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Limit equilibrium method (LEM) and strength reduction method (SRM) are the most widely used
methods for slope stability analysis. However, it can be noted that they both have some limitations in
practical application. In the LEM, the constitutive model cannot be considered and many assumptions are
needed between slices of soil/rock. The SRM requires iterative calculations and does not give the slip
surface directly. A method for slope stability analysis based on the graph theory is recently developed to
directly calculate the minimum safety factor and potential critical slip surface according to the stress
results of numerical simulation. The method is based on current stress state and can overcome the
disadvantages mentioned above in the two traditional methods. The influences of edge generation and
mesh geometry on the position of slip surface and the safety factor of slope are studied, in which a new
method for edge generation is proposed, and reasonable mesh size is suggested. The results of bench-
mark examples and a rock slope show good accuracy and efficiency of the presented method.
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1. Introduction

Graph theory is an important branch of combinatorial mathe-
matics. The theory originated from the Koenigsberg bridge prob-
lem, and the mathematician Euler used the theory to address this
problem. After hundreds years of development, the graph theory
has been used to solve the problems of the shortest path, network
flow, dynamic planning, etc. It has been widely used in engineering
fields, such as the analysis of drainage pipe network system, the
optimal island distribution of smart grid, the train operation plan,
and the tourism route optimization (Bondy and Murty, 1976; Wang
et al.,, 2011).

The problem of slope stability analysis (Kim and Lee, 1997; Farias
and Naylor, 1998; Sarma and Tan, 2006; Zheng et al., 2009; Guo
et al., 2011; Xie et al., 2011; Zhou et al., 2011; Shen et al., 2013)
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can be transformed to the shortest path one in the graph theory.
The directed weighted graph is firstly constructed by analyzing
mesh and vertex information of the model based on numerical
calculation of stress field. Then the slip surface and safety factor can
be found out by the shortest path algorithm.

There have been many researchers attempting to use the graph
theory to analyze the critical slip surface and the safety factor.
Cherkassky et al. (1993) and Xu et al. (2007) studied the slip surface
and the safety factor using the Dijkstra algorithm on the basis of
finite element results. Zhou et al. (2008) used the graph theory to
evaluate the stability of slope under the condition of rainfall infil-
tration. Zhuang et al. (2008) developed the meshless graph theory
method. Bellman (1957) developed the Bellman—Ford algorithm to
search for the critical slip surface of jointed rock. Fang (2007)
extended the graph theory to the three-dimensional slope stabil-
ity analysis, and preliminarily applied it to tunnel slope stability
analysis. These methods are based on the current stress state, and
can overcome the disadvantages of the conventional limit equi-
librium method (LEM) which cannot consider the constitutive
relation of rock/soil mass. In comparison, the strength reduction
method (SRM) requires iterative calculations and cannot directly
locate the slip surface (Zheng et al., 2005). It is a computationally
desirable method for slope stability analysis.

The critical slip surface corresponds to the minimum safety
factor of slope comprising the edges and vertices of the graph. In
this approach, type of edge generation, mesh geometry and mesh
density will influence the results of slope stability analysis.
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Unreasonable distribution of vertices and edges will give erroneous
slip surface and safety factor. This issue has not been mentioned in
the previous work. For example, in the work of Zhou et al. (2012),
only the influences of physical parameters of slope material were
discussed based on the graph theory.

On the basis of preliminary work (Zheng et al., 2013), the in-
fluences of the type of edge generation, mesh geometry and mesh
density in the graph theory on the shape of slip surface and the
safety factor are investigated in this paper. Practical suggestions are
presented on how to use the graph theory for slope stability anal-
ysis effectively. The test results of benchmark examples and a rock
slope show good efficiency and accuracy of the method.

2. Graph theory and slope stability analysis

The graph is a collection of vertex set V(G) and an edge set E(G)
connecting different vertices. A line that connects two vertices is
termed as an edge. The graph can be classified into directed graph
and undirected graph according to whether an edge has a direction
or not. In directed graph, the edge is an unidirectional path, and the
pair of nodes connected by each edge is defined as a sorted couple
belonging to the edge set E(G). An undirected graph can be viewed
as a directed graph with edges of bilateral path instead of unidi-
rectional path.

