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Despite of the limitation in modeling infinite space, the finite element method (FEM) is one of the most
used tools to numerically study the geotechnical problems regarding the capacity of simulating different
geometries, conditions and material behaviors. A kind of absorbing layer named perfectly matched layer
(PML) has been applied to modeling the radiation damping using FEM, which makes the dynamic
analysis of soil-structure interaction more accurate. The PML is capable of absorbing incident waves
under any angle and frequency, ensuring them to pass through the model boundaries without reflection.
In this context, a new FEM program has been written and the PML formula has been implemented by
rewriting the dynamic equation of motion and deriving new properties for the quadrilateral elements.
The analysis of soil-foundation interaction by applying the PML is validated by the evaluation of
impedance/compliance functions for different ground conditions. The results obtained from the PML
model match the extended mesh results, even though the domain is small enough that other types of
absorbing boundaries can reflect waves back to the foundation. The mechanism of the wave propagation
in the region shows that the forced vibrations can be fully absorbed and damped by the boundaries
surrounded by PMLs which is the role of radiation damping in FEM modeling.

© 2018 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Simulation of wave propagation in geomechanics is an inter-
esting issue in dynamic analysis. Particularly, the analysis of soil-
foundation interaction is one of the most challenging issues in
geotechnical engineering. The near-field part of the foundation is
often modeled by finite element method (FEM) which is a powerful
tool for analyzing complex geometries and nonlinear behaviors. In
order to model the far-field part of the foundation, previous studies
such as Lysmer boundary conditions (Lysmer and Kuhlemeyer,
1969), infinite element (Kim and Yun, 2000), rational boundary
conditions (Feltrin, 1997), Dirichlet to Neuman mappings (Givoli,
1999), boundary element method (Yazdchi et al., 1999), scaled
boundary element method (Song and Wolf, 2000; Wolf and Song,
2000), discontinuous Galerkin methods (Park and Tassoulas,
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2002; Park and Antin, 2004) and high-order non-reflecting
boundary conditions (Givoli, 2004) have been presented taking into
account the wave propagation towards infinity in the analysis.
However, it is needed to find a method that can be used to simulate
the radiation damping efficiently. In the present study, a kind of
absorbing layer named perfectly matched layer (PML) has been
incorporated into the FEM to simulate the radiation condition in
transient dynamic analysis of soil-foundation rock systems.

The PML is able to absorb incident waves at any angle and fre-
quency, ensuring them to pass through the model boundaries
without reflection. The PML procedure designed by Berenger
(1994) was applied to an electromagnetic problem. The method
can be interpreted as a complex transformation of space co-
ordinates and a special mesh system is introduced to replace the
infinite part. The propagating and evanescent waves attenuate in an
exponential trend after entering the PML. Parameters of the PML
are chosen so as to ensure sufficiently fast attenuation within the
layer. Thus, the reflection caused by simple boundary conditions at
the outer PML boundary will be negligibly small.

One of the requirements for near-perfect absorption character-
istics is to utilize a PML grid whose properties and stretching
functions vary slowly from element to element, which makes it
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possible to assume constant properties within any element. In the
absence of discretization, even a step function selected as stretch-
ing function in the PML would be reflectionless. Discretization
breaks this property, thus one falls back on the ‘adiabatic theorem’,
i.e. any material change in a wave equation, if it is made gradual
enough, will be reflectionless (Oskooi et al., 2008). In our case, the
same situation holds true: all that matters are using the parameters
to change gradually (Kausel and Barbosa, 2012).

Considering advantages of the PML, researchers have applied
the idea to different physical problems such as the solution of
Maxwell equation (Jiao and Jin, 2001), acoustic wave propagation
(Nataf, 2006), and poroelastic media (Martin et al., 2008).

