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ABSTRACT

The node-based smoothed finite element method (NS-FEM) is shortly presented for calculations of the
static and seismic bearing capacities of shallow strip footings. A series of computations has been per-
formed to assess variations in seismic bearing capacity factors with both horizontal and vertical seismic
accelerations. Numerical results obtained agree very well with those using the slip-line method,
revealing that the magnitude of the seismic bearing capacity is highly dependent upon the combinations
of various directions of both components of the seismic acceleration. An upward vertical seismic ac-
celeration reduces the seismic bearing capacity compared to the downward vertical seismic acceleration
in calculations. In addition, particular emphasis is placed on a separate estimation of the effects of soil
and superstructure inertia on each seismic bearing capacity component. While the effect of inertia forces
arising in the soil on the seismic bearing capacity is non-trivial, and the superstructure inertia is the
major contributor to reductions in the seismic bearing capacity. Both tables and charts are given for
practical application to the seismic design of the foundations.

© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

The bearing capacity of strip footings under static conditions has
been extensively studied by Prandtl (1920), Terzaghi (1943),
Meyerhof (1951), Hansen (1970), Vesic (1973), and many others. In
recent years, the effect of horizontal earthquake body forces on
shallow foundation bearing capacity is an important topic of
research in geotechnical engineering. The first studies were
describing the seismic bearing capacity of shallow foundations
concerning the works of Meyerhof (1953, 1963), where the seismic
forces were applied at the structure only as inclined pseudo-static
loads. However, in these solutions, the inertia of the soil mass is
not included. In the presence of seismic forces, the available theo-
retical researches are mainly based on (i) the limit equilibrium
method; (ii) the upper and lower bound limit analysis; and (iii) the
method of stress characteristics (slip-line method).
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Using the limit equilibrium method, Sarma and lossifelis (1990)
determined the seismic bearing capacity of strip footings consid-
ering the failure mechanisms of three zones as the unsymmetrical
active wedge, internal shear zone and passive wedge. Later on,
Budhu and Al-Karni (1993) investigated an asymmetrical failure
surface for seismic analysis of shallow foundations with similar
three zones as that Vesic (1973) considered. Choudhury and Subba
Rao (2005) considered two mechanisms, log-spiral curve, and
planar active wedge and passive wedge, to calculate the seismic
force on the structure and soil below. Recently, Saha and Ghosh
(2015) investigated the seismic bearing capacity of strip footings
using pseudo-dynamic coupled with the limit equilibrium method.

Based on the upper bound theorem, Richards et al. (1993) used
two triangular planar wedges in the failure surface, each on the
active and passive zones, to investigate the effect of soil and su-
perstructure inertia on the seismic bearing capacity of strip foot-
ings. Dormieux and Pecker (1995) and Soubra (1999) investigated
the seismic bearing capacity of strip foundation on the horizontal
using pseudo-static method. Ghosh (2008) and Saha et al. (2018)
used a pseudo-dynamic approach to explore the effect of shear
and primary wave velocities and amplification factor on the seismic
bearing capacity of strip footings using the upper bound limit
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analysis. More recently, Kalouzari et al. (2019) investigated the
seismic bearing capacity of strip foundations in the vicinity of
slopes using the lower bound finite element method (FEM) in
conjunction with the linear programming technique.

Using the method of characteristics, Kumar and Mohan Rao
(2003) and Kumar (2003) presented the variation of the seismic
bearing capacity with changes in horizontal seismic coefficients for
different slope inclinations. Although seismic bearing factors
reduce as the horizontal seismic acceleration increases, the evolu-
tion of characteristics line networks depends on soil and super-
structure inertia in a complex manner. Recently, Cascone and
Casablanca (2016) used the method of characteristics to compute
the bearing capacity factors of strip footings and evolutions of
failure patterns with the horizontal seismic acceleration for each
seismic case. The effects of the soil inertia force and the super-
structure inertia with variation in horizontal seismic coefficients
are distinguished in the analysis.

In recent decades, the FEM plays an important role in designing
many practical engineering structural systems. Due to the
simplicity, the 3-node linear triangular elements (FEM-T3) are
popular. One of the notable drawbacks of FEM-T3 elements is the
volumetric locking phenomenon when the mesh becomes highly
distorted. In the standard FEM, the stiffness matrix is used to map
basis function derivatives from the reference element to the natural
element in the mesh. When distorted meshes are used in the FEM,
the Jacobian becomes ill-conditioned, affecting the accuracy of the
method.

To overcome this, Liu et al. (2007a, b, 20094, b) have combined
the strain smoothing technique used in meshfree methods (Chen
et al., 2001) into the FEM to formulate a series of smoothed FEMs
used in the field of solid mechanics. The basic idea of strain
smoothing based on the domain integration on the cells becomes
line integration along the boundary of the cell. In the node-based
smoothed FEM (NS-FEM), the strain smoothing technique over
the cells associated with nodes is computed directly using only the
shape functions themselves (not their derivatives), which elimi-
nates the volumetric locking phenomenon. As a result, no coordi-
nate transformation is required in the NS-FEM, and the problem
domain can be discretized in highly distorted meshes. NS-FEM has
been successfully applied to several fields, including structural
mechanics, solid mechanics, acoustic analysis, and electromagnetic
problems.

Together with NS-FEM, other smoothed FEM have been applied
to computation of the collapse loads; and numerical results reveal
that the smoothed FEMs are naturally “immune” from the volu-
metric locking. In particular, Le et al. (2010) presented an upper
bound procedure using cell-based smoothed FEM, arriving at con-
clusions that the use of the strain smoothing technique can over-
come the volumetric locking and provide accurate results of the
collapse loads with minimal computational effort. In addition,
Nguyen-Xuan et al. (2012) stated that combination of the node-
based FEM and primal-dual algorithm serves as a better means of
calculating the limit and shakedown loads of structures when
compared with the available solutions. Application of the
smoothing technique over the edge of triangle elements to the ki-
nematic limit analysis was presented by Le et al. (2013), in which
the volume locking is removed for the plane stress and strain
problems when using only one Gauss point for each smoothing
domain. More recently, the cell-based smoothed FEM is applied to
limit and shakedown analyses of structures (Ho et al., 2019) and the
collapse of soil (Le, 2017).

