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Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive
adjustment of tunnel boring machines (TBMs). During the TBM tunnelling process, a large number of
operation data are generated, reflecting the interaction between the TBM system and surrounding rock,
and these data can be used to evaluate the rock mass quality. This study proposed a stacking ensemble
classifier for the real-time prediction of the rock mass classification using TBM operation data. Based on
the Songhua River water conveyance project, a total of 7538 TB M tunnelling cycles and the corre-
sponding rock mass classes are obtained after data preprocessing. Then, through the tree-based feature
selection method, 10 key TBM operation parameters are selected, and the mean values of the 10 selected
features in the stable phase after removing outliers are calculated as the inputs of classifiers. The pre-
processed data are randomly divided into the training set (90%) and test set (10%) using simple random
sampling. Besides stacking ensemble classifier, seven individual classifiers are established as the com-
parison. These classifiers include support vector machine (SVM), k-nearest neighbors (KNN), random
forest (RF), gradient boosting decision tree (GBDT), decision tree (DT), logistic regression (LR) and multi-
layer perceptron (MLP), where the hyper-parameters of each classifier are optimised using the grid
search method. The prediction results show that the stacking ensemble classifier has a better perfor-
mance than individual classifiers, and it shows a more powerful learning and generalisation ability for
small and imbalanced samples. Additionally, a relative balance training set is obtained by the synthetic
minority oversampling technique (SMOTE), and the influence of sample imbalance on the prediction
performance is discussed.
© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

tunnel construction. On the one hand, at the design stage, TBM type
and support form selection are determined according to the rock

Tunnel boring machines (TBMs) are widely used in the con-
struction of underground engineering. Compared with the drill and
blast method, TBMs have the advantages of fast construction speed
and minor environmental disturbance, which is suitable for con-
structing long-distance tunnels (Zheng et al., 2016; Liu et al,
2020a). However, TBMs are sensitive to geological conditions, and
the uncertainty of rock mass and adverse geological conditions are
the main risks in TBM excavation (Hamidi et al., 2010; Hasanpour
et al., 2017; Zhou et al., 2021a). Therefore, evaluation of rock
mass quality is of great significance to the safety and efficiency of
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mass classification obtained from geological prospecting. On the
other hand, in the construction process, the parameters of TBM are
adjusted adaptively according to the rock mass classes (Gong et al.,
2016). Before the tunnel construction, there are many geological
prospecting means, which can roughly describe the geological and
surrounding rock conditions of the construction site (Li et al., 2017).
However, due to the fact that the space between the cutterhead and
tunnel face is narrow, it is challenging to acquire the surrounding
rock parameters through traditional exploration and in situ testing
methods (Liu et al., 2020b). Consequently, the limited rock pa-
rameters are not sufficient for the adjustment and optimisation of
TBM operation parameters. Therefore, it is crucial to put forward a
method that can accurately and real-time predict the rock mass
classification in front of the tunnel face.

For rock mass classification, different scholars have proposed
many representative theoretical methods. For example, Bieniawski
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(1973) proposed the rock mass rating (RMR) system in 1973 after
investigating more than 300 tunnels. RMR scores the rock mass
quality, mainly considering the uniaxial compressive strength
(UCS) of rock mass, rock quality designation (RQD), joint spacing,
joint condition (JC), groundwater state and correction coefficient to
determine the total score of rock mass, and divides the rock mass
quality into five grades. The Q system for rock mass quality
assessment proposed by Barton et al. (1974) is also an earlier
method of rock mass classification, which considers the integrity of
rock mass, groundwater condition, in situ stress, joint characteris-
tics, and uses six parameters to determine the rock mass quality
index reflecting the stability of surrounding rock. Furthermore, by
considering the influence of structure and discontinuity surface
conditions on the mechanical properties of rock mass based on the
Hoek-Brown criterion, Hoek (1994) proposed the geological
strength index (GSI) to realise the classification of rock mass
quality. In 2002, Barton (2002) revised the Q system and explained
the corresponding relationship between the new Q system and the
RMR system. Besides the above methods, in China, the mainly used
methods include the basic quality (BQ) method and the hydro-
power classification (HC) method (GB50487-2008, 2008; GB/
T50218—-2014, 2014). Different rock mass classification methods
have been widely used in tunnel, mining and other underground
engineering. However, the traditional theoretical rock mass clas-
sification methods are usually used at the preconstruction stage,
and the related indices are difficult to be obtained during the tunnel
construction process (Huang et al., 2013). Additionally, for most
rock mass classification methods, the mapping relationship be-
tween the indices and rock mass classes is unclear, and the
randomness of index distribution is hardly considered (Zheng et al.,
2020).

In addition to theoretical classification methods, many re-
searchers have introduced artificial intelligence methods for eval-
uating rock mass quality in recent years. These methods also
explore the relationship between the factors that may affect the
performance and operational parameters of TBM (Zhou et al.,
2021a; Chen et al., 2021), minimizing the subjectivity and inaccu-
racy of artificial evaluation. Gholami et al. (2013) used the index
parameters of the RMR system as the inputs of machine learning
models to predict the RMR for the tunnel surrounding rock, and it
showed that the machine learning models have more reliable
prediction results than the use of empirical correlations. Salimi
et al. (2017) established the correlation between the field pene-
tration index (FPI) and rock mass quality parameters, e.g. UCS, RQD
and JC using the regression tree model. Santos et al. (2021) used
factor analysis to extract three common factors from the indices of
the RMR system, and based on this, an artificial neural network
(ANN) classifier was established to predict the rock mass classifi-
cation. Zheng et al. (2020) established a classifier based on a least-
squares support vector machine (LSSVM) optimised by a bacterial
foraging optimisation algorithm (BFOA). Also, they used geological
prediction and rock strength resilience results as the inputs of the
classifier to predict the rock mass classes. Zhao et al. (2019) pro-
posed a data-driven framework to predict the geological type
thickness of an urban subway based on the values of seven
physical-mechanical indices. Jalalifar et al. (2014) established the
two rock mass classification models based on the fuzzy inference
system and the multi-variable regression analysis to predict the
accurate RMR, and the fuzzy model showed better prediction ac-
curacy than the regression model.

Currently, the traditional classification methods have been
widely used, and the research of machine learning models based on
the parameters of traditional classification methods or parameters
of the geological forecast beforehand also achieved good progress
(Alimoradi et al., 2008; Shi et al., 2014). However, the parameters of

the theoretical rock mass classification methods need to be ob-
tained through field and laboratory tests, which cannot be easily
collected in real time during the TBM tunnelling (Huang et al.,
2013). Therefore, it is unable to achieve real-time and fast predic-
tion of rock mass classes through the above measuring parameters.
In the actual engineering practice, there are some geological fore-
cast beforehand that can predict the rock mass conditions in front
of the tunnel face. However, the geological forecast beforehand
needs additional time and equipment, which will increase the cost
of the project. Furthermore, TBM is a large equipment and occupies
most of the space near the tunnel face, thus it is challenging to
install the equipment of the geological forecast beforehand (Li et al.,
2020). TBM can be seen as a large-scale rock testing machine, and
the tunnelling and rock breaking process of TBM is essentially a
process of rock-TBM interaction (Yang et al., 2016). Therefore, in the
TBM tunnelling process, the change of machine operation param-
eters results from the interaction between the TBM system and
surrounding rocks (Zhang et al., 2019). Many studies have shown
that the TBM operation parameters can be used to reflect the rock
mass conditions (Yagiz, 2006; Hassanpour et al., 2011; Salimi et al.,
2018; Liu et al., 2020c). Additionally, during TBM tunnelling, a large
volume of mechanical information of the TBM can be automatically
collected by various sensors (Jung et al., 2019). Therefore, it is
feasible to predict the rock mass classification in front of the tunnel
face in real time based on the TBM operation parameters as the
inputs of machine learning models.

In most of the existing researches, different individual classifiers
are often used to predict rock mass classification. However, the
number of valuable data in engineering fields is relatively small,
and the data proportion of different rock mass classes is usually
quite different in practice. Therefore, rock mass class prediction
belongs to the problem of small and imbalanced samples. For this
kind of problem, the individual classifiers are easy to cause over-
fitting for the majority class samples, and the prediction perfor-
mance is often poor for minority class samples (Ganganwar, 2012;
Sainin et al., 2017). Ensemble learning is a powerful technique that
integrates multiple individual classifiers to form a robust classifier.
Many studies show that ensemble learning models have a strong
generalisation ability and better performance on imbalanced
datasets (Salunkhe and Mali, 2016; Feng et al., 2020). In addition to
adopting the ensemble learning strategies, another way to over-
come the sample imbalance problem is using oversampling algo-
rithm or undersampling to change the sample proportion of
different classes (Brun et al., 2018). Undersampling is a method to
improve the sample imbalance by removing some majority class
samples (Fan et al., 2017), while the method of oversampling is to
generate some minority class samples to improve the sample
imbalance (Viloria et al., 2020). When the total number of samples
is small, the oversampling method may seem to be preferred, and
the commonly used methods are the synthetic minority over-
sampling technique (SMOTE) (Chawla et al., 2002) and its improved
algorithms (Panda, 2017).