Chew and Liu (1996) employed complex coordinates to define
PMLs and showed that the resultant medium could absorb propa-
gating waves. Chew et al. (1997) changed the variables to transform
Maxwell’s equations in PML media into a complex coordinate sys-
tem. By introducing complex coordinates, Liu (1999) developed
PMLs in cylindrical and spherical coordinates in time domain.
Teixeira and Chew (2000) discussed the interpretation of the PML
absorbing boundary condition as an analytic continuation of the
coordinate space to a spatial domain with complex variables
(complex space). They reviewed the generalization of the PML to
curvilinear coordinates and to general linear media using this
rationale. Harari et al. (2000) presented a new finite element
formulation to use PML for the time-harmonic analysis of acoustic
waves. Collino and Tsogka (2001) established a PML model using
the split-field approach for a general hyperbolic system and
implemented it in the linear elastodynamic problem for an aniso-
tropic medium. Using a finite difference method and the approach
of complex coordinates, Zeng et al. (2001) extended the PML
approach to truncate unbounded poroelastic media. Zheng and
Huang (2002) developed anisotropic PMLs for elastic waves in
Cartesian, cylindrical and spherical coordinates. Bécache et al.
(2003) theoretically investigated well-posedness and stability us-
ing PMLs for anisotropic elastic waves. Festa and Nielsen (2003)
evaluated analytically and numerically the reflection of body and
Rayleigh waves caused by the discrete properties of the PML, under
variable angles of incidence wavelengths. They showed that the
thickness of PML can be kept minimal for studies involving rela-
tively low frequencies, and no rescaling with model size is required.
In addition, they showed through numerical examples that a major
advantage of PMLs is their efficiency in absorbing Rayleigh waves at
the free surface, a point where other more classical methods
perform rather poorly.

Basu and Chopra (2003) defined the PMLs by employing com-
plex coordinates to solve time-harmonic elastodynamic equations
by finite element implementation. Furthermore, they transformed
the frequency domain equations into time domain equations and
presented an approach to solve the resultant equations (Basu and
Chopra, 2004). They indicated that the finite element imple-
mentation of the anti-plane PML is symmetric, whereas that of the
plane-strain PML is not. Moreover, Basu (2009) presented a three-
dimensional explicit finite element implementation of PML.

Appel6 and Kreiss (2006) utilized a modal PML into the equa-
tions of linear elasticity, resulting in better stability properties than
previous split-field models. Harari and Albocher (2006) suggested
simplified finite element implementation for a PML in an elastic
medium which utilizes standard shape functions. They also pre-
sented some guidelines for proper selection of the parameters of
PML. By explicit FEM and one-point integration scheme, Ma and Liu
(2006) presented an easy implementation of PML. Qin et al. (2009)
introduced auxiliary variables to divide the PML wave equation in
the frequency domain into two parts of normal and attenuated
terms. By this, they avoided convolution integrals in equations after
the transformation to time domain. They adopted the finite

difference method to propose a novel numerical implementation
approach for PML absorbing boundary conditions. Liu et al. (2009)
utilized the Crank—Nicolson scheme together with several algo-
rithms to calculate the SH wave equations. Kang and Kallivokas
(2010) used the PML with a hybrid finite element formula
(displacement-stress). Lancioni (2012) compared the performance
of the PML and high-order non-reflecting boundary conditions in a
one-dimensional dispersive wave equation. They considered linear,
quadratic and cubic polynomial stretching functions for time-
dependent wave problems. Comparing the performance of the
PMLs with the other types of absorbing boundary conditions
(ABCs), they pointed out the merits and drawbacks of the two
methods. Kim and Pasciak (2010) developed a Cartesian PML for
solving Helmholtz equation on a two-dimensional (2D) unbounded
medium.

Khazaee and Lotfi (2014) employed the PMLs in the dynamic
analysis of dam-reservoir systems. They introduced proper
boundary conditions to the formulation of the PML area in the
reservoir. Their results show that the PML approach is a very effi-
cient method for the time-harmonic and transient analysis of dam-
reservoir systems if boundary conditions of the PML domain are
included. Farzanian et al. (2016) developed a displacement-based
finite element model for unbounded heterogeneous domains
with radiation damping produced by the PML. They validated the
heterogeneous model using the closed-form solution of a free rod
with two-part modulus subjected to a specified time history.

Literature review shows that the application of the PML to
solving the dynamic and seismic problems, particularly regarding
wave propagation phenomena, is a challenging issue to be inves-
tigated. In fact, there are extensive situations in the field of elas-
todynamics and soil-structure interaction that would be possible to
represent precise responses and they can be marked as exact so-
lutions by utilizing PML.

As stated earlier, wave propagation modeling for infinite me-
dium is not an easy task, because the wave reflection due to inci-
dent of the progressive motion to the artificial boundaries will
disturb the responses. Moreover, in the FEM, wave propagation is
dependent on domain discretization and time-integration tech-
niques. The key to have a proper modeling in the FEM is imple-
menting radiation damping condition. This kind of damping
decreases the amplitude because of energy distribution on a larger
volume of medium.

