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ABSTRACT

J-integral has served as a powerful tool in characterizing crack tip status. The main feature, i.e. path-
independence, makes it one of the foremost fracture parameters. In order to remain the path-
independence for fluid-driven cracks, J-integral is revised. In this paper, we present an extended J-in-
tegral explicitly for fluid-driven cracks, e.g. hydraulically induced fractures in petroleum reservoirs, for
three-dimensional (3D) problems. Particularly, point-wise 3D extended J-integral is proposed to char-
acterize the state of a point along crack front. Besides, applications of the extended J-integral to porous
media and thermally induced stress conditions are explored. Numerical results show that the extended J-
integral is indeed path-independent, and they are in good agreement with those of equivalent domain
integral under linear elastic and elastoplastic conditions. In addition, two distance-independent circular
integrals in the K-dominance zone are established, which can be used to calculate the stress intensity
factor (SIF).

© 2018 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Parameters of stress intensity factor (SIF), crack tip opening
displacement (CTOD), energy release rate and J-integral are most
commonly used to evaluate crack geometry, stress field, stability
state of fracture tip, etc. The usage and calculation of each of these
parameters are often limited to certain conditions such as elastic
materials, small-displacement assumption or small-scale plastic
region. Among these parameters, J-integral, however, has been
found to be the most effective method in characterizing fracture tip
due to its wider application range.

J-integral is a path integral along the contour starting from any
point on bottom surface of the crack and ending in top surface. It
was initially proposed independently by Cherepanov (1967) and
Rice (1968a) as an alternative approach to determine the energy
release rate. The original form of J-integral is expressed as

J = T/(wdyTzzclds) (1)
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where w is the strain energy density, I is the integral path from the
bottom to the top surface around the crack, T is the traction along
the path, u is the displacement vector along the path, and ds is the
line element along the path.

Rice (1968a) showed that the value of J-integral is equal to the
energy release rate during crack extension, regardless of its inte-
gration path. The path-independence made the J-integral a
powerful tool to investigate a wide range of studies, such as
different types of loading, material laws and field problems, in both
linear elastic and elastoplastic conditions, especially in connection
with numerical analysis. One of the main advantages of J-integral is
that it can be calculated in a region far enough from crack tip so that
the numerical accuracy is not compromised. In case of small-scale
yielding, in which stress field beyond yield zone is still governed
by stress singularity, Rice (1968a) showed that the path-
independent J-integral can be correlated to the SIF (Kj) in mode-I
fracture loading as follows:

1 -2
J=— K (2)

where v is the Poisson’s ratio, and E is the Young’s modulus. In case
of plane-stress condition, Eq. (2) applies by replacing 1—»*> with
unity. Similarly, Eq. (2) can be generalized for mode-II and mode-III
loading cases.
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In case of elastoplastic conditions, J-integral is also capable of
characterizing the intensity of the crack tip stress field. Therefore,
the critical value of J-integral (Jc) plays a comparable role in
determining fracture toughness in elastoplastic condition as crit-
ical SIF does in elastic condition (Kuna, 2013). Landes and Begley
(1977) proposed experimental procedures using a series of spec-
imens to determine J.. Subsequently, standard experimental pro-
cedure was developed (ASTM E1737-96; 1996). Either a critical
value or a resistance curve can be obtained by using particular
standardized specimen (Tada et al., 2000) for a test material. |
measurement is also a substitute where the value of SIF (K) is not
available, especially when the plastic zone around the crack tip is
too large.

Numerous attempts have been made in the literature to
extend the applications of the path-independent J-integral.
Begley and Landes (1972) applied the J-integral to determining
the fracture toughness in elastoplastic materials. Their results
were validated against experimental determination of Jic (for
mode-I) through different measuring points (Landes and Begley,
1974, 1977). In addition, Landes and Begley (1976) proposed a
modification of J-integral under nonlinear viscous flow rule,
denoted as C*, in which strain and displacement were replaced
by their time derivatives, respectively. Schapery (1984) devel-
oped a generalized J-integral which is applicable to a wide range
of viscoelastic materials. By such modification, the application of
J-integral was extended to high-temperature creep cracking
phenomena (Taira et al., 1979). For bi-material interface crack
problems, M; integral, another extended version of J-integral,
was developed (Miyazaki et al., 1993). More relevant applications
of J-integral have been continuously developed by different re-
searchers (Roberti et al., 1984; Landis, 2004; Prawoto and Onn,
2012; Zimmerman and Jones, 2013; Ochensberger and
Kolednik, 2014).

