of soil
uncertainty, the framework of which could cover the entire range of
soil profiles, and its applicability was significantly improved. Zhang
et al. (2021) used grey correlation analysis and set pair analysis
(SPA) to determine the influencing factors of landslide problems.
Zhao et al. (2023) applied three types of machine learning algo-
rithms (random forest, SVM and artificial neural network) to
correlate soil layer distribution and tunneling induced ground
movement. Other models include least squares support vector
machine (LSSVM) (Xue, 2017), back propagation neural network
(BPNN) combined with particle swarm optimization (PSO) algo-
rithm (Mohamad et al., 2018), surrogate modeling applied in back
analysis with BPNN (Tao et al., 2019), grey correlation analysis (Tao
et al., 2019), and Adaptive neuro-fuzzy inference system (ANFIS)
(Liu et al., 2021).

Normally, there are different types of measurements in a real
project of deep excavation, such as the horizontal and vertical
displacements of retaining pile and the ground domain. When
different types of measurements are adopted in back analysis, one
has to address the multi-objective optimization task. A semi-
empirical polynomial model has been developed by Zhang et al.
(2015) for updating the soil parameters and predicting the
maximumdeflection of retainingwalls. Through seven case studies,
the model accuracy has been improved to be above 80%. Sun et al.
(2018) combined BPNN and non-dominated sorting genetic algo-
rithm (NSGA-II) algorithm to back-calculate the soil parameters
based on the measured displacements in three directions, and they
further used the identified soil parameters to predict the soil
deformation. Their results show that the prediction accuracy can
reach more than 90%. Jiang et al. (2018a) pointed out that the un-
certainty of geological information has an adverse impact on slope
stability, and they adopted the Bayesian updatingmethod to reduce
the uncertainty. Jiang et al. (2018b) combined BPNN with vector
evaluated genetic algorithm (VEGA) to identify the geological and
mechanical parameters for a deep excavation problem. A new al-
gorithm called enhanced multi-objective differential evolution
(EMODE) was proposed by Jin et al. (2019), where a two-objective
optimization task was established by using lateral wall deflection
and ground movement in a real project. Some scholars considered
different constitutive models as variables in back analysis (Jin et al.,
2020). Tao et al. (2022) used the Kriging method to establish a
surrogatemodel of finite element, and adopted the MOPSOmethod
for parameter optimization. Hong et al. (2023) provided an
advanced reliability design method, in which the point estimating
method (PEM) and multi-objective optimization algorithm were
used to optimize the parameters, showing a higher efficiency than
the NSGA-II algorithm.

As deep excavation is constructed in several stages, there are
continuous recordings of different types of measurements. In pre-
vious studies, researchers normally selected a certain excavation
stage to conduct parameter optimization (Sun et al., 2018). This is
the so-called stage-by-stage model validation, which cannot guide
the real construction, when reliable and efficient predictions are
necessarily required.

This paper develops a modified back analysis method with
multi-objective optimization procedure. The field measured hori-
zontal displacements of retaining piles in each excavation stage
(time series data) are utilized to form a multi-objective function,
which makes full use of the available data and improves the ac-
curacy of parameter optimization, since more data can be obtained
with deeper excavation. It is worth mentioning that in practice,
ensuring the stability of two or more types of monitoring data
simultaneously is challenging, and as such a single type of moni-
toring data is adopted in the proposed approach. Therefore, the
proposed approach is less sensitive to the monitoring data
compared to previous multi-objective optimization procedures,
where the use of several types of real measurements can involve
different uncertain degrees. Furthermore, the BPNN surrogate
model is implemented in the proposed approach to substitute
numerical simulation, which significantly improves the efficiency
of back analysis and parameter optimization. In this way, the real-
time prediction of pile displacement during excavation is available
and affordable.

2. Method

Fig. 1 shows the proposed multi-objective optimization frame-
work, which contains four levels. Level 1 establishes the surrogate
model using the Latin hypercube sampling (LHS) method together
with finite element simulation. In Level 2, the surrogate model
performance is evaluated based on the field measurements. The
establishment and the resolution of multi-objective optimization
task are conducted in Level 3. Finally, online prediction is achieved
in Level 4. Detailed descriptions for each level are given in the
following subsections.