In this study, the stacking technique of ensemble learning is
introduced. By taking support vector machine (SVM), k-nearest
neighbors (KNN), random forest (RF) and gradient boosting deci-
sion tree (GBDT) as the base classifiers and the GBDT as the meta-
classifier, a stacking ensemble classifier is proposed for real-time
prediction of rock mass classification during TBM tunnelling pro-
cess. A database is established based on the Songhua River diver-
sion tunnel project in China, including 802-d TBM operation data
and corresponding rock mass classification information. Through
the data preprocessing and feature selection, a total of 7538 sample
sets are obtained, and 10 crucial features are selected as the input
features of classifiers. Besides stacking ensemble classifiers, seven
individual classifiers (i.e. SVM, KNN, RF, GBDT, decision tree (DT),
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multi-layers perception (MLP) and logistic regression (LR)) are
established, and the hyper-parameters of each classifier are opti-
mised by grid search method. Then, based on the randomly divided
training set (90%) and test set (10%), the prediction performance of
different classifiers is evaluated, and the advantages of stacking
ensemble classifier over individual classifiers are analysed. Addi-
tionally, the influence of sample imbalance on the prediction effect
is discussed.

2. Method description
2.1. Stacking ensemble learning

The ensemble learning classifier is relative to the individual
classifier. By integrating multiple homogeneous or heterogeneous
‘weak’ classifiers, the generalisation ability and robustness of an
individual learner are effectively improved (Sun et al., 2020). Many
studies have shown that the ensemble learning classifier has better
prediction performance than a single classifier, and has been widely
used in different problem scenarios (Diez-Pastor et al., 2015; Sun
and Trevor, 2018). Based on different integration strategies,
ensemble learning can be divided into three algorithms: bagging,
boosting and stacking (Polikar, 2012). Bagging usually considers
homogeneous weak learners trained independently and combined
based on a specific deterministic averaging process (Breiman,
1996). Boosting also considers homogeneous weak learners. It
trains these weak learners sequentially in a highly adaptive way,
and combines them based on specific deterministic strategies
(Friedman, 2001). Unlike Bagging and Boosting, Stacking considers
heterogeneous weak learners, and it combines multiple classifica-
tion models via a meta-learner (Wolpert, 1992; Kardani et al,,
2020). Fig. 1 shows the principle of the stacking ensemble classi-
fication model. The stacking ensemble learning framework com-
prises two classifiers, including base classifiers (level-I) and meta-
classifier (level-II). Firstly, the original dataset is used to train the
multiple base classifiers. In the training process, in order to reduce
the risk of over-fitting, the k-fold cross-validation (CV) method
(Kohavi, 1995) is generally used to train each base classifier. Then,
the output of the base classifiers constitutes a new dataset, and the
meta-classifier is fitted based on the new dataset to obtain the final

Repeat £ times

prediction results. The specific steps of the stacking algorithm are
as follows:

(1) The original dataset is randomly divided into original
training set D and original test set T.

(2) Each base classifier is trained based on k-fold CV method. The
original training set D is randomly divided into k equal parts
(D1, Do, ..., Dg). Take turns to use one part of them as the test
set and the remaining k—1 parts as the training set. The k is
set as 5 in this study, which means repeating the above
process 5 times. The combination of the prediction results of
the base classifiers is taken as the new training set D* of the
meta-classifier.

) Each base classifier is used to predict the original test T, and
the predicted results are averaged as the new test set T* of
the meta-classifier.

) Using the new training set D* and new test set T* to train and
test the meta-classifier, and the meta-classifier outputs the
final prediction results.
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2.2. Introduction to the base classifiers

For stacking ensemble learning, selecting the appropriate base
classifiers and meta-classifier is the key to ensure the prediction
effect. In order to compare the prediction effect and generalisation
ability of the stacking model, we select several commonly used
classification models, including SVM, DT, KNN, RF and GBDT. Due to
the advantages of mature theory and high efficiency, KNN and SVM
are widely used and have good application effect in many fields
(Liao and Vemuri, 2002; Durgesh and Lekha, 2010). RF and GBDT
are tree-based algorithms based on bagging and boosting, respec-
tively. RF can be trained in parallel, which significantly improves
computational efficiency. Moreover, the outputs of the RF model
are determined by majority voting of all DTs (Breiman, 2001). In
comparison, the DTs of GBDT are generated serially. The output of
GBDT is to add up the prediction results of all DTs or add them up
weighted (Friedman, 2001). From the perspective of bias and
variance, RF mainly reduces error variance, and GBDT can reduce
both bias and variance. Thus, a good combination of the two al-
gorithms can ensure the effectiveness of the results. Therefore,
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SVM, KNN, RF and GBDT are used as the base classifiers in this
study, and the GBDT is used as a meta-classifier to correct the bias
of multiple classification algorithms to the training set.

2.2.1. Support vector machine (SVM)

SVM is a kind of machine learning method based on statistics
theory, and it is often used to deal with classification problems
(Vapnik, 2000). For linear binary classification, assuming that the
training setis (x;,y;) (i=1, 2, ...,n,ye{-1,1}), the basic idea of SVM is
to construct a separating hyperplane w'x+ b = 0, so that the
samples of two different classes are separated, where b is the
function bias of separating hyperplane. The support vector is the
sample points close to the separating hyperplane. The optimal
separate hyperplane maximizes the distance between the support
vector of two different classes of samples and the separate hyper-
plane (Srivastava and Bhambhu, 2010). The problem of solving the
optimal hyperplane is a constrained optimisation problem. By using
the duality of Lagrange multipliers, it is transformed into the
following optimisation problem:

n 1 n n
max lz o~ S (a,»ajy,yj)
i=1

i=1j=1

n
s.t. Z(a,-yj) —00<o<Ci=1,2 .., n
i=1

where ¢; and ¢; are the Lagrange coefficients, and C is the penalty
coefficient.
The final optimal classification function is as follows:

f(x) = sgn {i (a:.YiXiXD +b" 2)

i=1

where a;‘ is the optimal Lagrange coefficient, and b" is the optimal
value of b.

In linear indivisibility, SVM introduces a kernel function to map
the data samples from low dimensional space to high dimensional
space by transforming the inner product function, making the high-
dimensional space linearly separable (Liu and Hou, 2019). In this
study, the radial basis function (RBF) is used as the kernel function.
For the problem of multi-classification, SVM achieves the classifi-
cation goal by combining several two classifiers.

2.2.2. K-nearest neighbor (KNN)

KNN is a classic and straightforward machine learning classifi-
cation algorithm (Altman, 1992). Assume that the xg is the vector to
be classified. The basic principle of KNN is to firstly find the k
vectors which are most similar to x}, in the sample space. Then
count the most frequent class of these k vectors, and xg is deter-
mined as this class. The similarity of two vectors is usually
measured by their Euclidean distance, which can be calculated as
follows:

Dg = Zd: (xg fxg)z (3)
q=1

where Dg is the Euclidian distance, &;, is the sample vector, and d is
the dimension of the samples.

The KNN algorithm mainly depends on the limited adjacent
samples rather than identifying the class field. Therefore, the KNN
algorithm is more suitable for the sample set with more over-
lapping class fields (Imandoust and Bolandraftar, 2013).

2.2.3. Random forest (RF)

RF algorithm is a powerful supervised ensemble learning algo-
rithm proposed by Breiman (2001). RF can be regarded as an
improved bagging method, and it is developed based on DT theory
(Zhou et al., 2017). The idea of RF is to use the bootstrap resampling
method to extract multiple samples from the original samples, and
construct a DT for each bootstrap sample. In a RF, each DT is
randomly generated, and different DTs are independent of each
other. For a classification problem, the final classification results are
determined based on the majority vote of all DTs.