The shortest path problem aims to find the minimum “cost” or
“sum of weight” among all possible paths. As shown in Fig. 1a, there
are seven vertices Vop—Vg and twelve directed edges, the cost
(weight) of each edge is shown on the edge. The shortest path
problem is to search for a path that gives the minimum sum of
weight from vertex Vy, to Vg The shortest path is
Vo —» Vo —» V3 - V5 — Vg as shown in Fig. 1b.

The essential of slope stability analysis is to determine the
minimum safety factor and the corresponding critical slip surface of
slope. Similar to the shortest path problem between two points,
determination of the critical slip surface can be converted into
searching for “vertices” between starting point and end point of the
slope. In this way, the safety factor of slip surface connected by
these points is the minimum.

The safety factor is defined as the ratio of resistance to sliding
force along the slip surface. A weight function is introduced to
measure the weight (cost) of each edge when using the graph
theory to determine the minimum safety factor. As shown in Fig. 2,

Fig. 1. Sketch of the shortest path problem.

End point
b

Starting point

Critical slip surface &, min (F)

Fig. 2. Sketch of critical slip surface.

by assuming the existence of critical slip surface k, the minimum
safety factor of slope can be defined as

>Ry
1

where k indicates the kth path and i indicates the ith edge
comprising the kth path. Note that the summation should not be
applied to k but only to i.

The minimum safety factor of all possible slip surfaces is

Fmin = min(F],F27"',Fk,"',Fn) (2)

Then, we can introduce an auxiliary function as

Gk = > Gri = > Rii+Fmin Y Ski (3)

and therefore the weight of each edge is simply formulated as
Gri = Rii + FminSk,i (4)

The problem of locating the critical slip surface can be converted
into searching the corresponding path of the minimum G through
the above formulas.

When using the FEM for slope stability analysis, the nodes are
often used as the vertices in the graph theory, and vertices asso-
ciated with that nodes are used to generate edges. Edge weights are
calculated according to the stress results of the FEM. The tangential
and normal forces along the edge can be obtained by averaging the
stress at two vertices connected by the edge. In this paper, we use
the numerical manifold method for stress analysis, and the vertices
and edges in the graph theory follow the same ones as that in FEM
without considering joints in the slope. For slope model containing
joints, nodes of mathematical meshes and joint elements are used
as the vertices in the graph theory. Thus the generation of edges in
the graph theory only needs to make some changes in joint place so
that the edges of the slope and the weight of edge can be obtained
(Zheng et al., 2013).

For the shortest path problem, there are two basic methods,
namely Dijkstra algorithm and Bellman—Ford algorithm. Other al-
gorithms are derived on the basis of the above two methods, such
as pile optimized Dijkstra algorithm, SPFA algorithm, and Floyd—
Warshall algorithm, etc. Dijkstra algorithm is applicable to the
shortest path problems without negative weights, while Bellman—
Ford algorithm can solve the problems with negative weights. So
Bellman—Ford algorithm is used to search for the critical slip sur-
face as the edge weight of slope may be negative.

3. The influence of edge generation

The edge generation has a significant influence on the slope
stability analysis. The shortest path searching algorithm can be
used to find a “shortest path” that makes the minimum safety factor
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Fig. 3. First type of edge generation.
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Fig. 4. Second type of edge generation.

of slope after construction of edges and weights. Different types of
edge generation will produce different directions and weights of
edges. So an appropriate type of edge generation partly determines
the shape of critical slip surface and is a very important issue.

There are two common ways of constructing edges for slope
stability analysis. Taking a triangular element for example, the first
way is shown in Fig. 3, where the vertices correspond to the sets of
all nodes of the elements connecting the node i. The second one is
shown in Fig. 4, where the vertices collect the sets of nodes at a
certain radius of the node i. The direction of edges is relatively fixed
in the first way. However, the critical slip surface may not appear
along these edges. In fact, the proper choice of radius is also an issue
in the second approach. The paper employs a new way of edge
generation as shown in Fig. 5 where the vertices are the sets of
nodes belonging to the elements that connecting the node i, or
nodes of the elements sharing the same edge with the elements
connecting the node i.

Two standard slope examples are tested to verify the influence
of the three types of edge generation on the shape of slip surface
and safety factor. The first one is the slope stability benchmark
example named as EX11 (Donald and Giam, 1992) of Australian
Computer Application Association (ACADS), as shown in Fig. 6. The
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Fig. 6. ACADS referenced slope example EX11 (Donald and Giam, 1992).
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Fig. 7. Critical slip surface by the first type of edge generation method.
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Fig. 8. ACADS referenced solution to EX11 (Donald and Giam, 1992).

material properties of the homogenous slope are y = 20 kN/m?>,
¢ =3 kPa, and ¢ = 19.6°, the slope length and height are 20 m and
10 m, respectively, and the average mesh size is 1.5 m.