Apart from the application of the J-integral as fracture criterion,
it also offers a potential characterization tool to study stress field in
yield region. Stress field around crack tip under elastic assumption
can be simply acquired from the SIFs Kj, Ky and Ky, which were
given by Irwin (1957) using Westergaard (1939)’s method. In re-
ality, however, yield or plastic zone exists around crack tip and
therefore, elastoplastic fracture mechanics needs to be considered
to take into account the yield region. In order to address such ef-
fects, Hutchinson (1968) and Rice and Rosengren (1968) applied
power-law deformation theory of plasticity and demonstrated that
the near-tip stress field can be expressed as a function of J-integral.
This near-tip area is called HRR field (HRR for initials of the au-
thors), or J-dominance zone, as shown in Fig. 1. It is noteworthy that
the HRR field solution is applied under the assumptions of small
strain, infinite plate, and monotonical as well as proportional
loading since the deformation theory cannot be used when
unloading occurs.
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Fig. 1. Stress variation ahead of the crack.

The numerical computation of J-integral, in particular with
finite element method (FEM), has also been widely studied. J-
integral can be calculated directly by interpolating the variables
on predefined arbitrary path using numerical computation. Such
an interpolative approach is, however, associated with uncer-
tainty as stress magnitudes are calculated for Gauss points,
whereas displacements are solved over nodal points. In order to
address such an uncertainty, equivalent domain integral (EDI)
(Hutchinson, 1968; Li et al., 1985; Nikishkov and Atluri, 1987;
Raju and Shivakumar, 1990) has been proposed to compute the
J-integral value. EDI is a generalization of virtual crack extension
method (Parks, 1977, 1978; delorenzi, 1982; Li et al., 1985),
which essentially evolves from the calculation of energy release
rate directly. The domain integration alleviates the local solution
error.

The application of the J-integral to hydraulic fracturing
needs further improvements as there are issues such as internal
traction, porous media and, in some cases, thermal strain. It is
noteworthy that hydraulic fracturing is a technique used to
facilitate oil and gas extraction by creating cracks under
induced fluid pressure and it is now an indispensable process in
the development of tight gas and shale gas reservoirs. Karlsson
and Backlund (1978) developed a revised J-integral for inter-
nally loaded cracks in two-dimensional (2D) cases. However, a
more detailed extension for three-dimensional (3D) internally
pressurized cracks and the cracks under thermal conditions are
not available currently.

In this study, J-integral is further extended to make it suitable
for investigating 3D hydraulically pressurized fractures and its
path-independence is successfully examined. Conditions of
porous media and thermal strains are discussed. The application
of the extended J-integral is assessed and the results are
compared against those obtained by the currently available
methodologies. The main purpose of the proposed methodology
is to apply the concept of J-integral to a much wider range of
fracture treatments.

2. Formulation of 3D J-integral and its application to
hydraulic fracturing

J-integral can be represented by the subtraction of its two
components as follows:

J=h-L
Ji = [wdy
r/ (3)

b=

|
—

~
g &

o

Rice (1968a) indicated that J-integral values are equal along all
paths around crack tip. This conclusion was derived based on
conservative enclosed path, that is, for an enclosed path without
singular point inside, J is proved to be zero. This statement was
made based on the following assumptions: (1) strain-displacement
relation is linear (small strain); (2) no body force exists; and (3) no
singularity point exists along/within the integration line. A detailed
derivation is shown in Appendix A.

Rice (1968a) suggested that J-integral is a measure of average
strain energy of crack tip in the case of a blunt crack. In case of a
sharp tip, the contour can shrink to as near as crack tip and yet not
reaching the sharp tip:
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J = }gr(l)/(wdy—T&ds>
I,

where r is the distance to the crack tip.