2. Problem definition

By using the FEM, a new program has been generated based on
sparse matrix coding in the present research. This study focuses on
the calibration of the transient dynamic analysis of soil-foundation
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Fig. 1. Input motion (normal probability distribution) at point A to determine the wave
propagation velocity.
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Fig. 2. FEM model for measuring the velocities of compressive and Rayleigh waves
(unit: m).

by FE-PML formula. In fact, The PML is combined with a finite
element scheme, which is used for the simulation of 2D (plane-
strain) wave propagation. The near-field part of the foundation is
modeled by FEM surrounded by a PML which can model the far
field by absorbing waves propagating towards infinity.

In the present study, we focused on the applicability of PML in
radiation damping simulation. To do this, the vibration of rigid
massless shallow foundation has been analyzed and the results are
presented in the form of compliance/impedance functions. It is
worth mentioning that, when using the PML, the design of machine
foundation is one of the applications of the compliance/impedance
functions. In fact, with the vibration of the foundation, different
surface and body waves would propagate in the medium; as
approaching to the inappropriate model boundaries, the waves
may be reflected into the medium, leading to disturbed responses.
Therefore, utilizing PML in the FEM could result in proper wave
propagation in the domain of the solutions and the radiation
damping can be simulated properly.

PML is capable of reducing the size of the modeling and time
duration of the analysis with high accuracy so that it can be applied
in problems regarding surface dynamic loading. The efficiency of
the PML in the surface dynamic loading has been investigated by
solving classic soil-structure interaction problems and comparing
the results with the pertinent literature, which includes generally
semi-analytical approaches. In addition, to validate the 2D plane-
strain approach, the results are compared with the experimental
data of a physical modeling.

3. Governing equations

The formulation introduced by Basu and Chopra (2004) is
implemented using a standard displacement-based FEM. The gov-
erning equations of a PML are most naturally defined in the

Table 1
Material properties of the region for measuring the velocities of compressive and
Rayleigh waves.

Material
damping, £ (%)

Poisson’s
ratio, v

Elasticity modulus, Density, p
E (kPa) (kg/m?)

2992.96 1800 0.33 0

frequency domain using frequency-dependent, complex-valued
coordinate stretching. By applying an inverse Fourier transform, the
relations will be generated in time domain. To create a perfectly
matched medium, the x; must be replaced with a coordinate stretch

(xi):

Xi

)21' = /A,-(x,-)dxi (1)
0

0 1 0

X Aixg) ox; 2)

where X;, x; and A;(x;) indicate the stretched coordinate, standard
coordinate and stretching function, respectively.

Applying the relations in terms of x;, the equations of PMLs in
the foundation will be defined as (Basu and Chopra, 2004):

(6A)V = —w?p[A1(x1)A2(x2)]u 3)
o = (1+ 2iagé)Ce (4)
e = % {(uVT)A + AT<uVT>T} (5)

where 4 and 4 indicate the stretch tensors; ¢ and @ indicate
the stress; # and ¢ indicate the strain; o, u, ag, ¢, C, and PT indicate
the excitation frequency, displacement, dimensionless frequency
number, material damping, constitutive matrix, and transposed
gradient tensor, respectively.i = v/—1.

Because multiplication or division by the factor iw in the fre-
quency domain corresponds to a derivative or an integral, respec-
tively, in the time domain, time-harmonic equations are easily
transformed into corresponding equations for transient motion if
the frequency-dependence of the former is only a simple depen-
dence on this factor. Therefore, the stretching functions can be
written in the form of (Basu and Chopra, 2004):

fP(x)

Ailxi) = [1+fE(x)] i a0 (6)

where the application of f£ and fip is to attenuate evanescent and
propagating waves, respectively. For 4; in Eq. (6), the stretch tensors
A and 4 can be written as

4 =F +%i’p (7a)
- (Fole) (7b)
S R A ) .
o :csfzp(gz)/b Cﬁ&)/b} (8b)
P :1+);f(><1) 1+j%(x2)} (8¢)
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Fig. 3. Vertical displacements for two points (a) with 10 m spacing in the depth of the model, and (b) with 10.18 m spacing on the surface of the model.
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Fig. 4. FEM model for shear wave velocity measurement (unit: m).
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in depth.