Recently, the application of the smoothed FEM to the upper
bound limit analysis in geotechnical problems has been developed
by Nguyen et al. (2011), Nguyen (2020, 2021a, b), Vo-Minh et al.
(2017, 2018), Vo-Minh (2020), Vo-Minh and Nguyen-Son (2021),

and Nguyen and Vo-Minh (2022). The Mohr-Coulomb yield crite-
rion can be formed in a second-order cone programming (SOCP)
using the NS-FEM in geomechanics problems. The problem can
then be solved by the primal-dual interior-point method imple-
mented in the MOSEK software package (MOSEK ApS, 2009). This
algorithm was proved to be a very effective optimization tool for
limit analysis in geotechnical engineering. In order to assess the
effects of the earthquake on the stability, the so-called pseudo-
static approach has been widely used because of its simplicity to be
implemented in the numerical procedure and its ability to produce
acceptable solutions to plasticity problems in geotechnical engi-
neering under seismic conditions (Ausilio et al., 2000; Sahoo and
Kumar, 2012, 2014; Chakraborty and Kumar, 2013; Krabbenhoft,
2018). Seismic effects on the bearing capacity are represented by
considering relevant inertia forces which are proportional to
seismic accelerations in both the vertical and horizontal directions.
Installing these forces in the simulations is straightforward as noted
in Ausilio et al. (2000), Sahoo and Kumar (2012, 2014), Chakraborty
and Kumar (2013) and Krabbenhoft (2018), and is further discussed
in the following section for each seismic bearing capacity problem.
The dynamic problems turn now to solve the standard static
problems which are augmented by inertial forces due to the soil
weight, surcharge and the structure.

It is considered important that the effects of cyclic loads cannot
be explored using limit analysis, thus the shakedown analysis
(Nguyen-Xuan et al., 2012) or the dynamic analysis (Wang et al.,
20214, b) should be performed to further understand the bearing
capacity of soils under cyclic loads. One of the main features of soil
under cyclic loading is the accumulation of strain or deformation
during a great number of cycles that result in significant reduction
of behaviors (Abadie, 2015; Houlsby et al., 2017; Abadie et al., 2019).
Under cyclic loads and seismic forces, due to rapid changes in
shaking direction and amplitude during earthquake, the available
soil shear strength under a foundation may repeatedly and
momentarily be attained, inducing several instantaneous failures.
In addition, due to the reduction of footing—soil contact area, the
accumulated permanent rotation of the foundation reduces the
bearing capacity of strip footings. The seismic loads can be repre-
sented by pseudo-static loads using corrective parameters, which
are further discussed in the analysis by changing the direction of
seismic acceleration.

In this paper, we present the upper bound limit analysis using
the NS-FEM to estimate the seismic bearing capacity factors of strip
footings based on the pseudo-static approach. In general,
increasing the horizontal seismic acceleration of inertia force and
superstructure inertia reduces the seismic bearing capacity factors
of strip footings. The corrective coefficients are presented to point
out the reduction in the seismic bearing capacity factors due to the
effects of soil and superstructure inertia. The numerical results
obtained by the NS-FEM are compared with those from Cascone
and Casablanca (2016) and previous studies to verify the pro-
posed method’s accuracy and reliability.

The paper is arranged as follows. Section 2 describes a brief re-
view of the NS-FEM for the upper bound limit analysis in the geo-
mechanical problems. In Section 3, several numerical examples are
performed and discussed to demonstrate the effectiveness of the
NS-FEM. Finally, some concluding remarks are made in Section 4.

2. The NS-FEM for upper bound limit analysis of the
geomechanical problems

2.1. A brief overview of the NS-FEM

Unlike the traditional FEM, the numerical integration domains
of the NS-FEM are based on polygonal cells related to the nodes
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rather than the elements. The problem domain @ is divided into
Ns smoothing cells formulated as @ = S | Q4 and Qf N0} = & (i
# j), where N; is the total number of field nodes in the entire
problem domain. The polygonal cell, }, called a nodal smoothing
domain associated with the node k, is constructed by connecting
the mid-edge points sequentially to the centroid of surrounding
triangular elements, as shown in Fig. 1. The smoothing domain
boundary Qj, is labeled as I', and the union of all Q}, forms precisely
the whole problem Q.

The smoothed strain on the cell Q}, associated with the node k
using the NS-FEM can be calculated by

& = > By(xs)dy (1)

keN®

where N® is the set containing nodes directly connected to node k,
d; is the nodal displacement vector, and the smoothed strain
gradient matrix By (xs) on the domain ©}, can be determined as

i bie(xs) 0

By (xs) = 9 ?ky (Xs) (2)
bky (Xs)  brx(xs)

- 1

bxs) = 5 [m N0 AT (= x.) 3)
k Ty

where A(S> Jos dQ is the area of the cell Qf, Ni(x) is the FEM shape

functlon for the node k, and n‘®)(x) is the normal outward vector on
the boundary I ks). The number of Gauss points for line integration
(Eq.(3)) depends on the degree of Ny. If Ny is a linear shape function,
one Gauss point is sufficient for line integration along each segment
of the boundary Tf) of ©3, Eq. (3) can be transformed to its alge-
braic form:

N M
Bin(xs) = ( P> N ()Gl (h = x.y) (4)
1 k=1

where M is the total number of the boundary segment Iy (s), ;and xGP
is the Gauss point of the boundary segment F (s) , which has length
l(S and outward unit normal n}).

2.2. The upper bound limit analysis for plane strain geotechnical
problems using the NS-FEM

A two-dimensional (2D) problem domain Q bounded by a
continuous boundary S;US¢ = S and S;NS = & is considered.
The rigid-perfectly plastic body is subjected to external traction
load g on S; and body force f on the boundary S, prescribed by the
displacement velocity vector u. The strain rate can be expressed by

&= |ixx &y Ty| = Vi (5)

In the upper bound theorem, for a kinematically admissible
displacement field uie U, where U is a space of kinematically ad-
missible velocity field, we have

Wine(o, 1) = o Wext(1) (6)

where o is the limit load multiplier of the external traction load g
and body force f.
The external work can be determined as

Wexe (1) = / fudQ + / guds %)
J .

The internal plastic dissipation of the 2D domain Q can be
written as

Wine(0. 1)) = [Dp(i)dQ = [ oedQ (8)
[P = |

in which the space of kinematically admissible velocity field U is
denoted by

U - {Ile (H'(@)2 4 = don s,»,} ©)

Defining C = {1le U|Wex:(11) = 1}, the limit analysis problem is
based on the kinematical theorem to determine the collapse
multiplier a* yielding the following optimization problem:

at = max{ 30e Y| Wing(0,11) = aWexe (1), Vi U} = minDy (1)
Ue

(11 =0 (0nSy), Wexc(t1) = 1)
(10)

For plane strain geotechnical problems, Makrodimopoulos and
Martin (2007) proposed the internal plastic dissipation equation
as follows:

) = ccos¢/\/<2ix—5§,y)2
2

where ¢ and ¢ are the cohesion and friction angle of the soil,
respectively.

