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a b s t r a c t

The particle morphological properties, such as sphericity, concavity and convexity, of a granular assembly
significantly affect its macroscopic and microscopic compressive behaviors under isotropic loading
condition. However, limited studies on investigating the microscopic behavior of the granular assembly
with real particle shapes under isotropic compression were reported. In this study, X-ray computed
tomography (mCT) and discrete element modeling (DEM) were utilized to investigate isotropic
compression behavior of the granular assembly with regard to the particle morphological properties,
such as particle sphericity, concavity and interparticle frictions. The mCT was first used to extract the
particle morphological parameters and then the DEM was utilized to numerically investigate the in-
fluences of the particle morphological properties on the isotropic compression behavior. The image
reconstruction from mCT images indicated that the presented particle quantification algorithm was
robust, and the presented microscopic analysis via the DEM simulation demonstrated that the particle
surface concavity significantly affected the isotropic compression behavior. The observations of the
particle connectivity and local void ratio distribution also provided insights into the granular assembly
under isotropic compression. Results found that the particle concavity and interparticle friction influ-
enced the most of the isotropic compression behavior of the granular assemblies.
� 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Granular media subjected to isotropic compression is accom-
plished by particle rearrangement (Nakata et al., 2001a, b; Mesri
and Vardhanabhuti, 2009), which is achieved through particle
deformation, particle rotation and particle interlocking. Particle
rearrangement of the granular assembly is attained by overcoming
the interparticle friction, interlocking and particle rotation; and
particle morphological behaviors are extremely significant for the
isotropic compression behaviors, packing properties and shearing
behaviors of a granular assembly (Cho et al., 2006; Liu and Lehane,
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
2012; Ng et al., 2018; Gong et al., 2019). The influence of particle
morphology on shearing and packing behaviors has been investi-
gated both experimentally and numerically by several researchers
(Liu and Lehane, 2012; Zhao et al., 2015, 2017a, b, 2018a, b, c; Chen
et al., 2021; Hu et al., 2021), among which particle roundness, an-
gularity, particle aspect ratio and blockiness were investigated.
Moreover, the effect of size polydispersity on the compaction
behavior was investigated (Kumar et al., 2014; Mutabaruka et al.,
2019), and isotropic compression behavior of granular assembly
with real sand particle features was studied without considering
the particle surface curvatures (Zhang et al., 2020a,b). Others
studies examined the particle geometry and stress states on the
shearing behavior of the granular media with relative limited
characterization of surface textures (Xie et al., 2017; Deng et al.,
2021). In addition, the effect of particle sphericity on the fabric
and mechanical behaviors was examined (Liu et al., 2019; Zhou
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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et al., 2019; Talafha and Oldal, 2021) by considering that particles
only have convex hulls (Wang et al., 2021). Although extensive
studies have addressed the influence of particle morphology on
packing and shearing behaviors, only a few of them investigated
the compression behavior of a granular assembly by considering
the real particle morphologies in association with the particle local
curvatures.

In the past few decades, X-ray computed tomography (mCT)
technology, which was first applied in the medical field, is now
being used in engineering practice and is contributing in areas such
as the visualization and quantification of not only cementitious
materials (Lu et al., 2017) but also granular materials (Fonseca et al.,
2013a, b). Limited work was reported to investigate the one-
dimensional consolidation behavior of the granular assemblies by
using mCT (Reed et al., 2006; Al Mahbub and Haque, 2016). Prior
studies of particle morphologies extracted from mCT were widely
reported in the literature (Hall et al., 2010; Zhao et al., 2015; Li et al.,
2016; Zhao and Wang, 2016; Su and Yan, 2018; Zhou et al., 2018a;
Yang et al., 2019;Wu et al., 2020). A mCT-scanned granular assembly
can be reconstructed by stacking the two-dimensional (2D) image
slices into a three-dimensional (3D) array, and the morphological
properties of each particle can be quantified by segmenting the
images according to the 3D array. Commonly used approaches
include spherical harmonic analysis (Garboczi, 2002; Zhou et al.,
2018b; Wu et al., 2020; Xiong et al., 2020) of the surface voxel
coordinates and Fourier transform technique (Podsiadlo and
Stachowiak, 2000a, b). Morphological factors are dimensionless
numbers applicable to particles with all geometric shapes, which
are independent of scales and particle orientations (Underwood,
1970). The particle morphological descriptors were, such as sphe-
ricity and roundness, calculated from the particle surface cloud
points by surface reconstruction extraction or spherical harmonics
(Xiong et al., 2020).