e 0
F=1""0"" cpoam (80

where cs indicates the shear wave velocity; b indicates the foun-
dation half-width; F°, F*, Fe, and F? indicate the attenuation
matrices. Eq. (3) is pre-multiplied by iw4~T and postmultiplied by
A~1,Eqs.(7) and (8) are substituted into Eq. (3), and then by inverse
Fourier transform, the time domain equations for PML are
obtained:

div (Fea + i’pz) = pfmii + p%fcli + b—ﬂszu

o = C(e+zc—ﬂ7é)

S

(F®)TeFe + [(Fe)Ter + (FP)TsFe] + (F?)TEFP
= % [(Fe)T(gradli) + (gradu)TFe] +% [(FP)T(gradu)
+ (gradu)TFp]

where fn, fc and f are defined as follows:

fo = [T+ )] [1+f5(x2)]
fo= M+ R &)L X)) + [1+F5 (x2)]ff (x1)

fi = fFLx1)fY (x2)

and X and E are as follows:

(9a)

(9b)

(99)
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t oC
se nT
0 Q
Egs. (9a)—(9c) is implemented utilizing the standard displace-
ment-based FEM. PML element matrices are derived using the
prlnc1ple of virtual WOI:k to obt§1n the weak form of the governing Ke — / ﬂsz NTNdQ (18)
equations over the entire domain Q as follows: b
Q
where U7, Pjyyn1) and Pgy 1) indicate the displacement, in-

/ pfmeiidQ + / pesfeonidQ + / wfoudQ + / & gdQ + / &
Q Q

Q Q Q
. 2dQ — / o(oF® + 2F”)ndT
I
(14)

where I' = 98Q is the boundary of 2, and n is the unit normal.

Interpolating u as the displacement field and w as the weighting
function in terms of shape functions N, and integrating over the
element lead to the stiffness and mass matrices expressed in terms
of nodal submatrices as follows:

e - e
MU, ¢ + C°Up q + KUy g + Piynin) = Pexeni) (15)

ternal force, and external force in step n+1, respectively.
The element-level internal force is defined as

Pient(n+]) = /(Be>T°'n+1dQ+ /(BP)TEanQ (19)
Q° Q°

In the above equgléion, 0,41 and X, are the vectorial param-
eters and matrices (B°)T and (Bp)T are formed as

Table 2

Material properties of the half-plane.
Material E (kPa) Vs (m/s) p (kg/m?) v £ (%)
Material 1 15,000 55.97 1800 033 0
Material 2 15,000 54.55 1800 0.4 5
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4. Program verification

In the present research, a 2D finite element code has been
developed based on the above PML formulation by using MATLAB
mathematics language that is able to reduce the data storage and
programming quickness through vectorization and sparsification.
Utilizing four-noded quadrilateral elements enhanced with New-
mark implicit time integration scheme, the code is specialized for
the dynamic linear analysis in time domain. In order to obtain an
unconditionally stable solution, Newmark « and 8 parameters have
to satisfy the following conditions: 8 > 0.5 and « > 0.25(0.5 + §).
For an average acceleration scheme, « and (§ can be determined as
0.25 and 0.5, respectively (Bathe, 1996).

However, selecting the logical time step for any loading analysis
and noting the minimum element size to pass the loading fre-
quencies through the model are mandatory so as to obtain proper
results. Generally, the code is able to model different types of

geometries, multiple layers, dynamic and seismic analysis and
significantly, utilizing PML as radiation damping simulator; this is
an advantage of the current code in comparison with the similar
software.

For accurate representation of wave transmission through a
model, the mesh size must be smaller than approximately one-
tenth to one-eighth of the wavelength associated with the high-
est frequency component of the input motion (Lysmer and
Kuhlemeyer, 1969). In the present code, Rayleigh damping which
is proportional to the mass and stiffness of the system is used to
provide material damping that is almost frequency-independent
over a restricted range of frequencies. The PML formulation has
been implemented in the code by rewriting the dynamic equation
of motion and deriving new properties for the quadrilateral
elements.

In order to verify the dynamic performance of the program, an
example of a plane-strain model has been established under the
vertical incident wave of a normal probability distribution type on
the surface centerline. In this model, the mechanism of wave
propagation, the velocities of compressive wave (P-wave) and
Rayleigh wave have been measured. In addition, a base excitation
has been applied to measuring the velocity of shear wave (SV-
wave). The time history and frequency content of the input motion
are shown in Fig. 1.

The model discretizes a linear elastic region of 28 m x 20 m
using a mesh system with the maximum mesh size of 1.25 m (see
Fig. 2). The properties of the model are presented in Table 1.