For an associated flow rule, the plastic strain rate vector is given
by

+ (Tay)2de (11)

0Y(0) (12)

oo

E=U

centre o‘f triangle

mid-edge-
mid-edge-,

node i n k

~~mid-edge

node k

Fig. 1. The smoothing cells associated with the nodes in the NS-FEM.
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where p is a non-negative plastic multiplier, and the Mohr—
Coulomb yield function y(g) can be expressed in the form of
stress components as

Y(o) = \/(Gxx - G)yyz + 413, + (0xx + yy)sin ¢ — 2c cos ¢

(13)

Using the NS-FEM, the problem is discretized by Ne triangular
elements and the total number of nodes is Ny. The smoothed strain
rate ¢ can be calculated from Eq. (1). The upper bound limit analysis
for plane strain geomechanics problems using the Mohr—Coulomb
failure criterion can be written as

Nn

ot = min(ZcAi cos d)\/(fsix - éj/y)2 + (&;y)z _ ngt(u)>
i=1
Nn
= min < > " cAiB; cosp — Wi (1) )
i=1
(14a)
subject to
= 0(onSy)
Wexe(1) = 1

2
(i=1,2,...Nn)

V() + ()

where ot is the collapse load (i.e. in this study, a* is either the static
or seismic bearing capacity factor), and 4; is the area of node i. The
last constraint in Eq. (14b) is expressed in the conic form. As a
result, the conic interior-point optimizer of the academic MOSEK
package (MOSEK ApS, 2009) is used for solving this problem. The
upper bound using the NS-FEM has been written using the Matlab
language. The computations were performed on a Dell Optiplex 990
(Intel Core™ i5, 1.6 GHz CPU, 8 GB RAM) in a Windows XP
environment.

ti >
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3. Computation of static and seismic bearing capacity factors

Under seismic conditions, the three bearing capacity factors N¢g,
Nge and Nyg were solved independently. The seismic bearing ca-
pacity factors of strip footings were investigated separately for the
effect of soil inertia forces (N, Nip and Nj¢) and superstructure
inertia (Ng, Ngi and N7%) using the upper bound limit analysis
based on NS-FEM. The numerical computation of the factors
Ngg, Ngp and Njp and N, Ngi and N3 are compared with those
results obtained using the method of characteristics reported by
Cascone and Casablanca (2016) and others available in literature.

3.1. Effect of soil inertia on seismic bearing capacity factors

Based on the expression for the bearing capacity proposed by
Terzaghi (1943), the ultimate load of strip footings under seismic
conditions that only consider the inertia forces arising in the soil is
conveniently expressed as follows:

Quiee = CNeg + qNge + %'YBNE/E (15)
where the seismic bearing capacity factors Ng, Nop and Nip only
account for the effect of soil inertia.

Fig. 2 illustrates the geometry and soil parameters to investigate
the effect of soil inertia on the bearing capacity factors of strip
footings. Due to the effects of an earthquake, the whole domain is
considered, which should be large enough to eliminate the
boundary effect on the solution, as shown in Fig. 2a—c. The typical
finite element mesh and displacement conditions for the upper
bound limit analysis of shallow strip foundations using NS-FEM are
illustrated in Fig. 2d. The soil is described as a Mohr-Coulomb
material with the cohesion c, unit weight y and surcharge load q.
The seismic acceleration coefficient is denoted as ky and ky in the
horizontal and vertical directions, respectively, based on the
pseudo-static approach. The horizontal displacements are free (u =
0) or fixed (u = 0) along the ground surface to describe the smooth
or rough interface condition between the soil and the strip footings.

Without the soil weight, the seismic bearing capacity factor N7,
is analogous to the static factor N, closed-form solution reported by
Prandtl (1920). Later on, Reissner (1924) established the analytical

S s
(a) Neg (b) Nge (1-k)g
XXX PXXIXIXIXIXIX XX
20 BRI
XXX DSIIKIXXDXPII XX
XXX XXX
200 000000
SO0 OO OO OO0
XXX DX DX XXX XX XX XX XX DX XXX
P Smooth interface:
S
(€)Ne (d) u # 0, v=constant
4 | o
wn
< I
A
4 n
< I
A A A A A A A A

L =20B-268B

Fig. 2. The geometry and soil properties of the problem due to soil inertia.
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(b)

(c)

(d

Plastic dissipation distribution for the N7, problem
for ¢=30°, kv=0, and knh = 0-0.5
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- k=0
kn=0.1
&
ky=0.3
/.
k,=0.5
/'3

Characteristics line networks reported by Cascone and
Casablanca (2016) for the N7, problem for ¢ =30°, kv =0,

and kn=0-0.5

Fig. 3. Comparisons of plastic dissipation distribution with the characteristics line networks for the NZE problem for ¢ = 30°, and k, = 0: (a) ky = 0, (b) k, = 0.1, () ky, = 0.3, and (d)

kn = 0.5.

formulation for the static bearing capacity N, based on the Prandtl
failure mechanism.

In order to calculate the seismic term NZE, the typical mesh
illustrated in Fig. 2b and the soil parameters ¢ = 0 kPa, g = 1 kPa,
and v = 0 kN/m? are considered. The upper bound limit analysis for
plane strain problems using NS-FEM can be determined by mini-
mizing the collapse load Ng; = o = min( ) )

Fig. 3 shows a comparison of plastic dissipation distribution
using NS-FEM with that obtained by the characteristics line net-
works reported by Cascone and Casablanca (2016) in the case of
¢ = 30°, ky = 0, and k;, = 0—0.5. The power dissipations based on
the NS-FEM are almost identical with those using the slip-line
method from Cascone and Casablanca (2016). Under static condi-
tions, the failure mechanism is symmetrical. Under seismic condi-
tions, the failure pattern becomes asymmetrical. For increasing kp,
the larger inertia force in the soil mass must be balanced, and the
failure zone becomes longer.

To show the efficiency of the seismic bearing capacity factors
using NS-FEM, we consider the computational cost based on the
number of variables and CPU times for the terms Nz and Njg
(smooth interface) in the case of ¢ = 30°, k, = 0.3, and k, = 0. The
reported CPU times refer to the time spent on the interior-point
iterations for solving the seismic bearing capacity factors. The

Table 1

factors N5 and Nf{E, the number of variables Ny, and the CPU time
obtained by the finite element analysis using triangular elements
(FEM-T3), the edge-based smoothed FEM (ES-FEM-T3), and the NS-
FEM using triangular elements (NS-FEM-T3) are summarized in
Tables 1 and 2.