The particle surface voxel coordinates in Cartesian space can be
obtained from mCT, which were used to generate the 3D surfaces via
surface reconstruction. The surface voxel coordinates were im-
ported into a commercial code (Meshlab) for processing and editing
3D triangular meshes (Cignoni et al., 2008) to generate the enclosed
surfaces via Delaunay triangulation (Chew, 1989). Prior to meshing,
surface voxel coordinateswere required to be filtered to remove the
singularity points followed by the simplification and reconstruc-
tion. Therefore, the surface triangular can infinitely approximate
the real surfaces and capture the corresponding surface textures,
such as convexity and concavity. Thereafter, the enclosed meshes
were developed with the supported format (Sereolithography file,
STL) for the import of particle flow code (PFC5.0) for use in discrete
element modeling (DEM) simulation. The DEM simulations pre-
sented in this paper used PFC5.0 software (Itasca, 2015) by
importing the enclosed surface meshes, which then were filled
with overlapping spherical particles to construct certain clump
templates to simulate real particle morphologies. The macroscale
behaviors of granular assemblies under confining stresses result in
microscopic response (Brewer, 1965; Oda, 1976; Alam et al., 2018).
Particle sphericity, surface texture and interparticle friction
contribute to the macroscopic behaviors of a granular assembly.
The smaller-scale effect of particle surface texture as interparticle
friction and larger-scale effect as particle roughness are comparable
to interface friction and roughness.

Particle morphological properties are significantly important for
granular assemblies with non-spherical particles. Influential fac-
tors, such as particle shape and particle angularity, were studied.
However, very little work in the literature focused on compre-
hensive analysis of the influence of the properties on isotropic
compression behaviors. Besides the compression from particle
rearrangements that resulted in the shrinking of void spaces, the
occupancy of surface concave hulls could be an important influ-
ential factor that contributes to the compression, due to significant
amount of concave hulls for the granular assemblies with non-
sphere particles. On the other hand, limited work was found to
investigate the influence of surface curvatures (e.g. convexity and
concavity) on the compression behaviors of the granular assem-
blies with non-spherical particles. Therefore, besides examining
the influence of particle sphericity on the compression behavior of
the granular assembly with non-spherical particles, an inclusive
analysis was conducted to explore the influence of particle surface
curvatures on the compression behavior of the granular assembly
with non-spherical particles. The mCTwas employed to scan Ottawa
20e30 sands in a cylindrical container with a dimension of 5 mm
(D) � 5 mm (H). In order to capture the surface textures of the sand
particles, the scanning resolutionwas set at 10 mm. Thus, therewere
a total of 500 slices of grayscale images for the whole sample. The
grayscale images then were binarized to save computational re-
sources and to perform the morphological image processing (MIP),
such as image erosion, image dilation, and image opening/closing.

2. Particle extraction of Ottawa sands by using mCT

2.1. MIP

Fig. 1 shows the diagram of the particle extractions of the
Ottawa sands from the mCT images via MIP. The grayscale images
(Fig. 1a) were binarized by applying a global threshold with a
luminance threshold of 0.5 to consist of only white and black pixels
(Fig. 1b) before being stacked as 3D images. The global image
threshold was selected by referring to Otsu’s method (e.g. Otsu,
1979) according to the discriminant criterion. After being stacked
as a 3D image/matrix (Fig. 1c), the granular assembly was repre-
sented by only black and white pixels. MIP then was performed to
identify the particle surface pixels and extracted to separated par-
ticles (Fig. 1e). The Ottawa sands were placed into a plastic cylinder
and compacted with vigorous vibration followed by one week’s
settlement to avoid the potential movements during mCT scanning
prior to image acquisition. The sample preparation method for
obtaining mCT images presented in this paper was different from
that reported in Zhou and Wang (2017) and Zhou et al. (2018a),
where the sand particles were manually set separately by embed-
ding them in a jelly phase. Therefore, the accurate determination of
particle size distribution was limited. The mCT images reported did
not show an accurate particle gradient or particle size distribution.

Due to that the sand particles were in contact with one another,
the mCT images were required to be segmented into separated
particles. There are several types of segmentation techniques, such
as region-based segmentation, edge detection segmentation and
segmentation based on clustering. Typically, classic watershed
segmentation was applied for the image segmentation (Beucher,
1992; Osma-Ruiz et al., 2007; Sun et al., 2019). Instead of using
watershed segmentation, in this study, the authors utilized the
morphological processing techniques, such as erosion, dilation,
opening and closing, to segment the contact particle due to the
accessibility for implementation. In this study, image erosion and
opening were required first to segment into different separated
particles. The disk-shaped structuring element with a radius of 5
pixels was used for first erosion followed by opening the binary
images. Image erosion removed the small-scale details from the
binary images while simultaneously reducing the size of the object
without changing the surface topographic properties. The images
were then opened by using the same structural element to avoid
the boundary losses. The particles thenwere separated by using the
identical structural element during the image morphological
analysis. The ultimate erosion was performed to erode each



Fig. 1. Particle shape extraction scheme: (a) Grayscale image slice, (b) Binarized image, (c) Stacked images, (d) 3D reconstructed images, and (e) Extracted particles.
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separated particle to a single point for labeling separated particles.
The particle edges then were detected and assigned the same label
as the corresponding ultimate erosion point to represent each
particle for the calculation process of the morphological parame-
ters that followed. Fig. 2 details the MIP procedures applied in this
study.
2.2. MIP verification

The MIP algorithms were verified by comparing the grain size
distributions obtained from the mCT data to the experiments of the
Ottawa 20e30 sands. For the selected mCT small sample, using
Fig. 2. Morphological image processing procedures.
image erosion and other MIP introduced above, 43 closed particles
were separated. The particle diameters were determined by setting
the volumes of the spheres with diameters D equal to the real
particle volumes. The particle sizes obtained fromMIP ranged from
0.4 mm to 0.82 mm. The grain size distributions from experimental
test, fitted equation from Fredlund et al. (2000), and image pro-
cessing in this study are shown in Fig. 3. The coefficient of unifor-
mity obtained from image processing is Cu ¼ 1.27, the coefficient of
curvature is Cc ¼ 1.03, and the median grain size D50 ¼ 0.75 mm.