2.1. Surrogate modeling

The procedures of establishing the surrogate model mainly
include: (1) parameters sampling using the LHS method, (2) eval-
uation of the FEM using the sampling parameters, and (3) estab-
lishment of BPNN using sampling parameters as input and
numerical results as output.

2.1.1. Parameters sampling
According to previous studies (Song et al., 2004; Jiang et al.,

2007), the main factors affecting the deformation of retaining
piles are stratum parameters (i.e. elastic modulus E, cohesion c, and
internal friction angle 4) (Cao et al., 2017; Feng et al., 2022),
structural parameters (i.e. supporting strut stiffness) (Qian et al.,
2011; Zhao et al., 2015), and construction parameters (i.e. excava-
tion depth in each stage) (Wu et al., 2021). Hence, these parameters
are selected as the variables in the present study, and the LHS
method is utilized to generate 200 sets of parameters combination.

2.1.2. Evaluation of finite element model (FEM)
The FEM of deep excavation is created based on the design

documents and geotechnical report. The numerical results are
compared with the field measurements for model evaluation. After
that, the parameter samples generated in the previous step are
applied in the calibrated model for iterative calculations, and the
numerical results (i.e. displacement of retaining pile and axial force
of support strut) are extracted.

2.1.3. Establishment of BPNN
The BPNN (Rumelhart et al., 1986) is the most widely-applied

machine learning algorithm. It generally consists of three layers,



Fig. 1. Proposed multi-objective optimization framework.
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i.e. input layer, hidden layer and output layer. The hidden layer
transfers important information between the input layer and the
output layer. BPNN is normally composed ofmultiple hidden layers,
which can realize the modeling of complex problems.

In this paper, the input of neural network includes stratum pa-
rameters, structural parameters and excavation parameters. The
Fig. 2. Satellite view and site const
horizontal displacements of retaining pile at each excavation stage
are taken as the output. When the network training accuracy rea-
ches more than 90%, the established BPNN model can, in general,
replace the finite element model, thereby improving the compu-
tational efficiency of later model evaluation and prediction. The
specific framework is shown in Fig. 10.
ruction photo of Taihu tunnel.
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2.2. Error evaluation

In previous studies, most error functions were defined as sum-
mation of squares due to regression (SSR), mean square error
(MSE), or root mean square error (RMSE) (Qian et al., 2019). In this
paper, in order to more intuitively evaluate the fitting effect of
measurements and back analysis results, the term of R2 is defined
as follows:

R2 ¼ 1�
P ðui � viÞ2P ðui � viÞ2 þ

P ðvi � uÞ2
(1)

where ui is the measurement at the i th observation point; u is the
average value of the measurements at all monitoring points; and vi
is the predicted value using the surrogate model.

The closer the term R2 approaches 1, the higher the fitting ac-
curacy is. Within this framework, the evaluation error until j th
excavation stage is defined as

Zj ¼ 1� R2j (2)

where Rj is coefficient of determination at jth excavation stage.
When it comes to multiple excavation stages, it is necessary to

formulate a total error function. The generalized objective function
can be expressed as a multi-objective optimization form:

min½Zn� ¼ min
�
Z1; Z2;.; Zj;.; Zn

�
(3)

where n is the current excavation stage; and Zn represents the
evaluation error for stage n.
2.3. Back analysis

Back analysis is to combine field measurement and surrogate
model prediction to back calculate the parameters affecting the
deformation of retaining pile. The first step is to select the key
parameters to generate the population. The second step aims to
minimize the error function to fulfil the termination criterion or
reaching the maximum number of iterations. In the subsequent
population calculation, to ensure the consistency with the surro-
gate model training, the LHS method is applied for sampling within
the parameters range as given in Table 4.

The main steps of Level 3 are given as follows.

(1) The Latin hypercube sampling method is used to obtain the
initial population of uncertain model parameters.

(2) The generated parameter sets are transferred into Level 2 to
establish the BPNN machine learning model. Meanwhile,
multi-objective functions are obtained using the trained
BPNN model and real measurements.

(3) The multi-objective function values are sorted (with the
sorting method explained in Section 2.3) to determine the
optimal parameter set within the generated population.

(4) This process is iterated until the stop criterion is fulfilled.