In the RF algorithm, generation of DTs involving node split al-
gorithms, including ID3, C4.5 and CART (Myles et al., 2004). In this
study, the CART algorithm is used to construct the RF. CART uses the
Gini index to measure the importance of feature attributes to
realize node split. Suppose that sample set D contains T classes and
n features (X1, X3, ..., Xp), then the Gini index is as follows:

T

T 2
Gini(D) =1-3_pf = 1-3 (%) ?

t=1

where C; is the subset of samples belonging to class t in sample set
D. After a split of node k, the sample set D is divided into m parts (D,
D», ..., D) based on feature X (j = 1, 2, ..., n). The Gini index GI}, can
be expressed as follows:

D1 |

Gli = Gini(D, A) = 50Gini(Dy) + -

|Dim|

++pp Gini(Dn) (5)

2.24. Gradient boosting decision tree (GBDT)

GBDT is an iterative DT-based algorithm based on boosting
strategy (Friedman, 2001, 2002). With its strong generalisation
ability, GBDT is widely used to solve classification and regression
problems. The CART-based DT is usually used for constructing
GBDT, and the DTs are iteratively constructed (Wang et al., 2016). In
each iteration, a new DT is generated, and the residuals of the
previous DT are used to train the current DT. Also, in each iteration,
the gradient descent method is used to increase the learning
weight on the incorrectly predicted samples, so that the error of the
model to the objective function is smaller than that in the previous
iteration (Kuhn and Johnson, 2013). The convergence condition of
GBDT is that the model satisfies the preset classification error or
reaches the upper limit of the number of DTs. Finally, these trained
DT classifiers are integrated into a robust classifier.

2.3. Synthetic minority oversampling technique

For the imbalanced sample set, there are usually two data pro-
cessing methods: oversampling and undersampling. The main idea
of oversampling and undersampling is to increase the number of
minority class samples and remove part of the majority class
samples, respectively. Through oversampling or undersampling,
the number of different classes can become relative balance
(Elrahman and Abraham, 2013). However, unlike the professional
fields such as natural language processing, which can easily obtain
valuable massive data, there are relatively little valuable data for
many problems in underground engineering fields. In this study,
the number of valid TBM tunnelling data is relatively small.
Therefore, it is not appropriate to remove the majority class sam-
ples by undersampling. Additionally, the sample number difference
between different classes is relatively significant. Therefore, we use
the SMOTE algorithm (Chawla et al., 2002) to process the original
imbalanced training set.
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SMOTE algorithm is a kind of oversampling technique for syn-
thesising minority samples and can be regarded as an improved
strategy of the random oversampling algorithm. Because random
oversampling adopts the strategy of simply copying samples to
increase the number of minority class samples, it is easy to produce
the problem of over-fitting and reduce the generalisation ability of
the classifier. To overcome this, the basic principle of SMOTE al-
gorithm is to analyse the minority samples and synthesise new
samples based on the minority samples to add to the dataset. Fig. 2
shows the schematic diagram of SMOTE oversampling. The specific
steps of SMOTE oversampling are as follows:

(1) Suppose a minority class sample in the feature space (such as
the blue ball in Fig. 2). For the minority class sample x;, the
Euclidean distances between x; and all other minority class
samples are calculated to obtain k nearest neighbors.
Generally, k is taken as 5.

(2) Through the analysis of imbalanced samples, the sampling
rate N is determined. For each minority class sample x;,
several samples are randomly selected from its k nearest
neighbors, assuming that one of the selected nearest
neighbor samples is ;.

(3) For the nearest neighbor sample x; and the minority class
sample x;, a new sample xpew is synthesised at a random
point on their connecting line. The calculation formula is as
follows:

Xnew = X; +rand(0, 1)|x; — X;| (6)

where rand(0, 1) represents a random number between
Oand 1.

2.4. Evaluation metrics of the model

In order to evaluate the prediction effect of the classifiers,
different evaluation metrics have been put forward or used in
evaluating the performance of machine learning models (Luque
et al,, 2019; Zhou et al., 2019). For the imbalance of samples, the
study selects six evaluation metrics: accuracy (ACC), precision
(PRC), recall (REC), Fi-score (Fy), Cohen’s kappa coefficient (Kappa)
and area under the receiver operating characteristic (ROC) curve
(AUC) to evaluate the prediction performance and select the best
classifier for rock mass classification.

5

A
A A Majority class samples
A @ Minority class samples

Synthetic class samples

~h

Fig. 2. Schematic diagram of SMOTE oversampling.
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II IHr/1v/v

False negative (FN):
(Class II is incorrectly
predicted as Class
HI/IV/V)

True positive (7P):
= (Class II is correctly
predicted as class II)

Actual class

True negative (TN):
(Class II/IV/V is
correctly predicted as
class III/IV/V)

False positive (FP):
(Class III/IV/V is
incorrectly predicted as
class II)

m/1v/v

Fig. 3. Schematic diagram of the binary confusion matrix (taking the prediction of
class II as the example).

ACC represents the proportion of correctly predicted samples to
the total predicted samples, and the ACC metric is most widely used
to evaluate the prediction performance of a classifier. However, for
imbalanced classification tasks, ACC is incapable of reflecting the
performance of classifiers. REC represents the proportion of
correctly predicted samples of a certain class to all predicted
samples of that class. PRC represents the proportion of correctly
predicted samples of a certain class to the predicted samples of this
class. It can be seen that there is a certain contradiction between
PRC and REC, which reflects the discrimination ability of the model
to positive samples and negative samples, respectively. F; is the
composite metric of REC and PRC, which eliminates the one-
sidedness of these two indices to a certain extent. These metrics
can be calculated based on a confusion matrix, and the calculation
formulae are as follows:

ACC = TP+;II\)111T-'II\’J+FN 7)
REC = Tpi% (8)
PRC — % 9)
Fy = 2 RECTRC (10

where TP is the true positive, which represents the number of
samples that are actually of positive class and correctly predicted as
the positive class by the classifier; FN is the false negative, repre-
senting the number of samples that are actually of positive class but
incorrectly predicted as the negative class; FP is the false positive,
representing the number of samples that are actually of negative
class but incorrectly predicted as the positive class; and TN is the
true negative, representing the number of samples that are actually
negative class and correctly predicted as negative class. Prediction
of rock mass classification is a four-classification problem, and it
can be regarded as four binary classification problems. To better
understand the four symbols of TP, FN, FP and TN, the schematic
diagram of the binary confusion matrix (taking the prediction of
class II as the example) is shown in Fig. 3.
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The above evaluation metrics (i.e. ACC, REC, PRC and F;) are
suitable for solving binary classification problems. The rock mass
classification can be regarded as the combination of four binary
classification problems. Therefore, the four evaluation metrics can
be used to evaluate the prediction effect for each class. For the total
prediction effect of each classifier, the ACC 14, can also be calcu-
lated as the proportion of correctly predicted samples to total
samples:

ACC gy = Soommect (1)

total

where neorrect 1S the number of samples that are correctly classified,
and nyy, is the total number of samples.

While the other three metrics (i.e. REC 1oy, PRC 1ot and
F1 Tota) can be calculated by the weighted macro-average across
classes as follows:

T
REC 1ot = > (REGW)) (12)
i=1
T
PRC 1ora1 = ) (PRGw;) (13)
i
T
Fi toral = Y (F1iw;) (14)

i=1

where REG; is the recall of class i, PRC; is the precision of class i, Fy; is
the F-score of class i, w; is the proportion of the samples of class i to
the total samples.

Cohen’s kappa coefficient (Kappa) is a robust metric that mea-
sures the proportion of correctly classified units after the proba-
bility of change agreement has been removed (Cohen, 1960), which
takes into account the probability that a pixel is classified by chance
(Dong et al., 2013; Zhou et al., 2015, 2016). Compared with ACC
metric, Kappa metric considers the sample imbalance to a certain
extent. The Kappa coefficient can be calculated as

PO_Pe
1—Pe

Kappa = (15)

where Py is the sum of the number of correctly classified samples in
each class divided by the total number of samples, i.e. the overall
classification accuracy rate, ACC 1q,; and Pe is the expected pro-
portion of samples correctly classified by chance. Assuming that the
number of the real samples in each class is aq,ay,...,a,, the number
of the predicted samples of each class is by, by, ..., by, the total
number of the classes is u, and the total number of samples is n, Pe
can be calculated as

_ajby +axby + -+ +ayby
= —

Pe (16)

Table 1
Relative strength of agreement corresponding to Kappa value (Landis and Koch,
1977).

Kappa Strength of agreement
-1-0 Poor

0-0.2 Slight

0.21-04 Fair

0.41-0.6 Moderate

0.61-0.8 Substantial

0.81-1 Almost perfect

Table 1 shows the relative strength of agreement corresponding
to the Kappa statistic (Landis and Koch, 1977). Kappa < 0.4 is an
indication of poor agreement, while Kappa > 0.4 is an indication of
reasonable agreement.