The centerline of the model surface (point A) is subjected to
vertical incident Ricker wavelet. Using the elasticity theory, the
velocity of P-wave is calculated as
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Vo — E(1-v) _ 2.9 x 106 x (1 - 0.33)
P=\pd+v)(d=2v) |/ 1800 x (1+0.33)(1 -2 x 0.33)
= 49.6 m/s

(22)

Also, the velocity of Rayleigh wave can be calculated theoreti-
cally by an equation given by Knopoff (1952):

Vg = 0.54Vp = 26.8 m/s (23)

Specifying two nodes in the depth and two nodes on the surface
of the model, time histories of the variables such as displacement
and velocity are recorded. Having the distance between the nodes
and marking the correspondence time of variable peaks, the wave
velocity could be calculated. In Fig. 3, the procedure is demon-
strated through body and surface waves. Therefore, the velocities of
compressive and Rayleigh waves have been obtained, equal to
45,5 m/s and 22.1 m/s, respectively. These results are nearly the
same as that of elasticity theory.

The shear wave velocity has been calculated by applying a base
excitation of normal probability distribution type, assuming that
half-space is truncated by a 5 m length PML at the depth of 30 m
(Fig. 4). Using the elasticity theory, the shear wave velocity is
calculated as

PML e e» e (Gazetas, 1983
1.0

£=0.05

o
o

Jo

8.0 A
6.0 1
€ ’o’
4.0 1
2.0 1
0.0 T =0
0 1 2
9
PML == e» e Gazetas & Roesset, 1986
5.0
4.5 +
4.0 -
3.5 A
3.0 A1 =
= 2.5 A1
© 20
1.5 A
1.0 4
0.5 - ¢ <o
0.0 T
0 1 2
L)
G 2.9 x 106
Vs‘\[ﬁ_\/zx(1+o.33)x1800_25m/5 (24)

where G indicates the shear modulus.

The output of the base excitation is illustrated in Fig. 5. The shear
wave velocity has been obtained equal to 25.4 m/s, which matches
the elasticity theory.

5. Comparison of FE-PML solution with others

For comparison, the time domain response of the massless rigid
foundation is presented for the two models of extended mesh and
PML. In addition, impedance/compliance functions are calculated
and compared with analytical or semi-analytical works of the
previous researchers. Next, a brief introduction to the impedance/
compliance functions is presented and then the main studies from
the results are declared.

5.1. Dynamic impedance functions

An important step in current methods used for dynamic analysis
of rigid massive machine foundations is the determination (using
analytical or numerical methods) of the dynamic impedance

PML e e e (Gazetas, 1983
0.5
¢ =0.05

ladl

LE AN

0.0 '
0 1 2 3 4

)

Fig. 13. Compliance functions for foundation over half-plane with » = 0.4 and ¢ = 0.05.
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Fig. 14. Geometry of foundation on a layer over bedrock (unit: m).

functions, K(w), of an ’associated’ rigid but massless foundation, as
a function of the excitation frequency, w (Gazetas, 1983).

For each particular harmonic excitation with frequency w, the
dynamic impedance is defined as the ratio between the steady-
state force (or moment) and the resulting displacement (or rota-
tion) at the base of the massless foundation. For example, the
vertical impedance of a foundation whose plan is center-symmetric
can be defined as

Rt

=V (25)

where Ry(t) = Rye®! is the harmonic vertical force applied at the
base of the disk, and V(t) = Vel*! is the uniform harmonic settle-
ment of the soil-foundation interface. It is evident that Ry is the
total soft reaction against the foundation; it is made up of the
normal stresses against the basement plus, in case of embedded
foundations, the shear stresses along the vertical side walls.
Similarly, one may define the horizontal impedances, Kj,, from
the horizontal forces and displacements along the principal axes of
the base. Referring to Eq. (25), it is interesting to note that the
dynamic force and displacement are generally out of phase. In fact,
any dynamic displacement can be resolved into two components:
one in phase and one 90° out of phase with the imposed harmonic
load. It is convenient then to introduce complex notation to
represent forces and displacements. Consequently, the impedances
may also be written in the form of
Ka(w) = Kq1 + iKgz ()

(a=v,h) (26)

The real and imaginary components are both functions of the

vibrational frequency. The real component reflects the stiffness and
inertia of the supporting soil; its dependence on frequency is
attributed solely to the influence that frequency has on inertia,
since soil properties are essentially frequency-independent. The
imaginary component reflects the radiation and material damping
of the system. The former, being the result of energy dissipated by
waves propagating away from the foundation, is also frequency-
dependent; the latter, arising chiefly from the hysteretic cyclic
behavior of soil, is practically frequency-independent.