The multi-objective particle swarm optimization (MOPSO) al-
gorithm (Coello and Lechuga, 2002) is applied in the present study.
This algorithm has strong global exploration nature, and it is widely
used in geotechnical engineering (Dominguez et al., 2014; Tian
et al., 2021). This method has two characteristics: (1) adaptive
grid searching: it is assumed that i represents the number of grids,
and gi represents the number of particles in the grid. The proba-
bility that the particles fall in the grid can be defined as pi ¼ 1= gi.
The more crowded the grid is, the lower the probability is. Hence,
the particles track towards the less crowded grids; (2) external
repository: the non-dominated sorting is performed on the upda-
ted results each time, and the non-inferior solution is saved to the
external storage.

When conducting MOPSO, m samples of influence parameters
are firstly generated using LHS, which are brought into the BPNN
surrogate model (see Section 2.1) to obtain the horizontal dis-
placements of retaining pile. Then, field measurements are utilized
for error evaluation. The non-dominated sortingmethod (Deb et al.,
2002) is used to sort the error values with respect to them samples.
The results with lower error values are maintained in the external
database, and the rest is eliminated. Finally, when the number of
external storages exceeds the threshold, the adaptive grid method
is used to sort and eliminate the inferior solutions and to ensure the
diversity of the data. The optimal solution is obtained when the
termination criterion is fulfilled or the maximum number of iter-
ations is reached.

2.4. Online prediction

For traditional deep excavation problems, the monitoring data
are normally investigated when the construction process is already
finished. This is because creating a numerical model and con-
ducting parametric study are time-consuming. Hence, field mea-
surements can only be used to assess the efficacy of numerical
model, and it cannot act as a guideline during the excavation. Due
to this reason, this part of the study proposes an online prediction
method, the key feature of which is to adopt the measurements up
to the current excavation stage for numerical model evaluation and
parameter optimization. Thereafter, the calibrated model parame-
ters are immediately used for prediction of model responses in the
next excavation stage. In this way, the currently available mea-
surements can benefit the future excavation stages. It is worth
mentioning that the key point for successful operation of online
prediction is efficient evaluation of model responses using surro-
gate model, as well as efficient parameter optimization using
MOPSO.

As there are many groups of optimized parameters obtained by
back analysis, it is necessary to select a best set of parameters for
the subsequent prediction. In this paper, the parameter set with the
least cumulative error of all the error functions with respect to each
excavation stage is taken as the optimal set. The formula is given as
follows:

Minpre ¼ min ½sumðZ1;Z2;.;ZnÞ� (4)

where Minpre represents the optimized parameter set with the
minimum cumulative error.

3. Case study - Taihu deep excavation

3.1. Project overview

Taihu Lake tunnel is located in Binhu District, Wuxi, China. It is
an important channel connecting Mashan Street and Taihu New
Town, as shown in Fig. 2. The total length of the tunnel is 10.79 km.
The construction began in June 2017, and it is officially open since
December 30, 2021. The full section of the tunnel adopts the con-
struction method of dewatering deep foundation pit excavation
supported by secant bored piles.

In this study, the selected section (K33 þ 960) is in the middle
part of the whole Taihu tunnel. According to the geological survey
report, there are five layers of strata in the excavation area as seen
in Fig. 3. The soil layers are plain fill (layer 1), muddy clay (layer 2),
silty clay (layer 3), silty clay (layer 4) and clay (layer 5), and the



Table 1
Parameters for Hardening Soil constitutive model.

Parameter Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

Dike

Secant stiffness in triaxial test, Eref50
(kN/m2)

6900 3000 14,000 27,400 13,100 7000

Cohesion, c0ref (kN/m
2) 48.1 7.2 33.8 61.1 73.4 15

Effective friction angle, 40 (�) 14.7 11.4 12.6 17.9 9.5 10
Saturated unit weight, gsat (kN/m

3) 19.7 17.1 20 20.2 20.2 20
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corresponding soil parameters are shown in Table 1. The ground-
water level is at the surface of plain fill layer, which is stable during
the excavation process. The length of the main foundation pit is
43.6 m, and the depth of the foundation pit is 16 m. Retaining pile
adopts the technique of bored cast-in-place pile, and its diameter,
spacing and length are 1000 mm, 1200 mm and 27 m, respectively.