The AUC from the ROC curve is also a metric that can be used to
evaluate the prediction accuracy of classifiers (Bradley, 1997). The
ROC curve plots the true positive rate (TPR, i.e. recall) against the
false positive rate (FPR = FP/(TN -+ FN)). The values of AUC vary from
0.5 to 1, indicating the discrimination accuracy, which can be
divided into five degrees (Bradley, 1997; Zhou et al., 2019): not
discrimination (0.5—0.6), poor discrimination (0.6—0.7), fair
discrimination (0.7—0.8), good discrimination (0.8—0.9), and
excellent discrimination (0.9—1). The ROC curve and the AUC value
are usually used for evaluation of binary classifiers. For the multiple
classifiers, the micro-average ROC curve and macro-average AUC
values are used as the evaluation metrics for the prediction per-
formance. The micro-average ROC curve and its corresponding AUC
value are obtained by stacking the results of all groups together,
thus converting the multi-class classification into binary classifi-
cation. The macro-average ROC curve and its corresponding AUC
value are obtained by averaging all groups’ results (one vs. rest),
and linear interpolation was used between points of ROC curve
(Wei et al.,, 2018). Compared with the micro-average AUC, the
macro-average AUC is more influenced by the minority class
samples.

3. Database acquisition and preprocessing
3.1. Database acquisition

In this study, taking the No. 4 bid section of the Songhua River
water conveyance project in China as the research object, the TBM
operation database is established. Fig. 4 shows the location of the
study area of the Songhua River water conveyance project. The
construction section is located between the Chalu River and Yinma
River, and the total length of the tunnel is 22,955 m. During the
construction process, the length excavated by TBM is about
20,198 m, accounting for about 88%, and the rest section is con-
structed using drill and blast method. The mileage of the study area
is from K71 + 855 to K48 + 900, the elevation range is from 264 m
to 484 m, and the buried depth is from 85 m to 260 m. The design
shape of the diversion tunnel section is circular. The open TBM with
an excavation diameter of 8.03 m is used to excavate the tunnel. The
main technical parameters of open TBM are listed in Table 2.

In the whole construction process of the TBM section, the
operation data of TBM are collected once a second. From July 2015
to February 2018, a total of 802 d of TBM operation data were
recorded. About 86,400 pieces of TBM operation data were
collected every day, and 4.08 billion pieces of data were finally
obtained to form the database. The actual performance of TBM
equipment in different strata and operating conditions is recorded
entirely. In the database, each piece of data contains 191 TB M
machine parameters, time stamp information and the corre-
sponding mileage. Fig. 5 shows the TBM systems and distribution of
the acquisition parameters. Fig. 6 shows the variation of four key
TBM operation parameters in a day. TBM takes a tunnelling cycle as
a working unit, which can be defined as a process from TBM start-
up to shut-down. In a whole TBM tunnelling cycle, the operation
parameters increase from zero to a stable value for continuous
excavation and then decrease to zero. During this period, TBM
advances a certain distance forward, and the footage of each
tunnelling cycle is about 1.8 m. It can be seen from Fig. 6 that there
are 29 TB M tunnelling cycles on February 1, 2016.

In addition, according to the construction mileage, the lithology
and rock mass classification along the tunnel are also recorded, as
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Fig. 4. Location of the study area of the Songhua River water conveyance project.

shown in Fig. 7. The construction site mainly includes two types of
lithology, i.e. granite and limestone, accounting for 41.62% and
58.38%, respectively. The mileage of the lithology boundary is
K58 + 454. Based on the HC method (GB50487-2008, 2008), the
rock mass is classified into five classes, including I, II, III, IV and V, as
shown in Table 3. In the HC method, the cumulative score T is used
as the primary criterion for dividing the rock mass classes. The
method comprehensively considers the factors of the ratings of
rock strength, rock mass intactness degree, discontinuity condi-
tions, groundwater condition and the attitude of the main discon-
tinuity plane. Meanwhile, the strength-to-stress ratio, S, is also
calculated below to account for the stress state effect on the sur-
rounding rock:

_ RKy
==t

S (17)

where R is the UCS of intact saturated rock, Ky is the intactness
index of rock mass, and oy, is the maximum principal stress of
surrounding rock.

In the study area, the proportions of rock mass class from Il to V
are 8.13% (419), 66.74% (5555), 20.03% (1439) and 5.1% (125),
respectively.

3.2. Data preprocessing

The established database contains a large number of useless
data. According to the variation law of TBM operation parameters,
the raw data can be processed by constructing the state discrimi-
nant function (SDF) to remove the useless data and obtain the
whole TBM tunnelling cycles (Wang et al., 2018). The SDF is written
as

SDF = f(w)f (RS)f (F)f (Tc) (18)

foo = {3 &2 (19)
[0 (useless data)

SDF = { 1 (data of TBM tunnelling cycle) (20)

Through the above treatment, a total of 7525 TB M tunnelling

cycles without useless data were obtained. Fig. 8 shows a complete
TBM tunnelling cycle and the selection of valuable data for classi-
fiers. There is a strong correlation between TBM machine param-
eters and rock mass quality. The TBM tunnelling cycle can be
divided into the rising phase and stable phase, as shown in Fig. 8.
The data of the stable phase can better reflect the rock mass quality
of the construction area. By analysing the data, the duration of the
rising phase is usually short and less than 5 min. The operational
parameters near the end of a TBM tunnelling cycle may be unstable.
Therefore, the data of the first 400 s and the last 300 s of each TBM
tunnelling cycle should be removed, and the rest operational data
are valid to be selected for classifiers. However, the data in the
selected area may have some outliers. In this section, the boxplot
method based on the quartile and the interquartile ranges is used to
eliminate the outliers (Carter et al., 2009). Suppose D is the data
point in the selected area, then the criterion for judging outliers is
as follows:

Liower = Q1 — 1.5IQR (22)
IQR=0Q3 - (23)

(Ds < Ligwer OF Ds > Lupper) (24)

D — { outliers
° (Llower <Ds < Lupper)

non-outliers

where Q3 is the upper-quartile, Q is the lower-quartile, IQR is the
inter-quartile range, Lupper is the upper limit of non-outliers, and
Ligwer 1S the lower limit of non-outliers.

Finally, the mean value of the rest operation data without out-
liers is calculated as the inputs of the classifier to predict the rock
mass classification.

3.3. Selection of the input features

Selection of appropriate input features has an essential impact
on the prediction effect of the model. Different scholars have pro-
posed many different feature selection methods (Kumar and Minz,
2014). In this section, the Gini index in RF is used to carry out the
feature selection.
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Table 2
Main technical parameters of open TBM.

Parameter Design value
Machine type Open TBM
Total weight (t) ~180
Number of cutters 56
Cutterhead rated torque (kN m) 8410 (at 3.97 rev/min)
Cutterhead rotation speed (rev/min) 0-3.97-7.6
Excavation diameter (mm) 8030
Maximum thrust (kN) 23,260
Driving power (kW) 3500
Maximum support force of TBM boots (kN) 46,028
Maximum advance rate (mm;/min) 120

The value of the Gini index is inversely proportional to the effect
of node split. Therefore, the importance of features can be ranked
by calculating mean decrease Gini (Shang et al., 2007). The variable
importance measures (VIM) of a feature X; on node k is as follows:

VIMEE™ = Gl — Gl — Gl (25)
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where GI; and GI; are the Gini indices of the new left and right
nodes after node split, respectively.

Then, the importance of feature X; on the i-th DT can be
expressed as

(Gini) (Gini)
vim ™™ = ZVIMjk (26)

keK

where K is the node collection in the RF. Suppose that there are N,
trees in the RF, the importance of feature can be obtained as

Nc
(Gini) _ (Gini)
VIV = z;wzvlij
1=

(27)

The normalised result of the importance score of feature X; in
the RF is finally obtained as

vim(Gini)
VIM; = ]

u vin(Gind
J
j=1

Number and distribution of acquisition parameters

=]
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Fig. 5. TBM systems and the acquisition parameters distribution.
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Table 3
Descriptions of rock mass classification as per GB50487-2008 (2008).

Rock T S Stability evaluation of surrounding rock

mass

class

1 T>85 >4 Stable. The surrounding rock can be stable for a long

time, and generally there is no unstable block

1 85 > T > 65 >4 Basically stable. The surrounding rock is stable as a
whole and will not produce plastic deformation,
and local block may fall off

1 65 > T > 45 >2 Local stability is poor. The surrounding rock will
produce plastic deformation locally, and collapse or
damage may occur without support. For intact soft
rock, it may be temporarily stable

v 45 > T > 25 >2 Unstable. The self-stability of surrounding rock is
poor, and many kinds of large-scale deformation
and failure may occur

\% T<25 — Extremely unstable. The surrounding rock is not
self-stable, and the deformation and failure are
obvious

Note: When the strength-to-stress ratio S of the rock mass in classes I, II, Ill and IV is
less than the specified value in Table 3, the rock mass classification shall be reduced
by one grade.