5.2. Dynamic compliance functions

Also given the names of dynamic 'displacement’ functions and
dynamic 'flexibility’ functions, they are essentially the ratios between
dynamic displacements (or rotations) and the dynamic reactive
forces (or moments) at the base of a foundation. It is convenient
to express compliance using complex notation (Gazetas, 1983):

Fq = Fg1(w) + iFg(w)

The real and imaginary parts represent the displacement com-
ponents which are in-phase and 90° out of phase with the reactive
force, respectively, and they both are functions of frequency, as
discussed previously.

(@ =v, h) (27)

Table 3

Material properties of layer on bedrock.
E (kPa) Vs (m/s) p (kg/m?) v £(%)
15,000 54.55 1800 04 5
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Fig. 15. (a) Vertical and (b) horizontal displacements of foundation on a layer over bedrock with » = 0.4 and ¢ = 0.05.

5.3. Application of the PML model

A force vibration of Ricker type has been applied in the
centerline of the surface of the foundation (Fig. 6). The analysis of
foundation vibration by application of the PML is validated by
evaluation of impedance/compliance for different soil conditions
such as half-plane, layer over bedrock and layer over half-plane.
Please note that the following results could be obtained for any
region with any shear wave velocity, given that a small value for Vs
has no effect on the response of the problem.

The purpose of the study is the application of PML in vibrating
shallow foundations, mostly involving machine foundation anal-
ysis. Since the existing analysis and formulations in the literature
are conducted for a rigid massless foundation, the foundation mass
in the present modeling is considered equal to zero. In addition, the
nodes placed on the foundation location are constrained to each
other rigidly so that the displacements of the mentioned nodes are
the same and they experience a rigid body motion. The foundation
is assumed as a strip footing in 2D plane-strain modeling.

5.3.1. Rigid massless foundation on half-plane
The geometry of the rigid strip foundation over half-plane
numerically investigated is presented in Fig. 7. The width of the

0.5

0.0 \

PML

massless (m = 0) foundation is B =2 m and the PML one is the half-
width of the footing, Lp = 1 m. In the corresponding PML, the
stretching functions (4;) are in the form of Eq. (6) with linear
attenuation functions (slope of 10/Lp).

The properties of the half-plane region are defined in Table 2.
The maximum element size is 0.25 m, which is placed within 1/10
of the longest wavelength to provide accurate wave transmission,
and the time step is equal to 0.004 s. For comparison purpose, the
vertical and horizontal displacements of the rigid massless foun-
dation for both extended mesh region and PML media are
demonstrated in Fig. 8. These deformations are produced by ver-
tical and horizontal loading forces, respectively.

The results obtained from the PML model follow the extended
mesh results closely, even though the domain is small enough for
other kinds of absorbing boundaries to reflect waves back to the
footing, as manifested in the higher response amplitudes.

In order to make a complete illustration of the PML efficiency,
horizontal and vertical displacement contours in the whole area are
presented in Fig. 9 for the moments of 0.2 s, 0.28 s and 0.4 s. The
mechanism of the wave propagation in the region shows that the
forced vibrations produced by both of horizontal or vertical load-
ings can be fully absorbed and damped by the boundaries sur-
rounded by PMLs. In other words, after 0.4 s of foundation

eeecee

Huh and Schmid. 1984

- a= Gazetas, 1983 {=0.05
-0.5
1.5
®*®***Huh and Schmid, 1984
1.0 A
- 0.5 4
< 44)’/\-—-’\
m
0.0
_05 -
% {=0.05
-1.0

1 2 a, 3 1
PML
eeeee HuhandSchmid, 1984
o= = Gazetas, 1983 {=0.05
-0.5
1.5
PML eeeeHuh & Schmid, 1984
1.0 4
~ 0.5 4
s e
0.0 =ttt T T
1 2 L
-0.5 4 a
0 {=0.05
-1.0

Fig. 16. Compliance functions of foundation on a layer over bedrock with » = 0.4 and ¢ = 0.05.
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Fig. 17. Geometry of foundation on a layer over half-plane (unit: m).

vibration, all of the scattered waves through the medium are
absorbed by PML and would damp without any reflection. The
operation, in fact, is the role of radiation damping in FEM modeling.