The convergence rate archived by the present method (NS-FEM)
is compared with those obtained by FEM-T3 and ES-FEM-T3, as
shown in Fig. 4. Although the coarse mesh is used, the seismic
bearing capacity factors NZE and N;E using the NS-FEM are more
convergent than other existing methods such as FEM and ES-FEM
using triangle elements. In addition, with the same number of el-
ements, the total number of NS-FEM variables is smaller than those
of FEM-T3 and ES-FEM-T3. Regarding the maximum number of
variables (Ny,r = 40,046), according to the CPU time for solving the
optimization problem using NS-FEM based on the interior-point
algorithm, very fast convergence is attained using the NS-FEM
limit analysis (i.e. the CPU time of 5.8 s). These comparisons
prove the effectiveness and rapid convergence of the NS-FEM when
using the MOSEK optimizer to solve large sparse SOCP problems.

We conducted several simulations for the case of ¢ = 0°, in which
the Mohr—Coulomb condition reduces to the unbonded Tresca yield
criterion for plane strain problems, as noted in Tin-Loi and Ngo
(2003), Vicente da Silva and Antao (2007) and Ciria et al. (2008).
The numerical results are given in Table 3 for the cases of k, = 0—0.5

Comparisons of seismic bearing capacity factor NZE using the NS-FEM and other solutions (¢ = 30°, k,= 0.3 and k,= 0, smooth interface).

Ne FEM-T3 ES-FEM-T3 Presnet method (NS-FEM)
Nvyar CPU time (s) Ny Nyar CPU time (s) Ng Nyar CPU time (s) Ng

320 1331 0.39 29.3442 1883 0.36 25.764 926 0.34 18.1526
1280 5219 0.47 21.7552 7283 0.92 20.1364 3446 0.59 16.1102
2880 11,667 1.25 19.4753 16203 3.39 18.4169 7566 1.01 15.6655
5120 20,675 1.95 18.325 28,643 4,75 17.5217 13,286 1.77 15.4055
8000 32,243 3.05 17.6708 44,603 11.25 16.9861 20,606 2.86 15.3485
11,520 46,371 5.06 17.1648 64,083 19.73 16.618 29,526 4.08 15.0919

Note: Nyar = 2Ny, + 3N, for FEM-T3, Nyar = 2N;, + 3Neq for ES-FEM-T3, Ny, = 5N, for NS-FEM, where Nyar, Np, Ne, and Neq are the numbers of variables, nodes, triangular

elements, and triangular edges in the problems, respectively.
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Table 2

Comparisons of seismic bearing capacity factor N using the NS-FEM and other solutions (¢ = 30°, kn = 0.3, ky = 0, smooth interface).

Ne FEM-T3 ES-FEM-T3 Presnet method (NS-FEM)
Nyar CPU time (s) Ny Nyar CPU time (s) N3 Nvar CPU time (s) Ny
320 1331 0.38 19.2639 1883 0.47 17.4831 926 0.39 8.2468
720 2955 0.45 14.7098 4143 0.75 13.6932 1986 0.45 7.7182
1280 5219 0.52 12.7074 7283 1.19 11.9484 3446 0.58 7.1805
2000 8123 0.77 11.4794 11,303 225 10.8873 5306 0.7 7.0786
2880 11,667 1.55 10.5981 16,203 3.8 10.1541 7566 0.98 6.9613
3920 15,851 1.69 10.0242 21,983 6.09 9.6542 10,226 1.31 6.8742
5120 20,675 2.39 9.6112 28,643 6.28 9.2856 13,286 1.63 6.86
6480 26,139 294 9.2687 36,183 9.75 8.9866 16,746 22 6.8344
8000 32,243 3.63 9.0161 44,603 12.63 8.7729 20,606 2.83 6.8281
9680 38,987 4.36 8.8101 53,903 17.39 8.5738 24,866 3.38 6.8277
11,520 46,371 5.58 8.6327 64,083 24.16 8.4192 29,526 3.7 6.8188
15,680 63,059 9.06 8.3678 87,083 30.27 8.1231 40,046 5.8 6.8028
g -@-FEM-T3 A @ FEM-T3
28} -¥-ES-FEM-T3 25 —¥-ES-FEM-T3
26k -B-NS-FEM-T3 -8-NS-FEM-T3
¥
z

0 2000 4000 6000 8000 10000 12000

Number of elements
(@

0 4000 8000 12000 16000
Number of elements
(b)

Fig. 4. The convergence rate of seismic bearing capacity factors in the case of ¢ = 30°, ky = 0.3 and k, = 0: (a) NZE, and (b) NiE (smooth interface).

Table 3
The seismic bearing capacity factor N for the case of ¢ = 0°, k, = 0—0.5, and k, = 0.

Number of element N

kh:O I<h:0.1 kh:0.2 kh:O.3

kh =04 kh =05

160 5.93 5.92 5.47 4.83 4.26 3.75
640 543 5.25 4.63 3.96 3.36 2.88
1440 5.33 5.1 4.44 3.68 3.05 2.58
2560 5.28 5.02 4.37 3.55 29 243
4000 525 497 4.33 348 2.81 2.34
5760 524 494 43 3.44 2.75 2.28
7840 522 492 4.28 341 271 2.24
10,240 5.21 4.9 4.26 3.39 2.68 2.2

12,960 52 4.88 4.25 3.37 2.65 2.18
16,000 52 4.87 4.24 3.36 2.64 2.16

and ky = 0. In this case, the stable convergence of solutions and the
accurate values of collapse loads as shown in Fig. 5 prove that the
numerical approach is naturally “immune” from the volumetric
locking. Readers are referred to Meng et al. (2020) who stated that
the application of NS-FEM and SOCP to elastoplastic analysis of static
problems is free from the volumetric locking while using the low-
order mixed element. In that study, the well-known “overly stiff”
phenomenon was addressed by varying the Poisson’s ratio from 0.4
to 0.49999, while the solution still becomes stable and accurate. In
addition, the special arrangement of linear elements (Fig. 2), in
which four elements form a rectangle domain with the central node
in the intersection of the diagonals, can eliminate the locking phe-
nomenon as noted in Vicente da Silva and Antao (2007). Readers can
refer to Sloan and Kleeman (1995) who reported that the volume

locking can be removed by increasing the ratio between the number
of compatibility conditions and the number of degrees of freedom
used in the discretization in the optimization problem.

The seismic bearing capacity factor NZE calculated when the
friction angle ¢ ranges from 15° to 45°, and the value of ky, varies
from O to 0.8 is listed in Table 4. The obtained results agree well
with those from the characteristics method given by Cascone and
Casablanca (2016), and the errors are within 5%. The variation of
N;E with the horizontal earthquake acceleration coefficient ky is
shown in Fig. 6a. The computational results indicate that for given
values of ¢, the bearing capacity factor N} decreases continuously
with an increasing kp. Fig. 6b shows the effect of vertical seismic
acceleration coefficient k, on the bearing capacity factor Ngg- An
upward vertical seismic acceleration (ky, > 0) leads to a reduction in
the magnitude of Nj. In contrast, the seismic term N;p increases
with vertical seismic acceleration in the downward direction,
which means that a negative value of ky leads to an increase in the
vertical component of the surcharge.