The importance of feature finally calculated is the relative value,
and the sum of the VIM values of all features is equal to 1.

On the other hand, if the two features are highly correlated, they
have similar trends and may carry similar information. The exis-
tence of such features will degrade the performance of some clas-
sifiers. Therefore, after sorting the features by the variable

Rising phase Stable phase
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Fig. 7. Statistics of (a) lithology and (b) rock mass classification in the study area (unit: %).

importance measures of RF, the highly correlated features are
eliminated based on the Pearson correlation coefficient, which can
be calculated as Eq. (29). In this section, If the Pearson correlation
coefficient between the two feature is greater than 0.9, the two
features are considered to be highly correlated, and we only keep
one of them.

(Xg =X)(Yq = Y)

r= q-1 (29)

N -2 N —2
X X=X/ X (Yg-Y)
g=1 q=1

I M=

where 1 is the Person correlation coefficient, X; and Y; are the two
different variables, X is the mean value of X;, Y is the mean value of
Y;, and N is the number of variables.

Based on the above data processing method, conducting the
feature selection for 191 TB M operation parameters, and finally, 10
features are selected as the inputs of classifiers, including cutter-
head rotational speed (n), pitch angle of gripper shoes (Pags), gear
sealing pressure (Gsp), pressure of gripper shoes (Pgs), output fre-
quency of main drive motor (Ofdm), internal pump pressure (Ipp),
penetration rate (Pr), control pump pressure (Cpp), torque pene-
tration index (TPI), and roll position of gripper shoes (Rpgs). Fig. 9
shows the normalised importance of the selected 10 features. The
statistics of each selected features are shown in Table 4. The sta-
tistical indicators of each feature include minimum value (Min),

Outliers elimination based on the boxplot method

Y PORSN: X SN " SEmE T,
I TR PN upper
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Fig. 8. A complete TBM tunnelling cycle and the selection of valid data for classifiers.
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Fig. 9. Normalised importance of the selected 10 features.

maximum value (Max), mean value (Mean) and standard deviation
(Std).

The physical meanings of the 10 selected features or their
relevance with the rock mass quality are as follows (Liu et al., 2021;
Jing et al.,, 2019): n and Pr reflect the rock-breaking efficiency of
TBM. Gsp reflects the change of control valve and flowmeter for the
TBM lubrication system caused by the variety of rock mass quality.
Pgs, Pags and Rpgs reflect the state of reaction force on the TBM
when advancing under different rock mass qualities. Cpp and Ipp
reflect the flow and pressure outputs of the TBM thrust hydraulic
system, respectively. TPI is the cutterhead torque required to
advance unit penetration rate, reflecting the rock mass boreability.
Ofdm is a parameter of the TBM variable frequency drive motor,
influencing the cutterhead rotational speed through the reduction
ratio relationship.

4. Case study and analysis
4.1. Model establishment

In this section, we firstly establish seven individual classifiers,
including SVM, KNN, RF, GBDT, DT, LR, and MLP. Then, by using
SVM, KNN, RF and GBDT as the base classifiers, and the GBDT as the
meta-classifier, the stacking ensemble classifier is established.
Seven individual classifiers are used for comparison with the
stacking ensemble classifier. Fig. 10 shows the flowchart of the rock
mass prediction for each classifier. All classifiers are implemented
by the TensorFlow package in PyCharm using the Python language.
Moreover, the training and testing of all classifiers were processed
by a computer with a CPU of Intel(R) Core(TM) i7-7700 K @
4.20 GHz in a Windows environment.

According to Section 3, 7538 TBM tunnelling cycles are obtained,
and the ten features are selected as the inputs of the classifier. The

Table 4

Statistics of the selected features.
Feature Unit Min Max Mean Std
n kN m 4 7.62 6.54 0.71
Pags ° -4.9 3 -0.13 1.59
Gsp kN 1.26 11.18 6.47 1.52
Pgs kN 215.82 351.28 302.67 22.08
Ofdm 0 96 81.93 10.54
Ipp kN 0.46 5.74 3.98 117
Pr mm/rev 0.89 18.65 9.93 2.21
Cpp kN 122.3 131.59 129.11 1.34
TPI kN rev/mm 14.77 777.86 261.62 94.57
Rpgs ° -4.75 2.64 -0.64 1.02

rock mass class is used as the outputs of the classifier. In order to
eliminate the influence of the data magnitude and dimension dif-
ference, it is necessary to carry out the data normalisation for each
feature before the model training. In this section, the Z-score nor-
malisation method is used to normalise the input features, making
the mean value and the standard deviation of each feature to be
0 and 1, respectively. The calculation formula is as follows:

X_
="k (30)

where x is an input parameter, x; is the input parameter after
normalisation, u is the mean value of the input samples, and ¢ is the
standard deviation of the input samples.

Since the input and output of the machine learning model
should be numerical data, it is needed to carry out an encoding
process for the labelled data. In this section, the one-hot encoding
method (Potdar et al., 2017) is adopted, and the rock mass classes of
IL, III, IV and V are encoded as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0,1, 0) and (O,
0, 0, 1), respectively, as listed in Table 5. Then, the preprocessed
dataset is divided into a training set and a test set using simple
random sampling. There are 6784 samples in the training set and
754 samples in the test set, accounting for 90% and 10%,
respectively.

After the above data preparation, the stacking ensemble and
individual classifiers are established. The training set is used to
construct 10-fold CV dataset, and the hyperparameter optimisation
is carried out based on the 10-fold CV dataset. Finally, the test set is
used to test each classifier, and each classifier is evaluated based on
the evaluation metrics in Section 2.4.

4.2. Hyper-parameter optimisation of classifiers

Different machine learning models have different hyper-
parameters, which should be set before the model training.
Hyper-parameters are the essential factor affecting the perfor-
mance of machine learning models (Feurer and Hutter, 2019). The
hyper-parameters of different models that we mainly consider are
as follows:

(1) For the SVM classifier, the key hyper-parameters are the
penalty coefficient C and the RBF kernel coefficient g. Hyper-
parameter C reflects the tolerance of the SVM model to er-
rors, and hyper-parameter g determines the distribution of
the data mapped to the new feature space.

(2) For the KNN classifier, the key hyper-parameters are the
n_neighbours and the weights. Hyper-parameter n-neigh-
bours is the number of neighboring points when determining
the sample classification, and it can be determined from 1 to
15. Hyper-parameter weights is the distance-based voting
weight of neighboring points, and it can be set as distance or
uniform, considering the weight or not, respectively.

(3) For the DT classifier, the key hyper-parameters are the cri-
terion, min_samples_split and min_samples_leaf. Hyper-
parameter criterion is the feature selection criterion of deci-
sion. Hyper-parameter min_samples_split is the minimum
number of samples required to split an internal node, and
hyper-parameter min_samples_leaf is the minimum number
of samples required in a terminal node for a split to be valid.

(4) For the RF classifier, the key hyper-parameters are min_-
samples_split, min_samples_leaf, n_estimators, max_depth and
max_features. Among them, hyper-parameters min_sam-
ples_split and min_samples_leaf have the same meaning as DT
classifier. Hyper-parameter n_estimators is the number of the
DTs, hyper-parameter max_depth is the maximum depth of
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Fig. 10. Flowchart of the rock mass prediction for each classifier.

Table 5
One-hot encoding results of each rock mass class.

Rock mass class One-hot encoding result

1l (1,0,0,0)
| (0,1,0,0)
v (0,0,1,0)
\% (0,0,0,1)

each DT, and hyper-parameter max_feature is the number of
features randomly selected for each DT.

(5) For the GBDT classifier, the key hyper-parameters are lear-
ning_rate, n_estimators, max_depth and max_features. Hyper-
parameter learning_rate is the weight reduction coefficient of
each weak learner, and the other three hyper-parameters are
the same as RF classifier.

(6) For the LR classifier, the key hyper-parameters are max_iter, ¢
and solver. Hyper-parameter max_iter is the maximum
number of iteration, hyper-parameter c is the reciprocal of
the regularisation coefficient, and hyper-parameter solver
determines the optimisation method of a loss function.

(7) For the MLP classifier, the key hyper-parameters are lear-
ning_rate, max_iter and activation. The meanings of the first
two parameters are the same as mentioned above. Hyper-
parameter activation is the activation function of neurons.