Therefore, we could consider that J-integral is a characterizing
parameter of the crack tip field. From an energy point of view, J-
integral represents the potential energy release rate.

Under linear elastic condition, J is related to Kj, as shown in Eq.
(2). By working out the integration of J, it is found that if the inte-
gration route is circular and within K-dominance zone, J; and J, are
also distance-independent of crack tip, which can be used as an
alternative technique to calculate Ki:

(4)

T
2 _
I :/wdy:r/wcosﬁdﬁ:w (5)
4E
C —T
0 R ou o ou 90
u uor ou
C —TC
2 _
_ K1 +9)(=3+29) 6)

4E

where c is the circular integration route.
The derivations of Eqgs. (5) and (6) are presented in Appendix B.
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2.1. Crack pressurized with fluid

For internally pressurized crack (as shown in Fig. 2), the path-
independence of the J-integral around the crack tip is not appli-
cable as the traction-free condition at the crack faces is not met.
Therefore, an addition term is required to maintain this path-
independence.

Due to the traction force (hydraulic pressure) over the crack
surfaces (see Fig. 2a), the corresponding components of the J-in-
tegral on routes I'; and I'4 are no longer zero and they can be
expressed as follows:

-~ ou . auyj}
_’1"2 = —./Tad = —/pTdS
Iy I
7
Ir f—/Ta—uds —/(— )%ds 7
Ta = ox P)—ax
Iy Iy

where p is the traction force (hydraulic pressure) over the crack
surfaces.

Assuming that the crack is symmetric, and the end points of the
route are also symmetric, it can be obtained that

ou
Ir+n, = =2 [pras (8)
I

Crack tip
FS

(b)

Y Rounded
I ‘ ’ r}notch

T

©

Fig. 2. Cracks with hydraulically pressurized surfaces: (a) Sharp crack with enclosed annular area around the crack tip, (b) Sharp crack with inner path which is infinitely small

around the crack tip, and (c) Inner path shrunk to a rounded notch.
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Assuming I's to shrink to an infinitely small contour around the
crack tip and yet excluding crack tip singularity (as shown in
Fig. 2b), or become a rounded notch (as shown in Fig. 2c), the J-
integral over I's can be expressed as follows (for enclosed path
integral conservation, refer to Appendix A):

) B ou ouy
Ir, = =Ur, +Jr, +Jr,) = /(wdy Taxds> +2./P X ds
Iy Iz

(9)

Since the path I3 is in clockwise direction (as shown in Fig. 2b
and c¢), ] value in the opposite direction I'5 is reversed, i.e.

_ [ 1M o [
]F; = /(wdy Taxds) 2/p P ds (10)
I,

1

The length of path I'; in Eq. (10) can be approximated as the
distance from the J-contour/crack face intersection to the crack tip.
The extended J-integral is then presented as

[0
Jr=1- [ pggdr (1)
0

where J is the original value along the path, and ¢ represents the
crack opening width (aperture). In fluid-driven cracks, before the
cracks reach propagation criteria, fluid pressure builds up inside
the cracks without flowing, therefore, the hydraulic traction force p
is the same along the crack surfaces. With application of integration
by parts, Eq. (11) can be written as follows:

0
0
J=J— p6|9r—/5a—fdr — 4+ pos (12)
Zr

This extended J-integral is used to characterize local strain en-
ergy in case of hydro-traction crack faces. Eq. (12) is applicable
when the start and end points are symmetric. For deviating end
points, however, one readily obtains

Jr =J+puy1 —puy; (13)

where uy; and uy,» denote the y-displacements of upper and lower
end points, respectively. In this study, for the sake of simplicity, it is
assumed that all contour edge points are symmetrically distributed
on both crack faces, unless otherwise mentioned.

The extended J value can also be derived from an energy point of
view. In case of the blunt fracture tip, J-integral can be shrunk to the
flat surfaced notch and therefore, it can be used as a parameter to
characterize the local strain energy. From the energy point of view,
it can be deemed as the potential energy release rate. The potential
energy of the area around the crack tip is

"= /wdxdy—/Tu di (14)
A T

The first term at the right-hand side of Eq. (14) is the free energy
of the body, while the second term is the energy coming from

boundary loading. The body and the load together are treated as a
composite system. If the crack propagates by a small amount dg, the
potential energy release rate is expressed as follows in terms of
field variables:

om o f
~3a = 3a (6:Vu—w) dA (15)
A

where ¢ is the stress, and a is the distance that the crack
propagates.