Unlike Ng; andNp, the bearing capacity factor N;; mainly de-
pends on the roughness of the soil—foundation interaction inter-
face. To calculate the seismic term N«S/E' the typical mesh illustrated
in Fig. 2c and the soil parameters ¢ = 0 kPa, ¢ = 0 kPa, and vy = 1 kN/

m?> are considered. The plane strain optimization problem using

NS-FEM can be determined as N = a* = min( — W3 (1) ) The
lateral displacement of nodes in contact with the footing is free or
fixed to describe smooth or rough interface conditions between the
footing and the soil, respectively.

The computed values of bearing capacity factor NiE of strip
footing for ¢ = 15°—45°, k;, = 0—0.8 and k, = 0 using NS-FEM are
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Fig. 5. Calculation of (a) static and (b) seismic bearing capacity factors for ¢ = 0°, k;, = 0—0.5 and k, = 0.
Table4 ) ) ) values of Ny for the rough interface are almost twice those for the
Seismic bearing capacity factor Ng; of strip footing (k, = 0). smooth interface. Under seismic conditions, the bearing capacity
kn NS factor NE/E of strip footing for smooth and rough footings agree well
—15 $—200 $—25 $—30° ¢—35 ¢_40° ¢ 45 with those r'epprted by Cascone and Casablanca (2016), and the
0 4.02 6.52 10.82 1863 3343 6376 13495 errors are within 5%.
005 387 634 1057 1821 3291 6294 13275 Fig. 7c and d shows the varlatllon in N3g \{Vlth various ky/kp ratios
01 371 6.07 10.18 17.71 32,07 61.7 129.22 for the case of ¢4 = 30°: The seismic begrmg capac1ty factorll\.liE
0.15 3.49 5.82 9.85 17.15 31.33 60.34  126.58 reduces with an increasing upward vertical acceleration (positive
02 319 5.48 9.41 1653 3026 5889  125.14 values of ky/kn). In contrast, the factor Nj increases continuously
025 274 >.07 8.92 1584 2937 57.23 12142 with the vertical seismic acceleration in the downward direction
03 - 458 8.36 1509 2815 556 117.91 olke — 1
035 - 3.83 7.7 1427 274 5369 11514 (kv/kn = - )- S ) )
04 - - 6.94 13.48 25.85 5193 1104 To consider the effect of soil inertia on the bearing capacity fac-
045 — - 5.86 1234 2448 4974  107.54 tors of strip footings, the corrective coefficients eS, = N5/
05 - - - 1116 2298 479  103.68 Ng and e, = N5./N, are defined as the ratios of the factors N5, and
055 — - - 9.63 2138 4514 10143 1 YE " CqETY S gE ™.
06— B B - loa1 4348 9817 N3 under seismic condition to the factors Ng and Ny under static
065 — _ _ _ 17.4 4024 9477 c_ondition, respectively. Fig. 8a—c presents the variations of correc-
07 - — — - 14.75 37.84 9121 tive coefficients with the change of the ky/ky ratio in the case of
075 - - - - - 3497 8749 ¢ = 30°. The corrective coefficients e and e}, reduce with an
08 - - - - - 315 8358 g v

summarized in Table 5 (for smooth and rough footings) and plotted
in Fig. 7. Under static condition (ky = 0), the values of bearing ca-
pacity factor N;E of strip footing are in good agreement with those
from the following theories: (i) Cascone and Casablanca (2016)
using the method of characteristics; (ii) Martin (2005) calculating
the exact vertical bearing capacity of strip footing on Mohr—
Coulomb soil using the method of characteristics by ABC com-
puter program; and (iii) Hjiaj et al. (2005) using the lower and
upper bound limit analysis in combination with the FEM and
nonlinear programming. According to Meyerhof (1963), the static

The present results: NS-FEM

3001
-------- Cascone & Casablanca (2016)
100
e = 45°
) -““‘%_\\.‘_ ¢ =40°
$ """-\

0.8

increasing upward vertical acceleration (positive values of ky/kp). In
contrast, the factors ef]E and eflE increase continuously with vertical
seismic acceleration in the downward direction (ky/ky, = —1).

3.2. Effect of superstructure inertia on seismic bearing capacity
factors

The ultimate load of strip footings under seismic conditions that
only consider superstructure inertia is expressed as the following
formulation:

25r
~—ky/kn=-1
20t
®
"ree—ky/kn = -0.5
L o i S ~— ky/kn=-0.33
¢ k/kn=033 T
10k kifkn=1——% “B— /K =05
5 L
0 . , . . , ,
0 0.1 0.2 0.3 0.4 0.5 0.6
Kn
(b)

Fig. 6. Seismic bearing capacity factor Nf;E: (a) Effect of horizontal acceleration; and (b) Effect of vertical acceleration for the case of ¢ = 30°.
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Table 5

Seismic bearing capacity factor N3e of strip footing (k, = 0).
kn N; ¢ (smooth interface) N;¢ (rough interface)

p=15" $=20° ¢=25 $=30° $=35 ¢=40° ¢=45 $=15 $=20° ¢=25 $=30° $=35 $=40° ¢=45
0 0.79 1.65 3.54 7.68 17.84 43.65 117.73 1.27 291 6.53 14.97 35.37 86.1 238.77
0.05 0.74 1.63 3.52 7.66 17.25 41.42 114.67 1.22 2.84 6.2 14.23 34.67 83.45 230.57
0.1 0.7 1.59 3.47 7.59 17.14 40.77 112.21 1.12 2.66 5.97 13.45 32.04 81.2 223.19
0.15 0.63 151 3.38 7.47 16.96 39.52 109.76 0.98 2.5 5.65 12.85 30.91 78.57 216.18
0.2 0.5 1.39 3.25 731 16.69 38.98 106.62 0.79 2.25 5.31 12.31 29.45 74.89 210.69
0.25 0.32 1.24 3.08 7.08 16.41 38.38 104.46 0.45 1.98 493 11.67 28.03 71.91 203.87
0.3 - 1.02 2.85 6.8 16.15 37.7 99.75 - 1.64 448 10.98 26.83 69.06 197.45
0.35 - 0.67 2.55 6.45 15.59 36.95 94.48 — 1.12 3.96 10.21 25.51 66.53 190.34
0.4 - - 2.21 6.05 15.07 36.12 91.17 - — 3.33 9.34 24.08 63.84 183.89
0.45 - - 1.54 5.47 14.37 35.19 88.32 - - 248 8.32 22.52 60.94 176.45
0.5 - - - 4.76 13.45 34.16 83.27 - - — 7.18 20.8 57.84 169.12
0.55 - - - 3.78 12.48 32.99 79.33 - - - 5.64 18.86 54.48 160.78
0.6 — — — — 11.24 31.62 76.65 — — — — 16.61 50.85 152.89
0.65 - - - — 9.55 29.91 73.76 - - — - 13.85 46.86 144.56
0.7 - - - - 6.38 26.73 70.65 - - - - 9.71 42.42 13543
0.75 — — — — — 24.09 67.24 — — — — — 37.34 126.73
0.8 — — - — - 20.69 63.38 - — — - - 31.32 116.78
1 analysis of shallow strip foundations using NS-FEM are illustrated

ss ss ss ss s e

Quiee = CNeg + ANge + 5 VBN (16)  in Fig. 9d.