There are several commonly used methods for hyper-
parameters tuning, including the grid search method (Wistuba
et al.,, 2015), metaheuristic algorithms (e.g. particle swarm opti-
misation (PSO), grey wolf optimisation (GWO), whale optimisation
algorithm (WOA), moth flame optimisation (MFO), and multi-verse
optimisation (MVO)) (Zhou et al., 2021a, b), hold-out method,
random search method, and leave-one-out method. (Kardani et al.,
2020). In this section, the hyper-parameter optimisation is con-
ducted for each classifier based on 10-fold CV accuracy as the
evaluation index. The optimal hyper-parameters of each classifier

are tuned by the grid search method. Table 6 shows the optimisa-
tion results of hyper-parameters. The hyper-parameters of stacking
ensemble classifier are set based on the optimisation results of
corresponding individual classifiers. The optimal hyper-parameters
are used to set each classifier before the model training. In addition
to the optimised hyper-parameters, the other initialisation hyper-
parameters of each classifier are set as the default value of each
classifier function in Scikit-learn libraries.

4.3. Prediction results and performance evaluation

In this section, 90% of the TBM operation data and corre-
sponding rock mass class are used as the training set to train the
established eight classifiers. The remaining 10% of the data are used
as the test set to test the trained classifiers. In order to ensure the
comparability among the classifiers, all the classifiers are estab-
lished based on the same training and test sets, and the training and
testing process of each classifier is repeated 10 times to determine
the model performance. The values of different evaluation metrics
are obtained by calculating the mean values of 10 repeated tests.
Table 7 lists the calculation time consumed of different classifiers
under optimal hyper-parameters. It can be seen that the training
times of GBDT and stacking ensemble classifiers are relatively long,
which are up to 56.367 s and 68.295 s, respectively. The training
time of the other six classifiers is less than 3 s. However, the pre-
diction time consumed of each classifier for the test set is less than
0.3 s, which can be considered as ‘real-time’ prediction based on
the trained classifiers.

Fig. 11 shows the prediction results of different classifiers on the
test set. As can be learned from the figures, the misclassification
ratio of samples belonging to classes Il and V is high, and the
misclassification ratio of samples belonging to the other two classes
is relatively low. The reason for the above phenomenon is that the
sample set is imbalanced. For the total samples, trainging set
samples and test set samples, the samples belonging to classes II
and V are all less than 10%. Additionally, it can be easily seen that
the proposed stacking ensemble classifier has the best prediction
performance on rock mass classification among all classifiers, with
fewest misclassification samples.

Table 6
Optimisation results of hyper-parameters.

Classifier Optimal setting of initialisation hyper-parameters

SVM kernel = ‘rbf, C = 6.86, g = 47.03

KNN n_neighbours = 5, weights = ‘distance’

RF min_samples_split = 5, min_samples_leaf = 2, n_estimators = 300,
max_depth = 14, max_features = 6

GBDT learning_rate = 0.2, n_estimators = 200, max_depth = 15,
max_features = 5, min_samples_split = 5, min_samples_leaf = 2

DT min_samples_split = 6, min_samples_leaf = 4, criterion = ‘Gini’
LR solver = ‘sag’, c = 1, max_iter = 400
MLP learning_rate = 0.01, max_iter = 800, activation = ‘relu’,

hidden_layer_sizes = (15, 15, 15)

Table 7
Calculation time consumed of different classifiers under optimal hyper-parameters.
Classifier Traning time consumed (s) Prediction time consumed (s)
SVM 1.282 0.159
KNN 0.205 0.026
RF 7.213 0.051
GBDT 56.367 0.071
DT 0.273 0.002
LR 0.242 0.001
MLP 2.699 0.002
Stacking 68.295 0.331
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Fig. 11. Prediction results of different classifiers on test set: (a) SVM, (b) KNN, (c) RF, (d) GBDT, (e) DT, (f) LR, (g) MLP, and (h) Stacking.

In order to quantitatively analyse the prediction results and
evaluate the performance of different classifiers, the evaluation
metrics proposed in Section 2.4 are used to evaluate each classi-
fier's performance, and the comparison between stacking ensemble
classifier and individual classifiers is also analysed. Table 8 lists the
evaluation metrics of each classifier. Fig. 12 shows the confusion
matrix based on the REC of each classifier. It can be seen from
Table 8 and Fig. 12 that:

(1) The stacking ensemble classifier has the best prediction
performance with the four highest evaluation metrics; the
values of ACC tqa1, Kappa, PRC Total, REC Tota) and Fq_rota) are

93.1%, 0.823, 0.93, 0.931 and 0.928, respectively. The pre-
diction performance of the stacking ensemble classifier on
different rock mass classes is also the best compared to other
individual classifiers. Taking REC as an example, the REC
values of stacking ensemble classifier for classes II, III, IV and
V are 70% (30/754), 98.4% (557/754), 81.7% (153/754) and
57.1% (14/754), respectively. The REC of stacking ensemble
classifier is higher than the other seven individual classifiers.
Especially for the class V, the REC values of the seven indi-
vidual classifiers are all less than 50%. However, the predic-
tion performance of the stacking ensemble classifier for class
V is greatly improved with REC up to 57.1%. Also, the relative
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Evaluation metrics of each classifier.

Classifier Rock mass class Evaluation metrics
ACC (%) Kappa PRC REC F, Support
SVM 1l 0724 07 0712 30
1 0921 0948 0935 557
v 0.803 0771 0.787 153
\% 08 0286 0421 14
Total 89 0.723 0887 089 0.886 754
KNN 1l 0.714 0667 069 30
| 0.906 0948 0926 557
v 0.796 0706 0.747 153
% 0714 0357 0476 14
Total 87.7 0.682 0.872 0.877 0872 754
RF 1l 09 06 072 30
il 0919 0975 0946 557
I\% 0.859 0.758 0.806 153
\ 0875 05 0636 14
Total 90.7 0.756 0905 0.907 0903 754
GBDT Il 0.87 0.667 0.755 30
il 0933 0982 0957 557
v 0.885 0.804 0842 153
\ 1 0429 06 14
Total 923 0.801 0922 0923 0919 754
DT 1l 0593 0533 0561 30
1 0.907 0946 0926 557
v 08 0706 075 153
\ 0545 0429 048 14
Total 87.1 0.672 0866 0871 0.868 754
LR 1l 0 0 0 30
| 0.823 095 0882 557
v 0595 0431 05 153
\ 0 0 0 14
Total 789 038 0728 0789 0.753 754
MLP 1l 055 0367 0.440 30
il 0.855 0.923 0.888 557
v 0.661 0549 0.6 153
\% 0.667 0286 04 14
Total 81.3 0502 08 0813 0802 754
Stacking I 0.875 0.7 0.778 30
| 094 0984 0961 557
v 0.899 0817 0856 153
\% 1 0571 0727 14
Total 93.1 0.823 093 0931 0928 754
relationship of the other two evaluation metrics (i.e. PRC and
F1) among different classifiers is similar to REC. The above
analysis shows that the proposed stacking ensemble classi-
fier has a powerful generalisation ability.

(2) Among the individual classifiers, GBDT and RF show rela-
tively good performance and generalisation ability than
other individual classifiers. In fact, the GBDT and RF also
belong to the ensemble learning classifiers, which combining
multiple DTs in different ways. While in this study, GBDT and
RF are used as the base classifiers of stacking ensemble
classifier, thus they are regarded as the individual classifiers.

(3) The prediction performance of SVM, KNN, DT and MLP are
relatively poor, which have more misclassified samples than
GBDT, RF and stacking ensemble classifiers. Taking the pre-
diction of class II as an example, the REC values of GBDT, RF
and stacking ensemble classifiers are 0.982, 0.975 and 0.984,
respectively. However, the REC values of SVM, KNN, DT and
MLP are as low as 0.923—-0.948, with more samples
belonging to class Il misclassified as class IV. Thus, among
the four classifiers (i.e. SVM, KNN, DT and MLP), the perfor-
mance of the first three classifiers is relatively good with
ACC 1oa Of 87.1%—89%, while the performance of the MLP
classifier is relatively poor with ACC ¢y of 81.3%.

(4) The LR classifier has the worst prediction performance on

rock mass classification, and its evaluation metrics are all the
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lowest among all established classifiers. Additionally, it can
be seen from Fig. 12f that the LR classifier cannot predict
classes Il and V. As a result, the samples belonging to class II
are all misclassified as classes Il (83.3%) and IV (16.7%).
Moreover, the samples belonging to class V are also mis-
classified as classes III (14.3%) and IV (85.7%). The above
analysis shows that the generalisation ability of the LR clas-
sifier is inferior.

(5) As for the Kappa metric, the Kappa value of the stacking
ensemble classifier is 0.823, which means the strength of
agreement is almost perfect according to Table 1. The
strength of agreement of the LR classifier is inferior, with the
Kappa value of 0.38. The strength of agreement of the MLP
classifier is moderate, with the Kappa value of 0.502. In
contrast, the strength of agreement of the other five classi-
fiers are all good, with the Kappa value of 0.61—0.8. Addi-
tionally, it can be seen from Table 8 that there is a positive
correlation between ACC and Kappa, and the value of Kappa is
smaller than ACC. The ACC and Kappa of stacking ensemble
classifier are all greater than those of the other seven indi-
vidual classifiers, showing that the stacking technique can
effectively improve the model performance.