With no PML in previous cases, the vibration would be perma-
nent in the medium and the usual static boundary conditions lead
to wave reflection into the solution domain. A sample of model
without PML is shown in Fig. 10; in addition, the outputs are pre-
sented in Fig. 11, comparing the foundation displacements in cases
of applying PML and without it.

The results in the form of impedance functions for vertical (ky,
cy) and horizontal (kp, cp) oscillations and in form of compliance
functions for vertical (Fy1, Fy2) and horizontal (Fy1, Fr2) oscillations
are presented in Figs. 12 and 13, respectively. It should be noted that
the curves shown in Fig. 13 are the responses of the foundation
assuming a material damping of 5% for the medium of the wave
propagation.

The impedance functions have been compared with the
analytical results of Gazetas and Roesset (1986) and the compliance
functions have been compared with the analytical results of
Gazetas (1983). Using this small domain, the results obtained from
the PML model are in good agreement with the previous studies;
however, the existence of material damping in the main domain
and in the PML makes more accurate responses. It is worth
mentioning that the PML outputs are obtained at a low computa-
tional cost. In general, the trends of responses are the same as
analytical studies and the little differences come from the method
of solutions.

5.3.2. Rigid massless foundation on layer over bedrock

The second condition is a foundation on a layer over bedrock of
which the geometry is illustrated in Fig. 14. The dimensions of the
massless foundation are B = 2 m and the PML of the half-width of
the footing, i.e. Lp = 1 m. The thickness of the layer over bedrock has
been selected as H/B = 1 to be comparable with the previous in-
vestigations. Moreover, the bedrock is modeled as a rigid base. In
the corresponding PML, the stretching functions (4;) are in the form
of Eq. (6) with f;(x;) = 0 and linear f,(x;) (slope of 20/Lp) in the
PMLs. The properties of the medium are defined in Table 3. The
maximum element size is 0.25 m, which is placed within 1/10 of the
longest wavelength to provide accurate wave transmission, and the
time step is equal to 0.004 s.

For comparison, the vertical and horizontal displacements of the
rigid massless foundation for both extended mesh region and the

media with PML are demonstrated in Fig. 15. These deformations
are produced by vertical and horizontal forces, respectively.

The results obtained from the PML model follow the extended
mesh results closely, even though the domain is small enough for
other kinds of absorbing boundaries to reflect waves back to the
footing. The results in the form of compliance functions for vertical
(Fy1, Fy2) and horizontal (Fyq, Fnp) oscillations are presented in
Fig. 16.

The compliance functions have been compared with the
analytical results of Gazetas (1983) and Huh and Schmid (1984).
Using this small domain, the results obtained from the PML model
match fairly well the previous studies. It is noted that the PML
outputs are obtained at a low computational cost. In general, the
trends of responses are the same as analytical studies and all of the
peaks and valleys are exactly captured by the introduced model.

5.3.3. Rigid massless foundation on layer over half-plane

In the last condition, a foundation on a layer over half-plane is
evaluated. The geometry is illustrated in Fig. 17. The dimensions of
the massless foundation are B = 2 and the PML of the half-width of
the footing, Lp = 1 m. The thickness of the layer over half-plane
has been selected as H/B = 1 to be comparable with the previous
investigations. In the corresponding PML, the stretching functions
(4;) are in the form of Eq. (6) with linear attenuation functions
(slope of 10/Lp) in the PMLs. The PMLs utilized for the layer and the
half-plane have different moduli, corresponding to the moduli for
the elastic media as defined in Table 4. The maximum element size
is 0.25 m, which is placed within 1/10 of the longest wavelength to
provide accurate wave transmission, and the time step is equal to
0.004 s.

The results show that displacements of the PML and the
extended mesh model are similar, as shown in Fig. 18. It is worth
mentioning again that the domain is small enough for other kinds
of absorbing boundaries to reflect waves back into the footing.
Without PML in previous case, the vibration would be permanent in
the medium and the usual static boundary conditions lead to wave

Table 4

Material properties of layer on half-plane.
Layer type E (kPa) Vs (m/s) p (kg/m?) v £ (%)
Bounded layer 15,000 54.55 1800 0.4 5
Half-plane 60,000 109.1 1800 04 5
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Fig. 18. (a) Vertical and (b) horizontal displacements of foundation on a layer over half-plane with » = 0.4 and £ = 0.05.

reflection into the solution domain. A sample of model without
PML is shown in Fig. 19. The outputs are presented in Fig. 20,
comparing the foundation displacements in cases of applying PML
and without it.