The comparisons of Cu, Cc and D50 between the image processing
and the laboratory tests are shown in Table 1. Image processing
provided a larger coefficient of uniformity compared to the labo-
ratory tests. Due to the resolution of the image, there were dis-
turbances when preparing the sample, which caused some
particles to be inadequately separated and relatively smaller par-
ticles were not counted. There were grade gaps for the smaller and
larger particles, as shown in Fig. 3. The missing smaller particles
resulted in the relatively smaller D10 (which is the particle diameter
that defines 10% finer from the grain size distribution curve),
leading to the larger Cu. The equivalent diameters of the particles
obtained from mCT images were different from those from experi-
ments which result in relatively narrower particle size. In general,
the grain size distribution obtained from image processing was
consistent with those from the performed laboratory tests.

The performed MIP algorithms were also verified by comparing
the particle equivalent diameters with the ones obtained from
marker-controlled watershed segmentation put forward by
Wählby et al. (2004) and utilized by Wu et al. (2020) and Xiong
et al. (2020) to successfully segment the CT-scanned specimen
with quartz particles. In order to conduct the marker-controlled
watershed segmentation, a distance map representing the dis-
tance between each pixel and its corresponding surface boundaries
was created. Fig. 4 compares the particle sphericities between two
different segmentation methods. Results show that the particle
equivalent diameters from two different methods have a good
compatibility.



Table 1
Comparisons between image processing and laboratory tests.

Method Cu Cc D50 (mm)

This study 1.27 1.03 0.75
Laboratory test 1.12 0.65 0.74
Polito et al. (2013) 1.2 1.01 0.71
Dong and Pamukcu (2015) 1.15 1 0.72
Kim et al. (2020) 1.21 1.01 0.72
Lin et al. (2016) 1.17 1.02 0.71
Evans (2005) 1.12 1 0.74
Nafisi et al. (2019) 1.17 1.02 0.7
Santamarina and Cho (2004) 1.15 1.02 0.72
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Particle sphericity or roundness then was calculated according
to the particle surface coordinates and particle information.
Referring to Wadell (1935), particle sphericity f can be defined as
the ratio of the surface areas between a sphere which has the same
volume as the given particle and the surface area of the particle:

f ¼ p1=3ð6VÞ2=3
S

(1)

where V is the particle volume, and S is the particle surface area.
Fig. 5 shows the particle sphericity distribution of the granular
assembly scanned by mCT. The particle sphericities of the Ottawa
sands were found to be linearly distributed from 0.917 to 0.977,
whichwere slightly larger than the reported results in the literature
(Lee et al., 2007; Kim and Santamarina, 2008; Zheng and Hryciw,
2016). Granular assemblies with five different sphericities
(f ¼ 0.917, 0.949, 0.962, 0.964 and 0.977) shown in Fig. 5 were
selected for analysis in the following DEM analysis.

Obviously, f is a measurement of the ratios between areas;
however, the convexity or concavity surface curvatures of real
Ottawa sands cannot be effectively captured. For convex particles,
particle sphericity is another element of particle angularity, as
shown in Zhao et al. (2015) and Chen et al. (2020); however, using
only convex particles cannot capture the surface textures of real
Ottawa sand particles. In real particles, those with convex and
concave hulls behave like interlocking gears to withstand shearing
and compression.
Fig. 4. Particle sphericities between two different segmentation methods.
3. Surface curvatures of the enclosed particles

As introduced above, particle sphericity was used to evaluate
how closely the particle resembled the sphere. However, its prox-
imity did not capture the influences of particle surface textures on
the consolidation or shearing behavior of the granular assembly.
Concavity and convexity were significant to the granular particle’s
behavior with regard to the interlocking among particles during
consolidation and shearing. The surface curvatures of the particles
were therefore introduced to explain the influence of surface
texture on the mechanical behaviors during isotropic compression
of the granular assembly. Surface textures were quantified by
calculating the surface mean curvatures using the 3D surface co-
ordinates introduced above. Particle convexity and concavity pre-
sented in this paper were defined as the average positive and
negative values of the mean curvature, respectively. Therefore, the
Fig. 3. Grain size distribution of Ottawa 20e30 sands obtained from various methods.
correct calculation of mean curvature of the selected particles was
significant to obtain the particle convexity and concavities.