The excavation is supported by one concrete strut and three
steel struts along the depth of the foundation pit (see Fig. 3). The
upper one is concrete strut using C30 concrete, and its arrangement
is 800� 1000@5500 mm (the rectangular cross section has a width
of 800 mm, height of 1000 mm, and spacing of 5500mm). The steel
struts have the arrangement of F609@1200 mm (the circular cross
section has a diameter of 609 mm, and spacing of 1200 mm) and a
thickness of 12 mm. The structural parameters are shown in
Table 2.

During the deep excavation, guide wheel fixed series incli-
nometer is used to measure the horizontal displacement of
retaining pile. The length of inclinometer is 18.5 m, and the interval
of series inclinometer is 0.5 m, leading to a total of 37 monitoring
points. It is worth mentioning that the horizontal displacement at
the bottom of inclinometer is set as 0 to calculate the relative
displacement along the retaining pile. From the bottom to the top,
the calculation procedure of horizontal displacement shown in
Fig. 4 is as follows:

L1 ¼ H12 sin q1 (5)
Fig. 3. Stratum distribution and excav
L2 ¼ H23 sin q2 þ L1 (6)

Ln ¼ Hnnþ1 sin qn þ
Xn�1

1
Li (7)

where Ln represents the horizontal displacement of the n th
monitoring point; Hnnþ1 represents the distance between the n th
and ðnþ1Þ th monitoring points (generally a fixed value of 0.5 m).
qn represents the inclination angle of the connection line between n
th and ðn�1Þ th monitoring points.
3.2. Numerical simulation of deep excavation

Based on the field geological survey report and design docu-
ments, a PLAXIS 2D (version 2021) FEM is established as seen in
Fig. 5. The length of the model is 130 m, and the depth is 36.34 m. It
ation depth of the foundation pit.



Fig. 4. Principle of pile displacement monitoring.
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should be noted that the foundation pit is not symmetric, i.e. the
left side of the foundation pit is 10 m away from the dike, and the
right side of the foundation pit is 12 m away from the dike. The
Hardening Soil model with small-strain stiffness (HSS) is applied in
the present study to describe the soil behavior, which has unique
advantages in dealing with foundation pit excavation. Li et al.
(2019) compared the deformation results of retaining pile in deep
excavation using Mohr-Coulomb model and HSS model, and they
found that HSS model is more suitable for foundation pit with a
depth of more than 15 m. Considering the excavation process in
practice, the multi-stage excavation depths are set as 1 m, 3 m, 4 m,
5 m, 7 m, 8 m, 10 m, 12 m, 13 m, 15 m and 16 m.

In the present numerical model, dike cast-in-place pile, cut-off
wall, retaining pile and base slab are simulated using plate ele-
ments, and concrete support and steel support are simulated using
anchor elements. It is worth noting that the project adopts the form
of dewatering excavation, dikes are set on both sides of the foun-
dation pit. As seen in Fig. 5, the water levels inside and outside the
dike are 0 m and 2 m.

The detailed boundary conditions and assumptions adopted in
the numerical model are given as follows:
Table 2
Structural parameters for deep excavation.

Structure Foundation pit bored pile Concrete str

Material Concrete Reinforced c
Length (m) 27 43.6
Arrangement F1000@1200 mm 800 � 1000
(1) Boundary conditions. The mechanical boundary conditions
at the bottom and outer boundaries of the model are defined
by restricting the deformations in the normal direction,
while the in-plane displacements are allowed. There is no
mechanical fixity on the top surface of the model. Moreover,
the model adopts undrained boundary conditions except at
the top surface.

(2) Main assumptions. The plane strain condition is adopted in
the numerical simulation as the length of the deep excava-
tion is super larger than its width. The soil behavior is
described using the HSS, in which the soil is assumed as an
isotropic material. The concrete, steel support and retaining
pile are assumed as linear elastic materials.

The specific excavation stages in the numerical simulation are
defined as follows:

(1) Generate the initial stress field before foundation pit
excavation.

(2) Activate the dikes on two sides of the deep excavation.
(3) Activate the cut-off wall and supporting piles.
(4) Step-wise excavation stage (1 m, 3 m, 4 m, 5 m, 7 m, 8 m,

10 m, 12 m, 13 m, 15 m and 16 m). The concrete strut is
simultaneously activated after 1 m excavation, and the three
steel struts are activated at 4 m, 8 m and 13 m excavation
stages. The base slab unit is set up when the excavation is
finished.
3.3. Model evaluation

To evaluate the established finite element model, the numerical
results of the left retaining pile are compared with the measured
horizontal displacements.