According to Rice (1968b), J-integral is equal to the energy
release rate and can be expressed as

om a0 [
J= —

~3a — 3a (0:Vu—w) dA (16)
A

In case of internally pressurized cracks, the term [;Tu dl in Eq.
(14) includes the pressure work 2 [-pu,dl. Therefore, the extended
J-integral is also equal to the potential energy release rate of
pressurized crack:

om
Jr = o J+por (17)

Since the energy interpretation of extended J-integral remains
the same, and the domain integral method (Nikishkov and Atluri,
1987), commonly used for calculation of J, is essentially based on
the energy release rate, the domain integral method can, therefore,
still be used in hydraulically pressurized fractures. In the following
section, the extended J-integral for hydraulically pressurized crack
surfaces is generalized to 3D conditions.

2.2. Point-wise 3D extended J-integral

J-integral was initially proposed for 2D problems. It becomes
surface integral if a crack is in 3D, which can be derived in the same
manner because of volume integral conservatory as

0 /(wndi - TZ—:dA> (18)

where s represents the wrapping surface around the crack front
segment, and 1y is the x-component of the unit vector normal to
the wrapping surface. A schematic representation of cylindrical
wrapping surfaces around cracks with constant and changing
heights is shown in Fig. 3a and b, respectively. Wrapping surfaces
around the crack can be arbitrarily shaped, yet the surface geom-
etry shown in Fig. 3 is simplified as a cylinder for better under-
standing. In case of traction-free crack surfaces, J value is obtained
by integration over side surface (B) as well as over top and bottom
surfaces (A and C), respectively. In case of internally pressurized
cracks, another term, which represents the effect of the loaded
crack surfaces M and N (see Fig. 3a and b), needs to be added to Eq.
(18) as follows:

3D _ —1Maa) - / Oy
; _/(wnXdA Tadi> 2 andA
s S

_ 3D _ 676
=P [ pgar (19)
rm
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(b)

Fig. 3. 3D cracks and their wrapping surfaces: (a) Crack with constant height, and (b)
Crack with changing height.

The surface integral in Eq. (19), J°°, a global parameter for 3D
cracks, represents the accumulation of strain energy along the crack

front, and can be expressed as follows:

PP = lim

ou
lim (wndi - T&dA) (20)

Numerical implementation of the 3D J-integral is, however,
associated with the difficulties due to the presence of singularities.
For instance, integration over the top and bottom parts of the
wrapping surface in Fig. 3a and the side cylindrical surface in Fig. 3b
needs displacement gradient to be calculated near the vertex sin-
gularity. Therefore, the numerical solution of 3D J-integral is rela-
tively inaccurate and unstable. However, this is not the case with
point-wise 3D J-integral.

For a specific point on the crack front, point-wise J-integral is
defined to characterize the state of a point, as shown in Fig. 4a. The
point-wise J-integral can be calculated as follows (Nikishkov and
Atluri, 1987):

Crack front

(a)

Crack front

(b)

Fig. 4. 3D point-wise J-integral: (a) Infinitely small disk around a point at crack front
(excluding singularity), and (b) 3D point-wise J-integral on a plane normal to the crack front.

3D _ . au
A = 2(12?0 / (wndi—T&dA (21)
d N

where 4 is the disk thickness, and r is the radius of the disk. Due to
the conservation of the volume integral, and the application of the
divergence theorem, the point-wise J-integral can be represented as

3D
JpointA =

A+B+C

(wnde - Tg—: dS) (22)

Since the normal vectors of faces A and C (top and bottom parts
of the wrapping surface, as shown in Fig. 4a) have opposite di-
rections, the point-wise J-integral can be expressed as