The particle surface pixels obtained in Section 2 were mapped
into Cartesian space for calculating the surface curvatures. Let k1
and k2 be the two principal curvatures of surface U(u,v) shown in
Fig. 6, two different surface curvatures, i.e. mean curvature (H) and
Gaussian curvature (K) are calculated as

H ¼ 1
2
ðk1 þ k2Þ (2)

K ¼ k1k2 (3)

The values of the mean curvatures of a point on the surface U
have significant geometric meanings (O’neill, 2006). The negative
values of mean curvatures indicate that there are concave hulls
existing within the surface. In the spatial surface shown in Fig. 6,
the mean curvature of the surface R3 at a point p can be given as

H ¼ 1
2
LG� 2MF þ NE

EG� F2
(4)

where E, F and G are the coefficients of the first fundamental form;
and N,M and L are the coefficients of the second fundamental form.
Two parametric variables, i.e. u and v, are typically used to repre-
sent the surface S. Suppose x: U/R3 is a regular patch, the shape
operator S of x in the basis of {xu, xv} is given as



Fig. 5. Particle sphericity accumulative distribution obtained from mCT. CDF represents
the cumulative distribution function.
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Uu ¼ � SðxuÞ ¼ MF � LG
EG� F2

xu þ LF �ME
EG� F2

xv (5)

Uv ¼ � SðxvÞ ¼ NF �MG
EG� F2

xu þMF � NE
EG� F2

xv (6)

The mean curvature can be computed using basis {xu, xv} and
the coefficients in Eqs. (5) and (6) as

C ¼
�
c11 c12
c21 c22

�
¼ 1

EG� F2

�
MF � LG LF �ME
NF �MG MF � NE

�
(7)

where C is the coefficient matrix, also known as the Hessian matrix,
of Eqs. (5) and (6). Equivalently, the mean curvature also can be
denoted by two parametric variables u and v in surface S as

H ¼ detðxuuxuxvÞjxvj2 � 2detðxuuxuxvÞðxuxvÞ þ detðxuuxuxvÞjxuj2

2
h
jxuj2jxvj2 � ðxuxvÞ2

i3=2
(8)

Fig. 7 shows the mean curvature distributions of the selected
particles. The results show that the trends of particle sphericity
were not consistent with the trends of themean curvatures (e.g. the
averagemean curvature at the smallest sphericity f¼ 0.917was the
largest). There were both convex and concave hulls of the selected
particles. The mean curvature distributions for similar sphericities
were different (e.g. the average mean curvatures at f ¼ 0.962 and
0.964 were equal to 8.907 and 6.121, respectively).
Fig. 6. Surface diagram.
4. Discrete element modeling

The particle surface voxel coordinates in the Cartesian space
were extracted via the 3D image reconstruction shown in the
section above. Five different particles with different morphological
properties were selected in this study to perform the DEM simu-
lations, as shown in Figs. 5 and 8. First, the particle surface co-
ordinates were imported to Meshlab (Cignoni et al., 2008) to
generate the 3D closed surface meshes by using Delaunay trian-
gulation, and then exported as STL file. PFC5.0 supports STL file to
generate the particle templates with different shapes, as shown in
Fig. 8. The particle geometries shown in Fig. 8 are the closed surface
(STL file) extracted from 3D image reconstructions, which then
were used in the simulations in this study. The radius ratio of the
smallest to largest pebble was kept as 0.5 for all the clump tem-
plate. PFC5.0 has different resolution setups to ensure that the
particle clumps mimic the real particle shapes by determining the
angular measure of smoothness, d, in the range between 0 and 180.
The results show that a higher d produced higher similarity to the
real particles of Ottawa sands and thus better captured the surface
textures. However, these results were more computationally
expensive.

In order to better capture the surface textures, the resolutions of
the clump templates needed to be large enough. Fig. 8 shows that
the surface morphological features were precisely captured when
the resolution distance d was between 150 and 170. Referring to
Gao and Meguid (2018) and Liu et al. (2017), the clump template
can approximately identically capture the surface geometries of the
particles when the resolution distance equals 150. Therefore, the
distance in the DEM simulations was selected as 160 to represent
the clump templates as real Ottawa sand particles. At such reso-
lution distance, the particle morphological properties can be
captured precisely. For each simulation, particles with the same
shape but different sizes were randomly distributed within a cube.
The geometry of the 3D DEM model is shown in Fig. 9. The cubic
assembly was filled with particle templates with different di-
ameters with respect to the particle size distribution of the Ottawa
20e30 sands shown in Fig. 9, which were generated by filling the
spherical particle with STL-enclosed particles with a user-defined
porosity (n ¼ 0.75). Note here that the diameters of the real par-
ticles in the simulations were defined as equivalent diameters,
which were calculated by ensuring that the volume of the spheres
with the equivalent diameters is equal to the volume of the cor-
responding real particles (Nie et al., 2020). Density scaling was
employed to decrease the computational expense (Belheine et al.,
2009; Zhao et al., 2018a).