where the three terms N, Ni;: and N7; only account for the effect
of superstructure inertia on the seismic bearing capacity.

Fig. 9 illustrates the geometry and soil parameters to investigate
the effect of superstructure inertia on the bearing capacity factors
of strip footings. Due to the effects of seismic force, the rectangular
domain is considered large enough to eliminate the boundary effect
on the solution, as shown in Fig. 9a—c. The typical finite element
mesh and displacement conditions for the upper bound limit

The present results: NS-FEM
Cascone & Casablanca (2016)
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Figs. 10—12 show the power dissipation and displacement fields
for strip footing problems using NS-FEM compared with the char-
acteristics line networks reported by Cascone and Casablanca
(2016) for ¢ = 30°, ky = 0, and ky = 0—0.5. Under static condi-
tions (ky = 0), the failure mechanism of shallow strip foundations is
symmetrical, as shown in Figs. 10a, 11a and 12a. Under seismic
conditions (ky > 0), the failure mechanisms become asymmetrical
and identical to that of the characteristic line networks using the
slip-line method from Cascone and Casablanca (2016). With an

3001 The present results: NS-FEM

200 —————————=xzziz Cascone & Casablanca (2016)
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. ~‘:‘\\\“M\h¢_4oo
X3

2 o
10__\“\ $=35

Se—¢ = 30°

ol 1 . e == kulkn = -0.33
< gt /;\ Kk = 0.33

6r Kk = 1 ™~ Kilkn = 0.5

4F

2 -

0 01 02 03 04 05 06
Kn
()

Fig. 7. Seismic bearing capacity factor Nig:(a) Effect of horizontal acceleration for the smooth foundation; (b) Effect of horizontal acceleration for the rough foundation; (c) Effect of
vertical acceleration for the smooth foundation (¢ = 30°); and (d) Effect of vertical acceleration for the rough foundation (¢ = 30°).
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Fig. 8. Effect of k, on the corrective coefficients for the case of ¢ = 30°: (a) eZE, and (b) eiE for smooth foundation; and (c) e;E for rough foundation.
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Fig. 9. The geometry and soil properties of the problem due to superstructure inertia.

w - ‘L. 7 kis0

Characteristics line networks reported by Cascone and Casablanca
(2016) for the N3 problem for ¢=30°, kv= 0, and kn = 0-0.5

Plastic dissipation distribution for the N problem
for ¢=30°, kv =0, and kn = 0-0.5

Fig. 10. Comparisons of plastic dissipation distribution with the characteristics line networks for the N& problem for ¢ = 30°, k, = 0: (a) kn = 0, (b) ky = 0.1, (c) ky = 0.3, and (d)
kn = 0.5.
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(d)
Displacement field for the N3 problem with smooth interface Characteristics line networks reported by Cascone and Casablanca
for ¢=30°, kv =0, and kn = 0-0.5 (2016) for the N3;, problem for ¢=30°, kv =0, and &y = 0-0.5 (the
? ? ' Hill’s failure mechanism)

Fig. 11. Comparisons of displacement fields with the Hill’s failure mechanism for the N;SE problem with smooth interface for ¢ = 30° and k, = 0: (a) k, = 0, (b) ky = 0.1, (c) kn, = 0.3,
and (d) ky = 0.5.

A B K,=0

a)

4

)

(
(®

T—

(d
Displacement field for the N3, problem with rough interface Characteristics line networks reported by Cascone and Casablanca (2016)
for ¢=30°, kv=0, and kn = 0-0.5 for the N, problem for ¢=30°, kv = 0, and kn = 0-0.5 (the Prandtl’s
failure mechanism)

Fig. 12. Comparisons of displacement fields with the Prandtl’s failure mechanism for the N:SE problem with smooth interface for ¢ = 30° and k, = 0: (a) k, = 0, (b) k, = 0.1, (c)
kn = 0.3, and (d) k, = 0.5.
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Table 6

Seismic bearing capacity factors N&; and N;SE of strip footing (k, = 0).
kn NS NS

$=15 ¢=200 ¢=25 $=30° ¢=35 ¢=40° ¢=45 ¢=15 $=20° ¢=25 $=30° $=35 $=40° ¢=45

0 11.23 15.16 21.05 30.44 46.87 75.03 134.03 4.02 6.52 10.82 18.63 3343 63.76 134.95
0.05 10.97 14.62 20.04 28.27 43.62 70.12 121.8 3.77 6.08 10.04 17.23 30.75 58.41 120.59
0.1 9.98 13.22 18.07 25.69 3843 61.11 107.08 3.48 5.6 9.19 15.63 27.68 52.09 105.91
0.15 9.73 12.72 17.28 23.24 36.09 56.43 95.11 3.14 5.08 8.33 14.1 24.68 45.81 92.08
0.2 8.39 11.01 149 20.88 30.58 47.35 79.31 2.74 4.53 7.46 12.59 21.93 40.23 79.94
0.25 7.89 104 13.97 18.6 28.18 42.89 68.92 2.27 3.94 6.58 11.12 19.28 35.14 69.28
0.3 - 8.86 11.88 16.47 23.75 36.01 57.36 - 3.34 5.69 9.68 16.78 30.28 59.62
0.35 — 7.88 10.52 14.46 20.65 3235 51.45 — 2.86 491 8.36 14.46 25.97 51.51
04 - - 9.23 12.67 18.07 27.78 43.02 - - 4.27 7.31 12.65 22.72 45.17
045 — - 7.99 11.26 15.36 23.86 38.53 - - 3.65 6.45 11.18 20.12 379
0.5 - - — 10.34 14.35 213 33.66 — - - 5.62 9.81 17.77 33.41
0.55 - - - 9.09 12.51 18.08 29.42 - - - 4.79 8.55 15.62 29.45
0.6 - - - - 10.81 16.6 25.73 - - - - 7.40 13.66 25.95
065 — - - - 9.32 13.56 21.97 - - - - 6.31 11.89 21.74
07 - - - - 7.98 12.96 19.75 - - - - 5.27 9.98 18.85
075 — - - - - 114 15.96 - - - — — 8.56 16.35
08  — - - - - 9.81 13.48 - - - - - 7.23 14.14