0 ou ou
]gc[))intA :A/& (W”X—T&)dAvLA / (an—T&) dl'g (23)
A I's

where ny is zero in areas A and C.
Eq. (23) can be further simplified as

ou ou
B = [ (sme T )ar - [ (1) 24
r A

The path I' resides on a plane, of which the normal vector is
tangent to the crack front, as shown in Fig. 4b.
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Taking into account the hydraulic pressure, Eq. (22) is written as
follows:

_]3D A =

point

wiydS — TZ—:CIS) (25)
A+B+C+M+N

which can further be deduced to
o 4 4 [0 ou ' ou
J30d = 4 / > (fra)cmw / (wnx 7T&)dr3
A Iy
" a0
+af (*”&)“
Tr
—A/wn dr/ T™aa+ps| (26
- X oz \" ox +p
T

Therefore, the extended point-wise J-integral for 3D hydrauli-
cally pressurized cracks can be expressed as

BBt = / (w75 )ar - / o (T3 a+ps (27)

The line integral term and pressure term can be calculated away
from the crack front, yet the area integral term is still related to area
near the crack front. From the second term on the right side of Eq.
(27), it can be noted that taking the gradient over z-direction
eliminates strain singularity, which makes the numerical calcula-
tion of the point-wise J-integral more stable. This local value of
point-wise J-integral indicates the stress state of a point at the crack
front, and it changes along the crack front.

In the following part, we will explain that the point-wise 3D
extended J-integral is also the energy release rate at that point
along a fluid-driven crack front. We take out a volume around a
crack line with constant thickness 4, as shown in Fig. 5a. The po-
tential energy of the crack tip front volume is

w:/wdv—/pédA—/TudB—/Tu dc (28)
v A B c

where A, B and C are shown in Fig. 5. If the crack advances by
an infinite small area A, the change of potential energy is
m(A). If we transform Fig. 5a so that the crack front

m(A+3A) —

coincides with that in Fig. 5b, the difference volume represents the
difference in elastic energy, which is shown in Fig. 5c. The differ-
ence volume can be acquired by considering a sweeping motion
between Fig. 5a and b. Therefore, we obtain the difference in elastic
energy, i.e. [;[— wny(0A)]dI. Work done by the external traction
also changes during sweeping. As to the work done by the traction
on the circumferential area, the contributing difference is
J7T(du/dx)(dA)dI. For the top surface, consequently, the difference
in the work done by the traction is [-T(6u/0x)(5a)dC, where da is
the increased crack length, da = dA/4. Similar expression can be
derived for the bottom surface. Finally, the contribution of the in-
ternal pressure to the potential energy difference is [5,(— p)od(dA).

With all the contributions described above, the energy release
rate is

T(A+dA)—T(A)
3A

__ {/< W) (34) dF+/T—(5A )dI'v/b? —4ac

G=-

I
+ /Tg—l;(aa)dC+ / T2 (da)dC'+ /(—p)éd(BA)} / (34) (29)
C C

dA

where C ' is the bottom surface.
If the thickness is infinite small, the summation of integrals for

the top and bottom surfaces can be expressed as -2 (T %;‘) (3A)dC

since the tractions are in opposite directions. Therefore, the energy
release rate can be further simplified as

G

_ [/( — wW)nk(3A)dI + /Tz—;' (8A)dI
T r

+ / 3 (Ta—u>(6A)dC+ / (-p )6d(6A)} / (34)
/wnxdf /Taudf /az< )dC+5A /pécl(BA)

(30)

Eq. (30) is in accordance with the extended 3D point-wise J-
integral. If we assume constant pressure and infinitely small dA, the
formula would be exactly the same with the extended 3D point-
wise J-integral. It indicates that the energy release rate is

Circumferential area B

(a)

(b) (©

Fig. 5. Near crack domain/volume: (a) Initial crack front domain, (b) Advanced crack front domain, and (c) Transformation of initial geometry to the advanced one so that the crack

front coincides.
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naturally a point-wise characterizing parameter, and the extended
3D point-wise J-integral can be used to calculate the energy release
rate in fluid-driven cracks.

2.3. Extended J-integral for porous media

Petroleum reservoir rocks are porous media, hence the theory of
poroelasticity applies. The concept of effective stress & is usually
adopted to describe the behavior of solid matrix, and is in consti-
tutive relation with the strain, i.e. @ = De, where D is the stiffness
tensor. Total stress at a point is the overall stress state based on the
assumption that solid and fluid are overlapping. The numerical
value of the total stress consists of the effective stress of solid
skeleton and the fluid pressure.