The particle numbers for granular assemblies with different
particle morphological features were set relatively the same (rela-
tive error �1%) to ensure that the initial void ratios were relatively
similar. The particle numbers for all the simulations were within
the range from 4612 to 4654 bonded by 241,160 to 251,211 spherical
particles with an average of 53 spherical particles to bond one
clump, respectively, which were sufficient to obtain isotropic
consolidated states (Ng, 2009; Yimsiri and Soga, 2010; Zhao et al.,
2018a, b). The DEM model consisted of clump templates and
model boundaries. The clump templates were randomly distrib-
uted within the cube with a certain level of overlap initially. The
assemblies then were cycled to numerical equilibrium to ensure
that the overlapped particles were released and distributed
without overlapping. Therefore, the initial porosity for the isotropic
compression of the granular assemblies was equal to the user-
defined porosity during particle generation, and different inter-
particle friction coefficients then were set up. A numerical servo-
control mechanism was used in all the simulations by adjusting
the positions of the boundary walls until the target isotropic



Fig. 7. Particle mean curvature distributions for selected particles. Color bar indicates the mean curvature (MC) of each patch of the particle surface.
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confining stresses and the corresponding equilibriumwere reached
with the same tolerance (�0.5%).

A linear spring contact model is used in the study with a
Coulomb’s friction law to govern the particle sliding (Zhao et al.,
2017a,b; Zhang and Evans, 2017, 2019; Zhang et al., 2019; Zhang
et al., 2020a,b). The linear spring contact model can yield similar
results as using nonlinear Hertz-Mindlin contact model (Zhao
et al., 2018a, c). The particle parameters are selected according
to the literature (Cho et al., 2006; Fu et al., 2017; Zhao et al.,
2017a,b; Ma et al., 2018; Zhang et al., 2019). The shear and
normal contact stiffnesses were selected as ks ¼ 8 � 107 N/m and
kn ¼ 1 � 108 N/m, with ks/kn ¼ 0.8 in the range suggested by
Cundall and Stack (1979). We refer to the smaller-scale effect of
particle surface texture as interparticle friction and larger-scale
effect as particle roughness as comparable to interface friction
and roughness reported by Zhang and Evans (2018) for the
granular-continuum interface shearing. The interparticle frictions
are set as one of the dominant parameters as mp ¼ 0.31, 0.45 and
0.62 referring to the interparticle friction coefficient reported in
the literature (Liu and Matsuoka, 2003; Muthuswamy and
Tordesillas, 2006; Guo and Su, 2007; Antony and Kruyt, 2009;
Zhang and Evans, 2016), where the interparticle friction coeffi-
cient mp is reported from 0 to 0.8. The particle roughness effect is
interpreted by considering the differences of the surface curva-
tures. The interparticle friction coefficient is commonly used to
control the relative density of the granular assembly for DEM
simulation of shearing (Rothenburg and Kruyt, 2004; Fu et al.,
2017; Zhao et al., 2018a; Zhou et al., 2018a,b).
The particle diameters of five different sets of particles were
modified according to the equivalent diameters of the non-
spherical particles to ensure that the particle size distributions
were the same as that of real Ottawa 20e30 sands. The particles in
Fig. 9 are colored according to the equivalent diameters with the
same particle sphericity for one simulation. The particle spheric-
ities of the selected particles were calculated by Eq. (1) as f¼ 0.917,
0.949, 0.962, 0.964 and 0.977. A total of 15 simulations were con-
ducted at six different work stations (Xeon E3-1240 v3 and Xeon
Sliver 4216 CPUs) to investigate the influence of particle mor-
phologies on the isotropic compression behaviors of a granular
assembly. The particles for each simulation were generated with
the same porosity initially and then cycled to their equilibrium.
There were approximately 181 core-hours simulation conducted
for all the selected cases with the iteration of each simulation
approximately equal to 1.4 million times.

5. Results and discussion

5.1. Compression index, Cc

Fig. 10 shows the e-log10P0 curves of the granular assembly as a
function of the particle sphericities for different types of interpar-
ticle friction, where e is the void ratio, and P0 is the confining stress.
After assigning different interparticle frictions, the void ratio of the
granular assembly for different particle sphericities and interpar-
ticle frictions changed tremendously from an initial porosity of 0.75
to ranges from 0.62 to 0.73 when the confining stress was kept



Fig. 8. The selected particle shapes of Ottawa sands under different generation reso-
lutions when dmin/dmax ¼ 0.5, where dmin and dmax are the radii of the smallest and
largest pebbles within each template, respectively.
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equal to 40 kPa. The large difference may have resulted from the
different forming skeletons within different granular assemblies.
The results show that the larger the interparticle friction, the larger
the void ratio of the granular assembly. We assumed that pre-
consolidation stress was induced by the generation of particles
and cycling the granular assemblies until their equilibrium, which
may have resulted from certain amounts of particle overlaps. The e-
log10P0 curves shown in Fig. 10 have curvature transitions. Referring
to Casagrande (1936) and Zhang and Evans (2018), the pre-
consolidation stress was recognized as between 1 MPa and
2 MPa, where an abrupt onset of increased deformability was
recognized for all the simulations. The pre-consolidation pressure,
which was named by Mesri and Vardhanabhuti (2009) as “yield
stress”, has been associated with the particle generation mecha-
nism where significant overlaps existed before the samples were
cycled to their equilibrium.