Table 7

Seismic bearing capacity factor N3 of strip footing (k, = 0).
kn N$3; (smooth interface) N3k (rough interface)

p=15 =200 ¢$=25 ¢=30° ¢=35 $=40° ¢=45 =15 =200 ¢$=25 $=30° $=35 ¢=40° ¢=45°

0.00 0.79 1.65 3.54 7.68 17.84 43.65 117.73 1.29 3.11 6.92 15.57 36.37 87.1 240.77
0.05 0.61 1.49 2.99 6.53 14.92 37.22 98.75 1.18 2.82 5.98 13.51 32.17 76.7 204.19
0.1 0.48 1.18 2.43 5.58 12.64 29.48 78.93 1.03 2.4 5.35 11.81 26.69 66.71 172.47
0.15 0.39 0.97 2.09 433 10.02 24.57 66.7 0.87 2.06 4.68 10.37 2343 54.91 149.76
0.2 0.29 0.67 1.62 347 7.91 19.68 49.64 0.69 1.79 3.86 8.97 18.7 45.7 119.32
025 0.18 0.56 1.26 3.12 6.96 16.09 38.7 0.49 1.38 3.03 6.91 15.7 37.05 94.46
0.3 - 0.34 0.93 2.65 4.85 12.59 30.69 — 1.06 2.41 5.4 12.55 28.81 74.58
0.35 — 0.24 0.73 1.86 3.93 9.04 24.39 — 0.75 1.86 4.29 10.13 25.59 57.02
0.4 - - 0.49 1.5 3.03 7.1 18.97 - - 1.38 3.57 8.05 18.48 4484
0.45 - - 0.31 1.12 2.37 5.38 14.43 — - 0.89 2.74 6.29 15.89 36.11
0.5 - - — 0.78 1.67 3.98 11.65 — - - 2.02 4.82 11.29 27.35
0.55 - - - 0.42 1.32 2.98 7.93 - - - 1.42 3.18 8.09 21.03
0.6 — - — — 0.89 2.39 5.95 — — - — 242 6.1 16.55
0.65 - - — — 0.63 1.69 4.86 — - - — 1.67 4.56 12.52
0.7 - - - - 0.29 134 3.87 - - - - - 2.92 9.13
0.75 — - — — — 0.89 2.67 — — - — - 2.02 6.92
0.8 — - — — - 0.56 1.84 — - - — — 1.42 5.08

increasing value of ky, the seismic beaering capacity factors reduces
significantly due to inclination of the applied load acting on the
shallow foundation, leading to the observation that the length and
the depth of failure zones become shallower than those for the case
of kn = 0, as shown in Fig. 10b—d, 11b—d, and 12b—d.

The seismic bearing capacity factors due to superstructure
inertia effect calculated for ¢ = 15°—45° and ky, = 0—0.8 are listed in
Table 6 for N3z and Nj; and Table 7 for Nj}, corresponding to the
Hill’s and Prandtl’s failure mechanisms, respectively, as noted by
Casablanca et al. (2021). The terms N3, NZSE and NfﬁE using NS-FEM
are plotted with changes in ky and ¢, as shown in Fig. 13. The
computational results indicate that for given values of friction angle
¢, the bearing capacity factors decrease continuously with an in-
crease in the horizontal earthquake acceleration coefficient kp.
Although the obtained results of N, NSSE and NfYSE using the NS-
FEM are slightly higher than those reported by Cascone and
Casablanca (2016), the errors are within 5%. Therefore, the nu-
merical results given in Tables 6 and 7 illustrate the capability and
effectiveness of the NS-FEM approach for computing upper bounds
of seismic bearing capacity factors of strip footings.

To consider the effect of superstructure inertia on the bearing
capacity of strip footings, corrective coefficients eff = N33/N; (i=c,

q, v) are defined as the ratio of the factor Nj§ under seismic con-
ditions to N; under static conditions. Fig. 14 shows the variation of
the corrective coefficients ejf with the horizontal earthquake ac-
celeration coefficient kp in the case of ky = 0. Values of e agree well
with those given by Cascone and Casablanca (2016). Under super-
structure inertia effect, Fig. 14a and b illustrates that the reductions
of corrective coefficients e} and eZSE depend on ky and ¢. On the
other hand, effE decreases with an increase in ky and less depends
on ¢, and the reduction rate tends to increase rapidly for the higher
acceleration of earthquake, as shown in Fig. 14c and d.

The effect of the vertical acceleration ky, on the bearing capacity
factors based on the ratio ky/kj, is summarized in Table 8 for the
case of ¢ = 30°. The seismic terms N, Ngp and N3} decrease with
changes in ky/ky. It means that the reduction of load transmitted
from the structure to the foundation significantly impacts the
seismic terms Ng;, Ngi and NJ;.

3.3. The link between the static and seismic bearing capacity factors
For practical application, the seismic bearing capacity of strip

footings can be evaluated by the combination of the effect of soil
and superstructure inertia as follows:
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Fig. 14. Effect of superstructure horizontal acceleration k, on the corrective coefficients: (a) e, (b) eZSE, (c) e5% for smooth footing, and (d) er for rough footing.
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, (©) NiSE for smooth foundation, and (d) Nf/SE for rough foundation.
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Table 8