The compliance functions for vertical and horizontal oscillations
are presented in Fig. 21, which have been compared with the
analytical results of Gazetas (1983). Using this small domain, the
results obtained from the PML model match fairly well the previous
studies. It should be noted that the PML outputs are obtained at a
low computational cost. In general, the trends of responses are the
same as analytical studies and the slight differences come from the
approach of calculating material damping which are of two
different types of Rayleigh and viscous for the present study and
the literature, respectively.

5.4. Comparing with physical modeling

Dobry et al. (1986) have presented the results of the studies
by Stokoe and Erden (1974) in their paper as a case of

comparison. Stokoe and Erden (1974) investigated the dynamic
damping of the rectangular shallow foundations by physical
modeling. In order to simulate absorbing boundary conditions,
they utilized wet sawdust of which the properties have been
obtained by resonant column test. The idealized vertical section
of the apparatus along with the material properties is shown in
Fig. 22 (8 is the material damping ratio). The properties of the
sand and sawdust differ drastically: the damping ratio () for the
sawdust is 30%, which is much higher than that of the sand
(2.5%), while Vs and p values for the sawdust are much smaller
than that of the sand. A part of the results obtained by these
researchers are displayed in Fig. 23.

In the present study, strip footing has been analyzed using the
prepared code with PML; the results are comparable with the
physical modeling of the rectangular foundation with L/B > 10. The
material properties in the numerical modeling are the same as the
physical modeling except for the geometry dimensions which are
altered due to the use of the PML instead of sawdust layer. The
specifications of the PML are assigned based on the former

lo=1.5

] Medium_sand
D HalfSpace

Fig. 19. Geometry and discretization of layered model without PML (unit: m).
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Fig. 23. Vertical radiation damping (Dobry et al., 1986).

problems. The model geometry and discretization are shown in As can be seen, the results of the finite element analysis using
Fig. 24. The output in the form of the dynamic damping (the PML are in a good agreement with the physical modeling.
equations described in the Dobry et al. (1986)) is presented in Therefore, the considered dimensions and PML characteristics
Fig. 25. that have been used to model the vibrating shallow foundation are
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Fig. 25. Vertical damping calculated by numerical and physical modeling.

reliable and the proposed method can be applied in similar
analyses.

6. Conclusions

The key to properly model wave propagation using the FEM is
implementing radiation damping condition. In this context, a new
FEM program has been written which is able to analyze different
geometries with any number of layers under dynamic or seismic
loading in the time domain. The program is featured by imple-
menting PML formulation to simulate the radiation damping. The
PML formulation has been implemented in the code by rewriting
the dynamic equation of motion and deriving new properties for
the quadrilateral elements. This study focuses on the calibration of
the transient dynamic analysis of soil-foundation by FE-PML
formulation. The near-field part of the foundation is modeled by
FEM surrounded by a PML which models the far-field by absorbing
waves propagating towards infinity.

In order to verify the dynamic performance of the program, an
example of a plane-strain model has been established to measure
the compressive, Rayleigh and shear wave velocities. The analysis of
foundation vibration using the PML is validated by the evaluation of
impedance/compliance for different soil conditions such as half-
plane, layer over bedrock and layer over half-plane. In the same
way, vibration of strip footing has been analyzed using PML and the
results have been compared with the physical modeling.

The results obtained from the PML model follow the extended
mesh results closely, even though the domain is small enough for
other kinds of absorbing boundaries to reflect waves back to the
footing. The mechanism of the wave propagation in the region
shows that the forced vibrations produced by either horizontal or

vertical loading can be fully absorbed and damped by the bound-
aries surrounded by PMLs. The operation, in fact, is the role of ra-
diation damping in FEM modeling.

Using this small domain, the results obtained from the PML
model match the previous studies. In general, the trends of re-
sponses are the same as analytical studies and the minor differ-
ences come from the method of solutions and the approach of
calculating material damping which are of two different types of
Rayleigh and viscous for the present study and the literature,
respectively.

Compared with others, the adjusted model yields more accurate
and stable solution in the case of wave propagation, independent of
the frequency or angle of incidence. Moreover, a case of the PML
application is presented, where the foundation response is evalu-
ated for different soil/rock conditions. Finally, it is concluded that
the PML offers a reliable and efficient approach for modeling ra-
diation damping mechanism. The formulation is applicable to
elastodynamic problems involving wave propagation into un-
bounded media.
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