In calculation of extended J-integral for porous media, it should
be noted that the total stress instead of the effective stress should
be used because the total stress is divergence free. Meanwhile, the
definition of strain energy density can be expressed as

€ € € EN

w:/a;de:/(3—50ape):de:/a:de—/apedgv

0 0 0 0
(31)

where pe is the pore pressure in porous media, « is the Biot—Willis
coefficient, ¢y is the volumetric strain, and dg is the unit tensor. If we
define a new strain energy density as W = [ @ : de, we have

5%

w=w-— / apedey (32)
0

The extended 3D point-wise J-integral then becomes

_ ou i
ch?int = /(wnx—T&>dT7/ /Oépedev nydl’
T T \o

0 ou
_/& (Ta)dA 4 po (33)
A

2.4. Effect of thermal stress/strain

During hydraulic fracturing, heat transfers between rock
formation and fluid. In case of low-temperature fracturing, for
example, the cooling liquid brings an intensive thermal strain
along fracture surface, therefore, a coupling thermal field cannot
be neglected in modeling. The acquisition method of J-integral
should also be revised accordingly to retain its path-
independence.

Recalling Section 2.1, the path-dependence of the derivation of |
relies on divergence free stress and small-strain assumption,
therefore, in the definition of strain energy density W = [j : de,
stress is the mechanical stress while ¢ is the total strain. With
thermal effects considered, the overall strain becomes

e =¢eM +£T (34)

where eM is the mechanical strain, and 7 is the thermal strain. The
mechanical stress is then expressed as

g = D(e — OlTToéo) (35)

where Ty is the temperature compared to a reference value, and ot
is the thermal expansion coefficient. Therefore, the strain energy
density becomes

e &y & ey

w = / (De) :de—/‘ arTodey = /&:def/ wrTodey  (36)
0 0

0 0

where ¢ is the stress calculated from total strain by ¢ = De. If we
define a thermal strain energy density w = ;& : de, we have

W= v”vf/ arTydey (37)
0

The extended 3D point-wise J-integral then becomes

. ou ¥
JgEint = /(WHX—T&)dT—/ /OéTTodev nxdl’
T \0

J
0 ou
7/& (T&)dA+p6 (38)
A

3. Numerical verification of path-independence of extended
J-integral

The application of the extended J-integral is investigated us-
ing a case study in which a finite sized crack (see Fig. 6) is
located in a finite plate (representing the rock body in the plane-
strain condition). J value was obtained and processed through a
numerically determined stress field after analysis. Only mode-I
loading is considered in this study as it is the case in most hy-
draulic fracturing operations in which the fracture propagation
occurs due to the tensile failure of the rock. The length and width
of the rock stratum are 20 m and 8 m, respectively. The crack
length is 3 m.

Bi-axial compressions, ox and gy, which are equal to 30 MPa and
20 MPa along x- and y-directions, respectively, are also applied as
stress boundary conditions to represent underground in situ stress
conditions. The Young’s modulus is set to be 20 GPa, and the
Poisson’s ratio is 0.25.