Fig. 13 shows the error histogram of different classifiers. The
error values of classification problems are discrete. Since the rock
mass classes have four levels of II, III, IV and V in our study, the error
of the established classifiers is within the range of {-3, -2, -1,0, 1,
2, 3}. The value of error represents the level difference between the
actual and predicted classes. Among them, error = 0 means that the
predicted class is the same as the actual class, the positive error
means that the level of the predicted class is higher than that of the
actual class, and the negative error means that the level of the
predicted class is lower than that of the actual class. As can be seen
from Fig. 13, the error value of each classifier is less than 3. More-
over, the error values of the most misclassified samples are —1 and
1. For RF, GBDT and stacking ensemble classifiers, there is only one
sample with the absolute value of error reaching 2, and the errors of
the rest of the misclassified samples are —1 and 1. However, the
frequency with |error] = 1 of stacking ensemble classifier is less
than that of RF and GBDT classifiers. For other individual classifiers,
the frequency of samples with |error| = 2 is more. It can be seen that
the proposed stacking ensemble classifier is more reasonable in the
classification of rock mass, in which the misclassified samples are
generally incorrectly predicted as the adjacent classes.

The ROC curves are also implemented to evaluate the prediction
performance in rock mass classification. Fig. 14 shows the ROC
curves and corresponding AUC value of different classifiers. Table 9
lists the micro-average and macro-average AUC values of different
classifiers. It can be seen that: (1) The micro-average and macro-
average AUC values of the stacking ensemble classifier are 0.989
and 0.98, respectively, which shows the best prediction perfor-
mance among all the classifiers. It is followed by GBDT classifier
(micro-average AUC = 0.985 and macro-average AUC = 0.969) and
RF classifier (micro-average AUC = 0.982 and macro-average
AUC = 0.968). The SVM classifier (micro-average AUC = 0.97 and
macro-average AUC = 0.911) and KNN classifier (micro-average
AUC = 0.960 and macro-average AUC = 0.903) can be also consid-
ered as the good classifiers. The prediction performance of DT
classifier (micro-average AUC = 0.949 and macro-average
AUC = 0.892) and MLP classifier (micro-average AUC = 0.938 and
macro-average AUC = 0.853) are relatively poor. The LR classifier
has the worst accuracy with micro-average AUC = 0.929 and
macro-average AUC = 0.812. (2) Because the macro-average AUC is
more influenced by the minority class samples than macro-average
AUC, the difference between these two metrics can reflect the
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Fig. 12. Confusion matrix based on REC of each classifier: (a) SVM, (b) KNN, (c) RF, (d) GBDT, (e) DT, (f) LR, (g) MLP, and (h) Stacking.

learning ability of minority to imbalanced data. As can be seen from
Table 9, the difference value of stacking ensemble classifier is the
smallest, which shows better learning ability and improvement of
the performance than individual classifiers.

4.4. Analysis of fitting effect of different classifiers

Over-fitting is a common problem in the training process, which
means the prediction performance on the training set is much
higher than that on the test set (Cawley and Talbot, 2010). It also
indicates that the generalisation ability of the classifier is poor.
Fig. 15 shows the relationship between the prediction accuracy of
each classifier on the training and test sets. It can be seen that all
the data points fall above the line x = y, which represents that the
prediction accuracy on the training set is higher than that on the
test set. Generally, if the difference between prediction accuracy on
the training set and the test set is too large (i.e. the data point in

Fig. 15 is far from the line x = y), over-fitting may occur in the
training process. At present, there is no clear rule about how much
difference of prediction accuracy between the training and test sets
belongs to over-fitting. For most established classifiers, the differ-
ence between prediction accuracy on the training and test sets is
relatively small. The data point of the KNN classifier falls above the
line x = 0.9y, while the data point of the other seven classifiers all
fall below the line x = 0.9y. More specifically, Table 10 lists the
statistics of the prediction accuracy on the training set and the test
set. In the first place, the difference of prediction accuracy on the
training and test sets for the KNN classifier is 11.6%, while those of
other classifiers are all less than 10%. In the second place, the ratio
of prediction accuracy on the training set and the test set for the
KNN classifier is 0.88, while the ratios of other classifiers are all less
than 0.9. Additionally, for the LR classifier, the prediction accuracy
on the training set is close to that of the test set, and the data point
in Fig. 15 is close to line x = y. However, the prediction accuracy of
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Fig. 13. Error histogram of different classifiers: (a) SVM, (b) KNN, (c) RF, (d) GBDT, (e) DT, (f) LR, (g) MLP, and (h) Stacking.

the LR classifier is low and cannot identify classes Il and V. There-
fore, the fitting effect of the LR classifier for the training set is also
poor. The above analysis shows that, except for KNN and LR clas-
sifiers, the fitting effect of the other six classifiers can be considered
as good.

In general, through the analysis of various aspects, it can be
concluded that the proposed stacking ensemble classifier has good
prediction performance and strong generalisation ability for rock
mass classification. Therefore, it can be used to real-time and
accurately predict the rock mass classes, which can help guide the
adaptive adjustment for TBM in the tunnelling process.

5. Discussion
5.1. Influence of sample imbalance on classifier performance

In this section, the influence of the sample imbalance on the
prediction effect is discussed. According to the above analysis, we
can see that there are significant differences in the number of
samples with different rock mass classes, as shown in Fig. 16. The
overall ratio of the training and test sets is 6784/754 (i.e. 9/1), and
the proportion of different classes in the training and test sets is
also about 9/1. In the training set, the number of samples with
different rock mass classes varies greatly, among which the number
of samples of classes II, III, IV and V are 377, 5004, 1293 and 111,
respectively. This may lead to a better fitting effect for samples of
classes Il and IV (or even over-fitting to a certain extent), and a
worse fitting effect for the samples of classes Il and V. Fig. 17 shows
the relationship between the REC value of each classifier and the
number of training samples. It can be seen that:

(1) The REC values of different classifiers on the test set posi-
tively correlate with the number of training samples. The
more the samples in a certain class, the higher the REC value
on the test set.

(2) With the increasing number of samples, the REC difference of
different classifiers are gradually decreased. For the number
of samples less than 500 (i.e. classes V and II), the REC dif-
ferences of different classifiers are relatively significant. For
the number of samples between 1000 and 1500 (i.e. class IV),
the REC differences of different classifiers are decreased to a
certain extent. When the number of samples increases to
about 5000 (i.e. class V), the REC differences of different
classifiers become relatively small.

(3) For different rock mass classes, the prediction performance
of the stacking ensemble classifier is the best, which shows
that the ensemble learning model has a more robust learning
ability and generalisation ability than single classifiers for
small and imbalanced samples. Additionally, the relevant
analysis in Section 4.4 also shows that the imbalance of
samples impacts the classifier’s prediction effect.

In this section, the SMOTE is used to process the imbalanced
samples, making the number of samples of classes V and II
increased to 1000, while keeping the number of samples of other
classes unchanged. After oversampling the samples of classes V and
II, a relatively balanced training set is obtained. The numbers of
samples of classes II, III, IV and V in the relatively balanced training
set are 1000, 4998, 1286 and 1000, respectively. The test set re-
mains the same as before. Table 11 lists the statistics of the original
imbalanced training set, the relativey balanced training and test
sets. It can be seen that the sample proportion of different rock
masses becomes more balanced after the SMOTE processing.
Especially, the sample proportions of classes Il and V are increased
to 12.07% from 5.73% to 1.64%, respectively.

In this section, all the established classifiers are trained and
tested based on the dataset shown in Table 11. Table 12 presents the
prediction accuracy of different classifiers on the test set with the
imbalanced training set and relatively balanced training set.
Table 13 presents the difference of prediction accuracy between the
training and test sets of different classifiers with imbalanced
training set and relatively balanced training set. After the SMOTE
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Fig. 14. ROC curves and corresponding AUC values of different classifiers: (a) SVM, (b) KNN, (c) RF, (d) GBDT, (e) DT, (f) LR, (g) MLP, and (h) Stacking.
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Table 9
Micro-average and macro-average AUC values of different classifiers.
Classifier Micro-average AUC Macro-average AUC Difference
SVM 0.97 0.911 0.059
KNN 0.96 0.903 0.057
RF 0.982 0.968 0.014
GBDT 0.985 0.969 0.016
DT 0.949 0.892 0.057
LR 0.929 0.812 0.117
MLP 0.938 0.853 0.085
Stacking 0.989 0.98 0.009
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Fig. 15. Corresponding relationship between the prediction accuracy of each classifier

on training and test sets.