3.3.1. Parameter setting
Firstly, the initial FEM parameter set is determined according to

the geotechnical report as shown in Table 1. It is worth mentioning
that the other parameters, such as Erefoed, E

ref
ur , and Gref

0 , are related to
the given parameters. All geological formations in this study are
cohesive soil layers. The correlation between each parameter is
determined based on relevant literature (Wang et al., 2013; Huang
et al., 2015; Zhao et al., 2019):

Erefoed ¼ Eref50 ; E
ref
ur ¼ 5Eref50 ;G

ref
0 ¼ 4Erefur (8)

In addition, Poisson’s ratio (vur ¼ 0:2Þ and small strain param-
eter (g0:7 ¼ 0:0003) are defined according to the engineering
judgement. The structural parameters of pile, strut, and cut-off wall
are presented in Table 3.

3.3.2. Numerical results
Fig. 6 shows the numerically calculated horizontal displace-

ments of retaining pile in each stage. It is worth mentioning that
ut Steel strut Dike bored pile

oncrete Steel Concrete
43.6 18

@5500 mm F609@1200 mm F1000@1200 mm



Fig. 5. Geometry and mesh discretization of the finite element model.

Table 3
Construction parameters of the deep excavation.

Parameter Cut-off wall Pile Concrete support Steel support

EA (kN/m) 2.81 � 107 2.5 � 107 2.47 � 107 6.3 � 106

EI (kN/m) 1.4 � 106 2.1 � 106 e e

w (kN/m) 3.5 5 e e

vur 0.2 0.2 e e

lspacing (m) e e 8 5.5

Note: EA represents the axial stiffness, EI represents the bending stiffness, w rep-
resents the weight of out-of-plane unit width plate, and lspacing represents the
spacing between out-of-plane piles.
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the numerical results at the bottom of the pile are also set as 0 to
calculate the relative displacements along the pile, for comparison
with the measured data.

As seen in Fig. 6, the horizontal displacements at different
excavation stages basically conform to the deformation law. At the
beginning of the excavation, the upper part of the pile deforms
rapidly, whilst the lower part of the pile has negligible deformation.
This is consistent with the fact that non-excavated areas are sup-
ported by the adjacent soil domain. The horizontal displacement of
the retaining pile reaches the maximum value at the 10th excava-
tion stage (13 m depth), thereafter the increasing rate of pile
displacement at the lower part of the pile gradually becomes higher
than that at the upper part of the pile. This results in a decrease of
relative pile displacement at the upper part of the pile.
Fig. 6. Numerical simulation results using the initial parameter set.
3.3.3. Comparison with the monitoring data
The monitoring data of pile displacements are shown in Fig. 7.

The monitoring data at different excavation stages (3 m, 5 m and
7m) heavily fluctuate, which is attributed to the on-sitemonitoring
noise. Due to this reason, the horizontal displacements of sup-
porting pile in the last five stages are selected in the following
investigation. The actual monitoring data are compared with the
finite element simulation results, as shown in Fig. 8.

According to Fig. 8, the numerically obtained deformation
pattern of retaining pile at each stage is basically in line with the
field measurements, demonstrating the applicability of the estab-
lished finite element model. However, there is large discrepancy
between the numerical prediction and the monitoring data. This



Fig. 7. Monitoring data of pile displacement (black frame for unstable measurements, red frame for stable measurements).
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can be attributed to the uncertain soil parameters adopted in the
initial numerical analysis.

3.3.4. Parametric study
Asmention in Section 2.1, the pile deformation is sensitive to the

soil stiffness, cohesion and friction angle. These three parameters
are considered in this subsection to conduct parametric study, and
the 9th excavation stage (13 m) is taken as an example.

Fig. 9 shows the effect of soil cohesion, friction angle and stiff-
ness parameters, in which the values of c0ref ;4

0; Eref50 are identical as
those in Table 1. As seen in Fig. 9a, the maximum horizontal
displacement of retaining pile shows a decreasing trend with
increasing the cohesion, and the maximum horizontal displace-
ment is reduced about 12% (from 4.4 mm to 3.85mm). According to
Fig. 9b, when the friction angle increases, the maximum horizontal
displacement of retaining pile also shows a decreasing trend, and
the maximum value changes from 4.29 mm to 4 mm (about 8%
reduction). When the elastic modulus increases (see Fig. 9c), the
horizontal displacement at the top of retaining pile shows an
increasing trend, and the maximum horizontal displacement of
retaining pile shows a decreasing trend. Here, the maximum hor-
izontal displacement of retaining pile decreases from 4.47 mm to
3.84 mm (by about 14%).