Results in Fig. 10 indicate that there was an inflection point that
marked the "yield point" of the compression as reported by Mesri
and Vardhanabhuti (2009). The inflection point was recognized as
approximately in between 1 MPa and 2 MPa. According to the
definition, the tangential line at higher level estimates the coeffi-
cient of compression. Therefore, the compression index, Cc ¼ De/
Dlog10s0p, was estimated by calculating the slopes of the tangent
line of the compression curve (as indicated by Fig. 10), which was
approximated to the slope of the connecting line between
P0 ¼ 10 MPa and 50 MPa in linear-log space (Roberts, 1958; Mesri
and Vardhanabhuti, 2009; Holtz et al., 2011; Zheng et al., 2017).
Fig.11a shows the compression index and particle surface concavity
as a function of particle sphericity for different interparticle fric-
tions. The bar on the secondary axis shows the particle surface
concavities, which were defined as the average values of the
negative surface mean curvatures calculated from all the vertex of
the enclosed meshes shown in Fig. 7. Fig. 11b directly plots the Cc as
a function of particle concavity for different interparticle frictions.
Results evidently indicate that the larger the particle concavity, the
larger the compression index, Cc. On the other hand, particles with
large surface concavities have more concave hulls that could
contribute to the compressive behavior of the granular assembly. As
mentioned above, the particle surface mean curvatures were not
consistent with the particle sphericity. The results in Fig. 11 show
that the compression index first increased with the particle sphe-
ricity, then dropped sharply, and followed by a relative plateau.

The compression index was not found to have a certain rela-
tionshipwith particle sphericity; however, the trendwas consistent
with the average value of the negative surface mean curvatures, the
surface concavity of the selected particles, which is shown as the
bars in Fig. 11. Table 2 shows the quantification of the particle
surface texture for different particle sphericities. As defined in
Section 3, the convexity and concavity of the particle surfaces
correspond to the local mean curvatures of the selected particles.
Results show that the larger the absolute value of concavity, the
larger the compression index, Cc. In other words, the granular as-
sembly was more compressible if there were more surface concave
hulls. The convex hulls of the particle penetrated/filled the concave
hulls of the neighboring particles comparable to cogwheels, which
is themain influential factor of isotropic compression behavior for a
granular assembly with non-spherical particles. Therefore, further
interpretations will be based on the influence of particle concavity
on the compression behavior of the granular packing.

5.2. Particle connectivity

Particle connectivity frequency, Pc, was introduced to interpret
the contact networks according to Liu and Matsuoka (2003) and
Mutabaruka et al. (2019), which was defined as the frequency
distributions of the particles with different contact numbers.
Comparable to coordination numbers, the particle connectivity
number is another mathematical descriptor to define the packing
density of a granular assembly (Mutabaruka et al., 2019). As dis-
cussed in Section 3, the selected particles were generated by
bonding numerous spherical particles into one single non-spherical
particle as the template to generate the granular assemblies as
shown in Fig. 9. The distance selected for the five particles in the
DEM simulations was 160, which can identically capture the surface
textures of the real particles (Liu et al., 2017; Gao and Meguid,
2018). The contact detection of each particle was obtained from
the enclosed spherical particles. Therefore, total contact numbers
can be obtained as the summation of the contacts from each
enclosed spherical particles (Liu et al., 2017; Zhang et al., 2020a,b).
For a granular assembly with non-spherical particles, due to the
existing interlocks among the convex and concave hulls, the par-
ticle connectivity did not dominate the force transmission of the
granular assembly. However, connectivity was found to be signifi-
cant for non-mechanical transmissions among the particles within
a granular assembly, such as thermal conductivity (Pestana and
Whittle, 1995).

According to Liu andMatsuoka (2003), the coordination number
was calculated by multiplying the particle connectivity frequency
with the corresponding contacts as Z ¼ P

C(CPc), where C is the
contact number. Since the particles with zero and one contact do
not contribute to themechanical stability of a granular assembly, its
stability can thus be calculated without considering Pc for zero and
one contact as Zm ¼ P

C(CPc) (C > 1). The mechanical coordination
number calculated herein is an alternative approach reported by
Thornton (2000), where the mechanical coordination number is
defined as

Zm ¼ 2C � N1

Np � N0 � N1
(9)

where N1 and N0 are the numbers of particles with one and no
contact, respectively; and Np is the particle number. Fig. 12 shows
the correlations of mechanical coordination numbers between the
two different methods. The results calculated according to
Thornton (2000) (ordinates shown in Fig. 12) is a little larger than



Fig. 9. (a) The geometry of the DEM model and (b) the particle size distribution of the granular assembly.

Fig. 10. e-log10P0 curves for different particle sphericities with different interparticle
friction coefficients.
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the results calculated from particle connectivity. The results from
the two different methods were linearly correlated with a coeffi-
cient of correlation of 0.986.