The slip surface obtained by the first type of edge generation
method (Fig. 7) is significantly different from the referenced solu-
tion (Fig. 8), and the safety factor is 1.6433, about 60% larger than
the referenced value (Donald and Giam, 1992).

By the second type of edge generation method, the safety factor
varies with different searching radii (Fig. 9). The slip surface and the
safety factor are the same as those by the first type of edge gen-
eration method when the searching radius is 2 m (Fig. 10a). The
number of vertices for construction of edges increases with the
searching radius, and the slip surface tends to be more and more
exact, and the safety factor converges to the referenced solution.
The minimum safety factor is 1.0518 when the searching radius is
3.2 m (Fig. 10b). Fig. 10c shows the safety factor and slip surface
when the searching radius is 3.6 m.

The slip surface obtained by the proposed edge generation
method (Fig. 11) is similar to the referenced solution, and the safety
factor obtained is 1.0518, slightly larger than the LEM solution. It is
consistent with the results presented in Dawson et al. (1999).

By comparing these three methods, it can be seen that unrea-
sonable slip surface and much larger safety factor are obtained by
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Fig. 9. Relation between safety factor and searching radius by the second type of edge
generation method.
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(b) The searching radius is 3.2 m (F=1.0518).
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(c) The searching radius is 3.6 m (F=1.0587).

Fig. 10. Critical slip surfaces obtained by the second type of edge generation method
under different searching radii.
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Fig. 11. Critical slip surface obtained by the proposed edge generation method
(F = 1.0518).
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Fig. 12. Slope model with varying mesh densities.
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Fig. 13. Different types of mesh shape.

the first method. The safety factor and slip surface vary with
different searching radii in the second method, and the safety factor
tends to converge when the radius is large enough. However, for
non-uniform mesh size, the second method requires varying
searching radii crossing different domains (Fig. 12). The proposed
method appears to be most robust, and the safety factor and slip
surface agree well with the referenced solutions.

4. The influence of mesh shape

The mesh quality determines the distribution of vertices and
formation of edges, thus influencing the final searching results of
the shortest path algorithm. Different types of mesh shape are
compared in this section for slope stability analysis.

The meshes used in this study are plotted in Fig. 13, and the
mesh size is 1.5 m for all types of mesh generation method. Here,
the proposed edge generation method is adopted as described in
Section 3. The results (Fig. 14) show that the shape of slip surface
and the safety factor are almost insensitive to the mesh type, and
they have limited influence on the slope stability analysis using the
graph theory.

5. The influence of mesh density

To balance the efficiency and accuracy in the numerical analysis,
it is important to choose an appropriate mesh density. In this sec-
tion, different mesh sizes are adopted and tested for slope stability
analysis with the same mesh shape as shown in Fig. 6.
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(c) Critical slip surface by the proposed type of mesh shape (F=1.0195).

Fig. 14. Critical slip surfaces obtained by different types of mesh shape.

A nonlinear relationship between the mesh size and calculation
time is plotted in Fig. 15. It shows that the calculation time signif-
icantly decreases with the increase of mesh size. The safety factor
almost keeps constant, with slight variation within 1.0—1.05 with
respect to the mesh size between 0.5 m and 5 m. Therefore, it can
be concluded that the mesh size has minor influence on slope
stability in the graph theory. The shape of critical slip surface
changes with the varying mesh sizes (Fig. 16), and similar slip
surface can be obtained with the referenced solution when the
mesh size is between 0.5 m and 2 m. The slip surface changes
greatly when the mesh size is between 3 m and 5 m. According to
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Fig. 15. Influence of mesh size on safety factor and computation time (F = 1.0195).

2m

Fig. 16. Critical slip surfaces with different mesh sizes.

Refinement area

Fig. 17. Mesh refinement at slope toe.

experience, the mesh size of 1/10 of the slope height is suggested to
obtain a satisfactory result and searching efficiency.

Different mesh sizes are used in different parts of the actual
slope model. Local mesh refinement is adopted in the key parts, and
sparse mesh in others. Taking the EX11 for example again, the in-
fluence of different mesh refinements on the safety factor is
studied.