According to the above description, the horizontal deformation
of retaining pile is more sensitive to the stiffness parameter of the
ground domain, which is consistent with the general finding that
elastic deformation of the ground domain is more sensitive to the
stiffness parameters and also related to the shear parameters (Zhao
et al., 2015). To resolve the discrepancy between numerical pre-
diction and field monitoring data, back analysis-based optimization
is conducted in the following sections.

3.4. Back analysis and online prediction

3.4.1. Latin hypercube sampling
As mentioned before, sensitive parameters in determining the

horizontal displacements of retaining pile are divided into three
groups, including stratum parameters (i.e. elastic modulus E,



Fig. 8. Comparison between field measurements and numerical simulations.

Fig. 9. Effect on the horizontal displacement of retaining pile at the 9th excavation stage: (a) Cohesion, (b) Friction angle, and (c) Stiffness.
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cohesion c, and internal friction angle 4), structural parameters (i.e.
supporting strut stiffness) and construction parameters (i.e. exca-
vation depth in each stage). According to the geotechnical report,
the ranges of all considered possible parameter combinations are
shown in Table 4. A total of 200 parameter groups are sampled, and
each group consists of 18 parameters (including the excavation
depth).
3.4.2. Establishment of BPNN
This study uses Python code to build a BPNNmodel as shown in

Fig. 10. The number of neurons is 144, and it has two hidden layers
and each has 72 neurons. The activation functions of the hidden
layer and output layer are “ReLU” (Rectified Linear Unit) and
“Linear”, respectively. The optimization function adopts the adap-
tive stochastic gradient algorithm, Adam (Kingma and Ba, 2015),
which is an extension of the stochastic gradient descent method.
Recently, the Adam algorithm has been widely used in deep
learning applications in computer vision and natural language
processing. In addition, 70% of the data are used for training and the
rest is applied in test.

To eliminate the influence of the order of magnitude, the input
parameters (a total of 18 features) are normalized. Then, the BPNN
model consisting of influencing factors and horizontal displace-
ments of retaining pile are established. After successful training, the
performance of BPNN model at a depth of 0.5 m along the pile is
shown in Fig. 11 as an example. Fig. 12 further shows the coefficient



Fig. 10. Construction of a neural network.

Table 4
Ranges of uncertain soil and structural parameters.

Adopted range Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Eref50 (kN/m2) 3000
e20,000

1000
e10,000

3000
e25,000

3000
e40,000

3000
e30,000

c0ref (kN/m
2) 10e50 3e30 10e80 10e100 20e100

40 (�) 3e30 0.5e15 1e30 3e35 3e35
Econcrete (kN/

m2)
3 � 107�5 � 107

Esteel (kN/m
2) 2 � 108�3 � 108

Fig. 11. Comparison between measured and BPNN model predicted pile horizontal
displacements at a depth of 0.5 m.

Fig. 12. Errors for both training and testing sets at 37 monitoring points along the pile
depth.

Fig. 13. MSE versus epoch during training of the BPNN model.
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of determination (R2) for all other 37 monitoring points along the
pile. As seen, the BPNNmodel accuracy is more than 90%. Moreover,
Fig. 13 plots the MSE against epoch. Here, MSE is defined asPn

1ðf ðxÞ � yÞ=n, which is used as an optimization indicator for
training, and epoch is one complete cycle for BPNN being trained
and tested once. Here, f ðxÞ is the result of the neural network, and y
is the FEM result. It can be seen that the accuracy of BPNN surrogate
model is gradually stable after 80 epochs.

3.4.3. Back analysis
The back analysis approach has been explained in detail in

Section 2. In this Taihu excavation project, five groups of monitoring
data (excavation depths: 8 m, 10 m, 12 m, 13 m and 16 m) are
selected. To make full use of these measurements, the multi-
objective functions are defined as seen in Table 5.