Fig. 13 illustrates the evolution of the normalized mechanical
coordination number as a function of confining stress for different
interparticle frictions and particle concavities. The mechanical co-
ordination numbers were multiplied with the corresponding ab-
solute value of concavities. For all the selected samples with
different interparticle frictions, Zm|H�| increased with the increase
of particle concavity. Zm|H�| values were observed to be closely
correlated to the surface curvatures, especially the concave hulls.
The samples with the lowest particle concavity had the smallest
normalized mechanical coordination numbers for all the selected
confining stresses, and the samples with the largest particle
sphericities had the smallest Zm|H�| for all the selected interparticle
frictions. This demonstrates that particle concavity was the domi-
nant parameter that determined Zm|H�| due to the potential
changes of particle interlocks that could contribute to the evolution
of Zm|H�|.
5.3. Contact force distribution

The contact force distribution of a granular assembly has been
widely used to illustrate the decay constants of the contact forces
(Radjai et al., 1996; Staron and Radjai, 2005). In general, the contact
forces were found to have a power-law distribution. In this study,
the contact normal and shear force distributions at both the initial
and final stages were investigated. Fig. 14 shows the probability
density function of contact normal and shear forces, which are
normalized by mean contact normal force f n and contact shear
force f s, respectively. The normalized contact shear force distrib-
utes over a range of 0�fs=f s�8 and normalized contact normal
force distributes over a range of 0�fn=f n�6. The normalized contact
force histograms do not vary significantly except at initial and final
stages of compression.

The frequencies of normalized contact forces are modeled based
on the probability distribution function presented by Mueth et al.
(1998) as

Pðf Þ ¼ a
�
1� b exp

�� f c
��
expð� bf Þ (10)

where P(f) is the probability density function; and a, b, c and b are
the fitting parameters. The bold lines shown in Fig. 14 are the
contact shear and normal force distributions under lower confining
stresses (P0 ¼ 40 kPa), and the dashed lines are the best fits of
normalized contact normal and shear forces for Eq. (10) at high
confining stresses (P0 ¼ 2000 kPa). The probability densities of the
normalized contact forces exhibited obvious changes between the
low and high confining stresses (i.e. larger confining stresses had
narrower normalized contact forces), which is consistent with the
results presented by Khalili et al. (2017). Table 3 list the fitting
parameters of normalized contact force for different parameters.
5.4. Local void ratio distribution

Void ratio is one of the major physical parameters governing the
mechanical or compression behavior of a granular assembly (Frost
and Kuo, 1996; Evans and Frost, 2010). Local void ratio of sand as-
sembly was first quantified by Oda (1976) using 2D image pro-
cessing techniques. The mechanical behavior of a granular
assembly depends on the particle and void arrangements to a large
extent; therefore, the distribution of the local void ratio is a sig-
nificant factor that describes its mechanical behaviors (Dong et al.,
2016; Zhao et al., 2018c). The local void ratio is defined as the ratio
of the volume of the void space that surrounds the particle to the
volume of the particle (Evans, 2005; Al-Raoush and Alshibli, 2006).

The spatial coordinates (e.g. x, y, z, r) of the pebbles, which
construct the particles, were exported from PFC5.0 and imported to
MATLAB to generate 2D binary images for calculating the local void



Fig. 11. (a) Coefficient of compression, Cc, and concavity, H�, as a function of particle sphericity; and (b) Coefficient of compression, Cc, as a function of particle concavities for
different interparticle frictions.

Table 2
Particle surface texture quantification for different particle sphericities.

f H (mm�1) Concavity, H
�
(mm�1) Convexity, H

þ
(mm�1) a*

0.917 11.87 �2.51 12.71 5.06
0.949 6.32 �4.54 7.18 1.58
0.962 8.91 �7.76 13.58 1.75
0.964 6.12 �1.51 10.94 7.25
0.977 9.45 �2.68 9.56 3.57

Note: a*¼ |H
þ
/H

�
|.H represents the average value of mean curvature for all patches

of the particle surface; H
�

and H
þ

represent the average values of the particle
surface patches with negative and positive mean curvatures, respectively.
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ratio of the granular assembly. There are two predominant ap-
proaches to obtain local void ratio distributions for binary images,
both of which were based on Oda (1976)’s method. Voronoi
tessellation was also utilized to obtain the local void ratio of the
granular assembly (Alshibli and El-Saidany, 2001; Zhao et al.,
2018c). Evans and Frost (2010) proved that 2D simulations exhibit
void-scale behaviors comparable to the 3D physical counterparts.
Therefore, the local void ratio distribution obtained in this study is
based on the segmentation of 2D binary images. A total number of
100 slices of 2D cross-sectional images were selected perpendicular
to the z-direction with identical intervals. Fig. 15 shows a diagram
of segmentation for 2D binary images. The image was divided into
different polygons enclosed by straight lines connecting the gravity
centers of the particles (Oda, 1976; Al-Raoush and Alshibli, 2006;
Fig. 12. Mechanical coordination number correlations between two different methods.
Evans and Frost, 2010). As mentioned above, the gravity centers of
each particle were the ultimate eroded points of each particle,
which were obtained by performing MIP. The local void ratios of
each polygon were measured by counting the void and solid pixels.
The local void ratios of a granular assembly for different confining
stresses were obtained by counting 100 slices of its 2D images for
estimation. Fig. 16 shows the local void ratio distribution of the
granular assemblies for different particle sphericities. The proba-
bility density distributions were fitted to the generalized extreme
value distribution as

Pðf Þ ¼ f ðxjk;m;sÞ ¼ 1
s
exp

2
64�

�
1þk

x�m

s

	�1
k

3
75�1þk

x�m

s

	�1�1
k

(11)

where s is the scale parameter, m is the location parameter, and k is
the shape parameter. The results show that a granular assembly
with larger particle sphericity had the lowest value. The m valuewas
found to be the smallest when f ¼ 0.977. The influence of particle
sphericity on the local void ratio distribution is not obviously
observed.