Next, the proposed extended J-integral value is evaluated using
the FEM. Five randomly chosen contours are used for integration, as
shown in Fig. 7. The hydraulic pressure p is increased monotonically
from 23 MPa to 35 MPa. Table 1 shows the values of extended J and
Jepi (J-integral calculated from the equivalent integral method) with
different hydraulic pressures. It is shown that the extended J is
path-independent, while the original J values change with the
integration path. As the calculation of the original J neglects the
surface traction, negative values are obtained, which have no
physical meaning. The positive values of extended J indicate that
energy is consumed when crack grows, usually in the form of
surface energy and viscous dissipation. The relative error between
different paths at a certain hydraulic pressure is less than 4%. The
value of the extended J is consistent with Jgp;, which satisfies its
physical meaning as the energy release rate. As a crack tip condition
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Fig. 6. Mode-I hydraulically pressurized crack.
Fig. 7. J-integral contours around crack tip in a quarter of model due to symmetry (the numerical values of individual contour are presented in Table 1).
Table 1
FEM analysis of hydraulic crack: Calculation of J-integral.
Hydraulic pressure (MPa) Path J Extended J Average Relative error (%) Jept
23 1 —19,526.28 2794.14 2693.83 3.72 2618.87
2 —18,319.34 2693.15 0.02
3 -16,351.49 2625.37 2.54
4 —13,761.34 2762.58 2.55
5 -9721.212 2593.89 3.71
26 1 —39,847.28 10,616.26 10,512.17 0.99 10,475.46
2 —37,009.78 10,496.73 0.15
3 —32,457.67 10,446.52 0.62
4 —-26,773.73 10,584.7 0.69
5 -17,426.2 10,416.64 0.91
29 1 —60,751.98 23,677.41 23,569.21 0.46 23,569.79
2 —55,943.79 23,538.25 0.13
3 —48,273.93 23,508.1 0.26
4 —38,853.91 23,649.62 0.34
5 —23,110.55 23,472.66 0.41
32 1 —82,240.35 41,977.6 41,864.93 0.27 41,901.85
2 —-75,121.38 41,817.71 0.11
3 —63,800.25 41,810.09 0.13
4 —50,001.89 41,957.32 0.22
5 —26,774.26 41,761.95 0.25
35 1 -10,4312.4 65,516.82 65,399.35 0.18 65,471.64
2 —94,542.53 65,335.12 0.1
3 —79,036.64 65,352.5 0.07
4 —60,217.66 65,507.82 0.17
5 —28,417.34 65,284.51 0.18
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Table 2
Comparison of extended J-integral values at elastic and elastoplastic conditions.

Hydraulic pressure (MPa) Path Extended J (elastic) Average (elastic) Extended J (plastic) Average (plastic)
35 1 65,516.82 66,462.39
2 65,335.12 66,282.55
3 65,352.5 65,399.35 66,299.72 66,354.1
4 65,507.82 66,455.27
5 65,284.51 66,270.58
|
Call
/
«—t—O "
N
(a)
Symmetry K,
A \l”
«—0
Symmetry

Point at crack front

(b)

Fig. 8. (a) 3D hydraulically pressurized crack, and (b) A quarter of the plane normal to crack front at z = 0.4 m with 5 paths around the crack tip.

indicator, the extended J value also increases when the hydraulic
pressure increases.

If we analyze the crack using incremental plasticity (yield stress
is 50 MPa with perfect plasticity), the J-integral value is also ob-
tained as path-independent. The value is compared with that in
elastic condition at hydraulic pressure of 35 MPa, as shown in
Table 2.

For the 3D extended point-wise J-integral, numerical compu-
tation involves area integral, line integral, and the third term which

Table 3
Parameters used in numerical calculation.
Stresses Material properties Geometry
p =25 MPa E =20 GPa B=8m
gx = 30 MPa v=025 W=20m
ay = 20 MPa H=8m
g, =30 MPa Crack length =3 m
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Table 4
FEM analysis of 3D point-wise extended J-integral.
Path Line integral term Area integral term Pressure term 3D extended J Average Relative error (%) Jep1
1 —12,926.87 -961.69 21,119.69 7231.13 7127.15 1.46 7099.46
2 —20,385.43 —1565.28 28,984.15 7033.44 1.31
3 —19,727.93 —2209.47 28,984.15 7046.75 1.13
4 —21,754.31 —2460.29 31,328.92 7114.32 0.18
5 —25,514.02 —2768.96 35,493.07 7210.09 1.16
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Fig. 9. Underground pressurized crack.

is related to hydraulic pressure. Equivalent domain method is also
implemented for comparison (a detailed derivation of EDI is shown
in Appendix C). The 3D model and integral routes/areas are rep-
resented in Fig. 8. Five rectangular paths are chosen at the plane
normal to the crack front at z = 0.4 m for simplicity (the range of z is
from —4 m to 4 m). The parameters used in the simulation are
presented in Table 3.