3.4.4. Online prediction
Online prediction is to use the monitoring data from previous

excavation stages to optimize the model parameters and to predict
the displacement of retaining pile in a subsequent excavation stage.
The details have been described in Section 2.



Table 5
Error function definition.

Two-objective optimization Z8, Z10
Three-objective optimization Z8, Z10, Z12
Four-objective optimization Z8, Z10, Z12; Z13
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Figs. 14�16 show the results of two-objective, three-objective
and four-objective optimization, respectively. The black box rep-
resents the monitoring data involved in back analysis, and the red
box represents the prediction results. Generally, the predictions
using the optimized parameters can well match the field mea-
surements, which means that the online prediction approach has a
sufficient high accuracy (more than 90%). Furthermore, with
increasing amount of monitoring data, the online prediction ac-
curacy for subsequent excavations can also be improved. For
example, the prediction accuracy at 16m excavation stage increases
from 0.8731 for two-objective optimization to 0.9463 for four-
objective optimization.

It is worth noting that the performance of the initial FEM at all
excavation stages is not acceptable. In contrast, the proposed deep
Fig. 14. Two-objective optimization results (black f

Fig. 15. Three-objective optimization results (black
learning based multi-objective online optimization method has a
sufficient high accuracy at all excavation stages. In addition, the
computational costs for multi-objective optimization are compa-
rable (less than 3 min difference). Therefore, it is recommended to
use all monitoring data during the excavation process for param-
eter optimization to cover all information that could be ignored in
the previous excavation stages.

As mentioned before, online prediction requires efficient eval-
uation of pile displacement under certain parameter combination.
BPNN plays an important role in the proposed online prediction
approach, as it significantly reduces the computational cost in the
entire process as presented in Table 6.

In this present project, there are 17 parameters that need to be
identified. Based on the results of trial analysis, about 500 iterations
are required in back analysis to obtain a reliable optimization so-
lution. This means that in the traditional method, one needs to run
the FEM for 501 times (one run for the initial population calcula-
tion), which costs about 5010 min. Nevertheless, when the surro-
gate model is trained successfully in advance, only the surrogate
model is analyzed in each iteration, and the total computational
rame for calibration, red frame for prediction).

frame for calibration, red frame for prediction).



Fig. 16. Four-objective optimization results (black frame for calibration, red frame for prediction).

Table 6
Comparison of computational time for calculations using traditional and BPNN-
based multi-objective optimization methods.

Item Before
excavation

During excavation

Surrogate
model
training

Number of
runs in
optimization

Calculation
time for each
run

Total time

Traditional multi-
objective
optimization

e 500 10 min ð500 þ 1Þ�
10 ¼
5010 min

Multi-objective
optimization
using BPNN

200� 10 ¼
2000 min

500 2 s ð500 þ 1Þ�
2 ¼ 1002 s
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time is only 1002 s. Compared with the traditional method, the
computational cost using the proposed method is reduced by more
than 95%. If the reliable optimization result is not yet obtained after
500 iterations, the advantage of the surrogate model can be more
prominent.
Fig. 17. Two-objective optimization using different algorithm
4. Discussions

In addition to the MOPSO algorithm, another two popular al-
gorithms, namely NSGA-II (Deb et al., 2002) and Pareto Envelope-
based Selection Algorithm II (PESA-II) (Corne et al., 2001), are
applied in this part of the study for comparison. Using the same
procedure mentioned in Fig. 1 for online prediction, the analysis
results of two-objective, three-objective, and four-objective opti-
mization tasks are shown in Figs. 17e19, respectively. The model
accuracy for predicting pile displacements at 16-m excavation stage
is further presented in Table 7.

According the prediction results, whenmore objective functions
are considered, the model accuracy using NSGA-II algorithm re-
duces from 0.8889 to 0.812, which reflects the disadvantage of the
NSGA-II algorithm. On the contrary, the MOPSO algorithm accuracy
gradually increases from 0.8731 to 0.9463, when the dimension of
optimization problem increases. The performance of PESA-II algo-
rithm is intermediate, and its accuracy is slightly affected by the
number of dimensions in multi-objective optimization.
s (black frame for calibration, red frame for prediction).



Fig. 18. Three-objective optimization using different algorithms (black frame for calibration, red frame for prediction).