Mesh refinement at slope toe is shown in Fig. 17. The slip surface
obtained by the graph theory is shown in Fig. 18. There is a big
turning angle at the top of slope, and the safety factor is 0.9043,
which is much more different from the referenced solution.

Mesh refinement at slope top is adopted on the basis of above
example (Fig. 19). The slip surface obtained by the graph theory is
shown in Fig. 20. The safety factor is 1.0115, similar to the refer-
enced solution.

From the above two examples, it can be seen that mesh density
has influences on the slip surface. Reasonable slip surface and
safety factor can be obtained by the graph theory when the mesh
size is close to 1/10 of the slope height.

6. Example of a rock slope

In this section, a rock slope in a hydropower station is analyzed
with the proposed method. Different from previous benchmark
examples, excavations at different steps are involved.

The natural slope is overall in a stable condition. However, the
excavation is expected to induce sliding along the weak interlayer.
For simplicity, only the main joints are modeled. The model used
for the test is shown in Fig. 21, the range in horizontal direction is
500 m, and the slope height is 335 m. There is an intersecting

© 0 000000 oz
©000000000%45 0 0o o o o o

Fig. 18. Critical slip surface with mesh refinement at slope toe.
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Fig. 20. Critical slip surface with mesh refinement at the slope toe and top.

structural plane (g10) in the model which is considered as a gov-
erning discontinuity according to geological investigation. The
material parameters of the intact rock and the joint are listed in
Table 1.

The excavation area of the slope is plotted in Fig. 21 with four
steps in total. The first step is excavated to the height of 1847.5 m
above sea level, the second step to the height of 1826.28 m, the
third step to the height of 1806.28 m, and the fourth step to the
height of 1776 m (Fig. 22).

The slip surface and safety factor after each step of excavation
are plotted in Fig. 23. The shapes of slip surfaces are basically the
same before and after the first step of excavation, and the safety
factors are 1.0609 and 1.088, respectively. The safety factor in-
creases slightly due to unloading at the slope top. The shape of slip
surface changes apparently after the second step of excavation, and
the safety factor becomes 1.039, which is slightly smaller than that
after the first step of excavation. The joint is exposed after the third
step of excavation and the critical slip surface is formed along the
joint. Correspondingly, the safety factor is reduced to 0.804. A
vertical free face is formed after the fourth step of excavation and
the slip surface is similar to that after the third step of excavation,

Joint g10

Excavation area

Fig. 21. Calculation model of rock slope excavation.

Table 1
Material parameters of engineering slope.

Structure E (GPa) u v (kN/m3) c(kPa) ¢ (°) Ks(MN/m) Kg (MN/m)

Joint g10 — - - 80 242 556 1500
s1 3 035 275 200 266 - -
wi 5 033 276 600 350 — -

(c) Third step. (d) Fourth step.

Fig. 22. Steps of slope excavation.

and the safety factor is further reduced to 0.791. The results show
that the safety factor decreases with the excavation as the joint
surface is exposed and the vertical free face is formed. These factors
have great effects on the slope stability.

(a) Before excavation (F=1.0609). (b) First step (F=1.088).

(c) Second step (F=1.039). (d) Third step (F=0.804).

(e) Fourth step (F=0.791).

Fig. 23. Critical slip surfaces and safety factors after each step of excavation.
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Fig. 24. Comparison of the safety factors between the SRM and the method based on
the graph theory.

The SRM is also used here for comparison. The safety factors
obtained by the two methods are very close to each other as shown
in Fig. 24.

7. Conclusions

In this paper, the influences of edge generation, mesh shape and
mesh density in the method based on graph theory on the position
and shape of slip surface and safety factors are investigated. The
results show that the proposed edge generation method can pro-
vide multi-directional choices for finding the critical slip surface of
the slope and the results agree well with referenced solutions.
Mesh shape was found to have limited influence on the slope sta-
bility. However, mesh size and mesh density have substantial ef-
fects on the shape of slip surface. The average mesh size of about 1/
10 of the slope height is suggested to ensure a balance between
reliable results and computational efficiency. The proposed method
removes the difficulties in many assumptions and iterative calcu-
lations of the conventional methods and the results of a rock slope
are similar to those of the SRM. It shows the validity of the pre-
sented method based on the graph theory.
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