The numerical results of 3D J-integral calculation are pre-
sented in Table 4. The line integral term in each path, which is
the exact expression of original 2D J-integral, is not path-
independent. The extended 3D J-integral is verified to be con-
stant in different integration paths with a relative error of less
than 1.5%. It is also consistent with Jgp;, which indicates that the
extended 3D J-integral is equal to the energy release rate as well.
This value also represents the energy intensity of crack front at
z =04 m.

45
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=+ &= Analytical solution
51 e K from J, with thermal stress
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Fig. 10. Stress intensity factors calculated from the revised J-integral at different hy-
draulic pressures.

Because the revised J-integral is another form of energy release
rate, it allows us to calculate SIF and compare it with that obtained
by the conventional displacement extrapolation method. The
theoretical equation of SIF for the geometry in Fig. 6 can be derived
by superposition principle (Broek, 1982) based on which the inter-
nally pressurized crack under far-field x- and y-stress boundary
conditions can be presented as the superposition of (i) a plate with
an internally pressurized crack (case A), (ii) a plate with a crack
under uniaxial compression in y-direction (case B), and (iii) a plate
with a crack under uniaxial compression in x-direction (case C), as
shown in Fig. 9. The corresponding SIFs can then be expressed as

Ki = Kia + K + Kic (39)
The general solutions for cases A, B and C were readily obtained
by [rwin (1957) using the method of Westergaard (1939) as follows:

Kia = pvTma, K = —oyvma, Kc =0 (40)

Therefore, according to Eq. (39), the total SIF in the mode-I
loading for a finite sized and internally pressurized crack in an
infinite plate under far-field stress boundary conditions can be
expressed as

Ki = (p—oy)Vma (41)

For the above-mentioned 2D plane-strain model, Eq. (2) is used
to calculate the SIF with J substituted by the revised J. As shown in
Fig. 10, the estimated SIF is consistent with the analytical solution
and that obtained from the displacement extrapolation method. It
is therefore concluded that the relationship between the revised J-
integral and the SIF remains valid. The partial discrepancy arises
from finite dimension model and finite mesh. Separate curves are
also shown for the cases of thermal stress (with a temperature drop
of 50 °C at the crack surface) and porous media, respectively. The
corresponding results are in agreement with the general opinion
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that the SIF is increased by the thermal shock, while it is impeded
due to diffusion in porous material.

4. Conclusions

J-integral has been extended for its application to fluid-
driven fractures and thus it can be employed in the field of
hydraulic fracturing. The capability of the proposed 3D
extended J-integral to calculate the energy release rate was
successfully retained. A detailed formulation of the extended J-
integral was presented.

The extension of J-integral is associated with internal traction.
For 2D hydraulic fractures, the extended J-integral has an extra
pressure term, which accounts for the effect of hydraulic pres-
sure. Its path-independence has been numerically investigated
successfully. For 3D hydraulic fractures, there are two forms of
extended J-integral, one is the surface integral which represents
overall strain energy accumulation along the crack front, and the
other is the point-wise extended J-integral which accounts for
the state of a point at the crack front and is decomposed into
three parts (a line integral, an area integral and a pressure term).
The calculation of the area integral term in the point-wise
extended J-integral requires near-tip field data. It can be ac-
quired numerically with high accuracy and stability due to the
partial derivation in z-direction that eliminates singular term. Its
path-area independence is also well examined. Besides, the 3D
extended J-integral has also been discussed for porous media and
under thermal conditions; an extra term is added to the formula
respectively to re-establish its path-independence in such cases.
In addition, two distance-independent circular integrals in K-
dominance zone are found, which can be used to calculate SIF, an
alternative to the conventional approach. The proposed meth-
odology allows us to successfully utilize the path-independent
integral (J-integral) in the hydraulic fracturing applications,
especially under elastoplastic conditions, such as in coal seam
and shale gas reservoirs.
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List of symbols

E Young’s modulus

K Mode-I stress intensity factor

n Unit vector normal to the path

p Fluid pressure applied on crack surface

T Traction along the path

u Displacement vector

Uy, Uy  x- and y-components of displacement vector

Strain energy density
o Stress tensor
v Poisson’s ratio
€ Strain tensor
0 Crack opening width

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.jrmge.2018.04.009.
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