Fig. 19. Four-objective optimization using different algorithms (black frame for calibration, red frame for prediction).
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There are two differences between NSGA-II and PESA-II, MOPSO
algorithms. Firstly, the latter two algorithms set up an external
database to store the non-dominated solution sets. Secondly, the
new population for NSGA-II is generated from the entire dataset.
On the contrary, the new population for PESA-II and MOPSO is
generated from the external database only. As shown in Fig. 20, in a
2D problem, the 0, 1, ., n levels are separated using the non-
dominated sorting method (Deb et al., 2002). Here, the 0 level
represents the non-dominated set, which is stored in the external
database for the PESA-II and MOPSO algorithms.

For the high dimensional objective case (objectives), when
certain objective is not dominated, its error function value is small.
Assuming that the ratio of dominated and non-dominated objec-
tives is 1:1, in case n objectives are considered, the proportion of
non-dominated solution sets among all solution set is 1= 2n. When
the proportion of non-dominated solution set (external database)
decreases with increasing number of the objectives (error func-
tion), NSGA-II algorithm cannot fully consider the non-dominated
solution set for generating a new population, eventually resulting
in a reduction of model accuracy. When PESA-II and MOPSO
generate a new population, the dominant solution set (Rank ¼ 1, 2,
., n in Fig. 19) is eliminated. This makes the algorithm focus on the
non-dominant solution set, which results in an improvement of the
accuracy in comparison to NSGA-II.

By analogy, for the low dimensional objectives, for example n ¼
2, the proportion difference between the dominant set and the
non-dominant set is negligible. The NSGA-II algorithm considers
the entire dataset to obtain the global optimum. Hence, NSGA-II
algorithm shows the better performance than the other two algo-
rithms (see Table 7).

According to the above discussions, the following advices are
suggested for engineering practice.

(1) When the monitoring data at all previous excavation stages
are available, if one needs to predict the system behavior in
the next excavation stage, it is suggested to apply the MOPSO
algorithm.

(2) If one needs to predict the final displacements with limited
monitoring data at the beginning excavation stages, the
NSGA-II algorithm is recommended.



Table 7
Accuracy and time cost of different algorithms for multi-objective optimization
problems (prediction of pile displacement at an excavation depth of 16 m).

Algorithm Two-objective Three-objective Four-objective Time (s)

MOPSO 0.8731 0.9092 0.9463 1187
PESA-II 0.8795 0.8932 0.9028 1366
NSGA-II 0.8889 0.8478 0.812 1677

Note: The calculation time refers to the four-objective optimization task.

Fig. 20. Conceptual illustration of the proposed optimization algorithm (f1 and f2
represent the first and second objective function values, respectively).
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(3) When the construction speed is fast, if one needs to quickly
achieve online prediction, it is recommended to use the
MOPSO algorithm.

It is worth mentioning that this method can be applied not only
to deep excavation applications, but also to any other practical
problems involving finite element simulations. This technique of-
fers the flexibility of choosing different finite element simulation
tools or optimization algorithms for specific engineering problems.

5. Conclusions

A modified multi-objective optimization procedure is proposed
in this paper, which combines multi-objective optimization
(MOPSO) algorithm and back analysis method to improve the
optimization accuracy. The BPNN method is further applied to
substitute the FEM calculation during back analysis. In this way, the
proposed approach can achieve an efficient online prediction. The
proposed procedure is further applied in the Taihu Tunnel exca-
vation project to demonstrate its effectiveness and accuracy. The
specific contents are as follows:

(1) A fine FEM is established to simulate the construction pro-
cess of Taihu tunnel excavation. The numerical results are
compared with the measured horizontal displacements of
retaining pile to show the consistent deformation trends,
demonstrating the reliability of the finite element model.

(2) A surrogate model using BPNN algorithm is developed to
substitute the finite element simulation of Taihu tunnel
excavation. The trained robust BPNN model has an accuracy
above 90%.

(3) Compared with the traditional multi-objective optimization
approach, the computational cost is reduced by approxi-
mately 95% via implementing BPNN algorithm into multi-
objective optimization. The real-time prediction accuracies
of pile displacement at all excavation stages are more than
90%. This makes the online prediction of system behavior
available and affordable.

(4) The MOPSO algorithm generally performs better than the
PESA-II and NSGA-II algorithms. It is suggested to apply the
MOPSO method, in case one needs to predict the system
behavior in the next excavation stage based on the contin-
uously increasing monitoring data.
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