Table 10
Statistics of the prediction accuracy on training and test sets.

Classifier Prediction accuracy on Prediction accuracy on Agrain—Atest Atest/Atrain

training set, Again (%)  test set, Atest (%)

SVM 97.9 89 8.9 0.91
KNN 99.3 87.7 11.6 0.88
RF 98.7 90.7 8 0.92
GBDT 99.8 923 7.5 0.92
DT 93.9 87.1 6.8 0.93
LR 80.2 78.9 1.3 0.98
MLP 85.2 813 3.9 0.95
Stacking 99.9 93.1 6.8 0.93
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Fig. 17. Relationship between the REC value of each classifier and the number of
training samples.

Table 11
Statistics of original imbalanced training set, relatively balanced training set and test
set.

Rock mass  Imbalanced Relatively Test set
class training set balanced
training set
Number Proportion Number Proportion Number Proportion
(%) (%) (%)
Il 389 5.73 1000 12.07 42 5.57
il 4998  73.67 4998  60.33 551 73.08
v 1286  18.96 1286  15.52 146 19.36
\% 111 1.64 1000 12.07 15 1.99
Total 6784 100 4786 100 754 100
Table 12

Prediction accuracy of difference classifiers on test set with imbalanced training set
and relatively balanced training set.

Classifier Prediction accuracy (%) Variation (%)

Imbalanced training set Relatively balanced training set

SVM 89 89.4 04
KNN 87.7 894 1.7
RF 90.7 91.9 1.2
GBDT 923 93.6 13
DT 87.1 87.5 0.4
LR 78.9 79.5 0.6
MLP 81.3 82.6 13
Stacking 93.1 94.2 1.1

Table 13
Difference of prediction accuracy between training and test sets of difference clas-
sifiers with imbalanced training set and relatively balanced training set.

Classifier Difference of prediction accuracy (%) Variation (%)

Imbalanced training set Relatively balanced training set

SVM 8.9 8.8 0.1
KNN 11.6 10.6 1

RF 8 6.8 1.2
GBDT 7.5 6.4 1.1
DT 6.8 6.4 04
LR 13 1.1 0.2
MLP 3.9 33 0.6
Stacking 6.8 5.8 1
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Fig. 18. Prediction results of stacking ensemble classifier on the test set based on learning of the relatively balanced training set.

oversampling, the prediction accuracy of each classifier is improved
to a certain extent. Furthermore, the difference in prediction ac-
curacy between the training and test sets is decreased. The results
show that a more balanced training set is beneficial for the learning
process of classifiers. Generally, the classifier with a relatively
balanced training set is prone to have the better fitting effect and
prediction performance.

Taking stacking ensemble classifier as an example, the influ-
ence of sample imbalance on the prediction performance of
samples with different rock mass classes is analysed. Fig. 18 shows
the prediction results of the stacking ensemble classifier on the
test set based on learning of the relatively balanced training set. It
can be seen that after learning the relatively balanced training set,
although one sample belonging to class IV is incorrectly classified
as class V, the prediction effects for minority class samples (i.e.
classes Il and V) are improved, and more samples of these two
classes are correctly classified than before. More specifically,
Fig. 19 shows the evaluation metrics comparison of the stacking
ensemble classifier with the imbalanced training set and relatively
balanced training set. After the process of SMOTE oversampling
for the training set, the REC value of class IV is slightly decreased
from 0.817 to 0.81, and the PRC value of class IV remains un-
changed. However, the values of REC, PRC and F; for rock mass
classes in other cases are improved to some extent. Especially, the
values of REC and F; for minority class samples are increased
significantly, in which the REC values of classes Il and V are
increased from 0.7 to 0.933, and from 0.571 to 0.714, respectively.
Also the F; values of classes Il and V are increased from 0.778 to
0.918, and from 0.727 to 0.833, respectively. The above analysis
shows that the relatively balanced training set can effectively
improve the prediction performance of the stacking ensemble
classifier to a certain extent. To sum up, for the machine models,
the more balanced training set is more favorable.

5.2. Limitations

In our study, the stacking technique of ensemble learning is
utilised to establish the prediction model for rock mass classifica-
tion, and the analysis results show that the stacking ensemble
classifier has stronger robust and generalisation ability than indi-
vidual classifiers. Moreover, through the machine learning algo-
rithm, the mapping relationship between rock mass quality and
critical operational parameters of TBM is established, which pro-
motes the development of real-time prediction of rock mass clas-
sification during the TBM tunnelling process. Therefore, the
methods of this study can be used in cases with similar construc-
tion conditions and TBM machine parameters. However, there are
several limitations in our study, which can be summarised as
follows:

(1) The inherent uncertainties of geological condition such as
the joint/discontinuity properties, ground characteristics and
localised stress states are not considered in the proposed
models.

(2) The influence of the cutterhead wear is not considered in our
models. The wear of the cutterhead will affect the state of
rock breaking to a certain extent, which may influence the
values of the TBM operational parameters under different
rock mass classes.

(3) The machine learning models are established based on the
assumption that the training and prediction samples are
independent and identically distributed. However, different
projects will have some differences in geology condition,
TBM type, construction design requirements, etc., which will
limit the applicability of the proposed classifiers to actual
projects.

6. Conclusions

This paper presents the real-time prediction of rock mass class
based on the stacking ensemble classifier and TBM operation big
data. The stacking ensemble classifiers are constructed using SVM,
KNN, GBDT and RF as the base classifiers and GBDT as the meta-
classifier. Through data processing, 7538 TB M tunnelling cycles
are obtained, and the mean value of the selected data without
outliers in the stable phase is calculated as the input of classifiers.
Based on the tree-based feature selection and removing the highly
correlated features, 10 crucial features are selected to predict the
rock mass classes. The dataset is divided into the training and test
sets in the ratio of 9/1 using simple random sampling. Eight clas-
sifiers are established, including SVM, KNN, GBDT, RF, DT, MLP, LR
and stacking ensemble classifiers. The grid search method is used to
select the optimised hyper-parameters for each classifier. All the
classifiers are trained by the training set, and the prediction per-
formance of each classifier is tested by the test set. The comparison
between the stacking ensemble classifier and other individual
classifiers is analysed. Moreover, the influence of sample imbalance
in the training set is briefly discussed. The specific conclusions are
drawn as follows:

(1) Compared with the individual classifiers, the proposed
stacking ensemble classifier has the better prediction per-
formance, with the values of ACC 1oy, Kappa, PRC total
REC 1ota1, F1_Tota, micro-average and macro-average AUC
equal to 93.1%, 0.823, 0.93, 0.931, 0.928, 0.989 and 0.98,
respectively. Also, the absolute error of the samples for
stacking ensemble classifier are less than 2, among which the
absolute error of most samples is 0, and only a few samples
have the absolute error of 1. Furthermore, except for the KNN
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Fig. 19. Evaluation metrics comparison of stacking ensemble classifier with imbal-
anced training set and relatively balanced training set: (a) PRC, (b) REC, and (c) Fy.

and LR classifiers, the fitting effect of the other six classifiers
can be considered as good.

(2) The stacking technique of ensemble learning can effectively
improve the prediction performance of base classifiers on
rock mass classification. Especially for the minority class, the
prediction effects of stacking ensemble classifier are signifi-
cantly higher than that of individual classifiers. Therefore, it
shows that the ensemble learning model has a more
powerful learning and generalisation ability than individual
classifiers for small and imbalanced samples.

(3) The REC values of different classifiers on the test set posi-
tively correlate with the number of training samples. The
more the samples in a certain class, the higher the REC value

on the test set. With the increasing number of samples, the
REC difference of different classifiers is gradually decreased.
(4) After the SMOTE oversampling for the minority class sam-
ples, the overall prediction effects of each classifier are
improved to a certain extent. The difference in prediction
accuracy between the training and test sets for each classifier
is decreased. Taking stacking ensemble classifier as an
example, after the SMOTE oversampling for the training set,
although the REC value of class 1V is slightly decreased from
0.817 to 0.81, the values of REC and F; for minority class
samples are significantly increased. The results show that the
classifier with a relatively balanced training set is prone to
have the better-fitting effect and prediction performance.

To sum up, the proposed stacking ensemble classifier can be
well used for the real-time prediction of rock mass classification.
However, the sample imbalance is an existing problem, limiting the
prediction effects on the minority class samples. Also, the influence
of geological condition changes and the wear of TBM cutters are not
fully considered. These unsolved problems and the model transfer
learning methods will be further studied in our future work.
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