The location parameter m of the generalized extreme value
distribution is a reflection of the void ratio. Fig. 17a shows the m as a
function of particle concavity for different confining stresses. Re-
sults show that m decreases with the increase of particle concavity.
Larger concavity corresponds to more concave hulls of the particle
surface. Fig. 17b shows the correlations between the location
parameter m and the global void ratio. The global void ratio had a
linear relationship with location parameter m as e ¼ 0.83m þ 0.21
with a coefficient of determination of R2 ¼ 0.932. The m values were
smaller than the global void ratios for all the scenarios in this study.
The results reveal that at each isotropic compression status, the
granular assembly reached the same isotropic stress when sub-
jected to identical isotropic compression values. Notwithstanding,
the sample configurations, particle rearrangements, and corre-
spondingmicroscopic fabrics (e.g. local porosity, connectivity) were
different due to the particle morphological properties.

6. Conclusions

In this study, the influences of particle sphericity, interparticle
friction and particle surface curvature on the isotropic compression
behaviors of granular assemblies with non-spherical particles were
investigated. The particle shapes were based on Ottawa 20e30



Fig. 13. Evolution of the normalized mechanical coordination number under different confining stresses for different concavities at different interparticle friction coefficients: (a)
mp ¼ 0.31, (b) mp ¼ 0.45, and (c) mp ¼ 0.62.

Fig. 14. Frequencies for different confining stresses (H� ¼ 2.51, mp ¼ 0.45): (a) Normalized contact shear force distribution, and (b) Normalized contact normal force distribution.

Table 3
Fitting parameters of normalized contact force for different parameters.

Item a b c b

Normalized contact shear force (P0 ¼ 40 kPa) 7.8 0.02 1.23 0.092
Normalized contact normal force (P0 ¼ 40 kPa) 7.8 0.02 1.33 0.092
Normalized contact shear force (P0 ¼ 2000 kPa) 4.8 0.02 1.06 0.6
Normalized contact normal force (P0 ¼ 2000 kPa) 5.1 0.02 1.39 0.4

Fig. 15. Comparison of 2D binary images (a) before and (b) after being segmented.
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sands extracted from mCT images and MIP. The extracted particles
from the mCT images then were used for DEM simulation. Micro-
scopic insights were reported by drawing from the particle-scale
responses of the granular assembly. The main conclusions can be
drawn as follows:

(1) A new, easy-implemented image processing technique based
on morphological image analysis was introduced. The
introduced technique was verified by comparing the particle
size distribution obtained herein and the sieve analysis from
laboratory test, and also the equivalent diameters between
the introduced technique and watershed segmentation were
compared. The particle size distribution obtained from MIP
of mCT images was consistent with the laboratory tests.

(2) For the granular assembly with non-spherical particles, the
particle concavity was found to have significant influences
on compression behavior which is directly related to the
compression index in e-log10P0 space for the granular as-
sembly with all the interparticle frictions. The larger the
particle concavity, the larger the compression index of the
granular assembly.

(3) The particle connectivity or coordination number of the
granular assembly was found to be largely influenced by the
confining stress and the particle concavity for all the selected
interparticle frictions. However, particle concavity had the



Fig. 16. Local void ratio distribution of the granular assembly with different particle sphericities for confining stress equal to (a) 100 kPa and (b) 2000 kPa. PDF stands for the
probability density function.

Fig. 17. (a) The m value of generalized extreme value distribution as a function of particle concavity for different confining stresses, and (b) Correlations between location parameter
m value of generalized extreme value distribution and the global void ratio.
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dominant influence on the mechanical coordination number
of the granular assembly. Granular assemblies with analo-
gous particle concavity behaved in a manner comparably
equivalent as the function of confining stress.

(4) The normalized contact forces were distributed differently
between the low and high confining stresses but were
distributed more narrowly for granular assemblies at high
confining stress. The local void ratio for all the particle
sphericities was fitted approximately into generalized
extreme value distributions without being evidently influ-
enced by the sphericity or concavity. However, the location
parameter m, which determines the average value of the local
void ratio, was related to the particle sphericity and surface
curvature. Larger particle sphericity had a smaller m value.
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List of symbols

a* Absolute value of the ratio of concavity to convexity
b Fitting parameters
f Particle sphericity
m Location parameter
mp Interparticle friction coefficient
s Scale factor
k1, k2 Principal curvatures of a surface patch
R3 3D space denotation
a, b, c Fitting parameters
C Contact number
C Coefficient matrix
Cc Compression index
E Void ratio
E, F, G Coefficients of the first fundamental form
fn, fs Normal and shear contact forces
H Mean curvature
K Gaussian curvature
K Shape factor
kn, ks Normal and shear stiffness parameters
L, M, N Coefficients of the second fundamental form
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N0, N1 Number of particles with one and no contact
Np Particle number
P0 Confining stress
Pc Particle connectivity frequency
S Particle surface area
V Particle volume
Z Particle connectivity
Zm Mechanical coordination number
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