Variations in seismic bearing capacity factors with various combinations of k; and ky for ¢ = 30°.
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kn ky NSE N3¢ (smooth interface) N;¢ (rough interface) N3 NSSE N3 (smooth interface) N3} (rough interface)
0 ky=0 18.63 7.68 14.97 30.44 18.63 7.68 15.57
ky = 0.33kp, 18.63 7.68 14.97 30.44 18.63 7.68 15.57
ky = 0.5k, 18.63 7.68 14.97 30.44 18.63 7.68 15.57
ky = kn, 18.63 7.68 14.97 30.44 18.63 7.68 15.57
0.05 ky = —kn 19.15 8.05 14.39 27.03 16.48 6.26 129
ky = —0.5kp 18.68 7.85 14.04 27.64 16.84 6.42 13.19
ky = —0.33kn 18.52 7.79 13.92 27.85 16.97 6.47 13.29
ky=0 18.21 7.66 13.69 28.27 17.23 6.53 13.51
ky = 0.33kp, 17.9 7.53 13.46 28.7 17.49 6.69 13.7
ky = 0.5kn 17.74 7.47 13.34 28.92 17.63 6.75 13.81
ky = kn, 17.28 7.27 12.99 29.61 18.05 6.92 14.14
0.1 ky = —kn 19.59 8.37 15.05 23.77 14.47 4.98 10.98
ky = —0.5kp 18.65 7.98 14.04 24.7 15.03 5.26 11.38
ky = —0.33ky 18.33 7.85 13.8 25.02 15.23 5.37 11.53
ky=0 17.71 7.59 13.45 25.69 15.63 5.58 11.81
ky = 0.33kp, 17.09 7.33 12.86 26.39 16.05 5.8 12.11
ky = 0.5k 16.77 7.2 12.62 26.76 16.28 5.92 12.27
ky = kn, 15.83 6.81 11.91 27.92 16.98 6.31 12.77
0.15 ky = —kn 19.99 8.65 15.13 21.03 12.78 3.67 9.51
ky = —0.5kn 18.57 8.06 13.96 22.09 13.41 3.93 9.93
ky = —0.33ky 18.09 7.86 13.59 22.47 13.64 4.03 10.07
ky =0 17.15 7.47 12.85 23.24 14.10 433 10.37
ky = 0.33kp, 16.21 7.08 12.18 24.06 14.59 4.45 10.68
ky = 0.5kp 15.73 6.88 11.81 24.5 14.85 4.57 10.84
ky = kp 14.3 6.28 10.73 25.87 15.65 497 11.32
0.2 ky = —kn 20.34 8.9 15.27 18.71 11.33 3 8.25
ky = —0.5kp, 18.44 8.11 13.83 19.76 11.95 3.23 8.61
ky = —0.33ky 17.79 7.83 13.34 20.14 12.16 3.31 8.74
ky =0 16.53 731 12.31 20.88 12.59 3.47 8.97
ky = 0.33ky, 15.26 6.76 11.42 21.66 13.03 3.62 9.18
ky = 0.5k 14.6 6.49 10.92 22.06 13.25 3.7 9.28
ky = kn 12.67 5.66 9.44 23.25 13.9 3.9 9.51
0.25 ky = —kn 20.66 9.13 15.47 16.71 10.07 2.67 6.44
ky = —0.5kp 18.26 8.11 13.65 17.65 10.6 2.76 6.58
ky = —0.33ky 17.44 7.76 13.03 17.97 10.78 2.82 6.62
ky=0 15.84 7.08 11.67 18.6 11.12 292 6.91
ky = 0.33kp, 14.23 6.39 10.58 19.21 11.42 2.78 6.62
ky = 0.5k 134 6.02 9.94 19.5 11.53 2.68 6.56
ky = kn 10.91 493 8.03 20.11 11.7 2.56 6.19
03 ky = —kn 20.94 932 15.61 14.97 8.98 2.02 5.51
ky = —0.5kp 18.04 8.08 13.38 15.76 9.4 2.23 5.54
ky = —0.33ky 17.04 7.65 12.62 16.02 9.52 2.25 5.51
ky=0 15.09 6.8 10.98 16.47 9.69 2.25 54
ky = 0.33kp, 13.12 5.92 9.59 16.76 9.75 2.19 5.16
ky = 0.5k, 12.09 5.46 8.78 16.86 9.75 2.11 497
ky = kn 8.95 3.99 6.3 16.9 9.75 2.05 4.07
0.35 ky = —kpn 21.2 9.49 15.74 13.48 8.04 1.26 4.75
ky = —0.5kp 17.77 7.99 13.1 14.09 8.29 1.37 4.64
ky = —0.33ky 16.59 7.48 12.18 14.24 8.34 143 4.55
ky=0 14.27 6.45 10.21 14.46 8.36 1.66 4.29
ky = 0.33kp, 11.89 5.36 8.51 14.48 8.36 1.63 3.85
ky = 0.5k, 10.63 4.76 7.5 14.48 8.36 1.6 3.54
ky = kn 6.61 2.68 4.06 14.48 8.36 0.82 2.11
04 ky = —kp 21.63 9.64 15.84 12.19 7.21 1.19 4.1
ky = —0.5kp 17.63 7.89 12.76 12.57 731 1.23 3.87
ky = —0.33k 16.24 7.27 11.69 12.64 731 1.23 3.73
k,=0 13.48 6.05 934 12.67 7.31 1.19 3.57
ky = 0.33kp, 10.56 4.63 7.22 12.67 7.22 1.11 2.7
ky = 0.5kn 8.93 3.83 5.88 12.67 7.02 0.95 2.28
ky = kn — — — 11.69 4,95 — -
0.45 ky = —kn 21.84 9.76 15.91 11.05 6.48 1.11 3.56
ky = —0.5kp 17.27 7.73 12.38 11.25 6.5 1.12 3.22
ky = —0.33ky 15.66 6.99 11.13 11.26 6.5 1.06 3.03
ky=0 12.34 5.47 8.32 11.26 6.45 0.92 2.74
ky = 0.33kp, 8.79 3.68 5.53 11.26 6.05 0.69 1.73
ky = 0.5kn 6.46 233 3.07 10.97 5.55 0.44 1.2
ky = kn — — — 9.05 1.14 — —
0.5 ky = —kn 22.03 9.86 15.95 10.05 5.85 1.03 3.09
ky = —0.5kp 16.85 7.52 11.93 10.14 5.85 0.95 2.66
ky = —0.33kn 15.01 6.66 10.47 10.14 5.85 0.8 2.44
ky=0 11.16 4,76 7.18 10.14 5.62 0.68 2.02
ky = 0.33kp, - - - 9.78 4.8 033 0.93
ky = 0.5kn - - - 9.35 3.96 - -
ky = kn - - - 6.99 0.48 - -
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kn ky N;E N; ¢ (smooth interface) N (rough interface) N3 N;SE N3} (smooth interface) N3 (rough interface)
0.55 ky = —kn 22.2 9.93 15.97 9.20 532 0.98 2.7

ky = —0.5ky 16.36 7.26 114 9.22 5.32 0.89 2.2

ky = —0.33kp, 14.24 6.23 9.69 9.22 5.24 0.76 1.92

k,=0 9.63 3.78 5.64 9.09 4.79 0.42 1.42

ky = 0.33kp, - - — 8.46 3.52 — -

ky, = 0.5kp, — - — 7.85 1.05 — —

ky = kn - - - 5.06 0.3 - -

The present results: NS-FEM

————— Cascone & Casablanca (2016)

1 1
0.8 0.8
0.6 0.6
W W
o )
0.4 0.4
0.2 0.2
0 0 0
0 0.2 04 0.6 0.6 0 0.2 04 0.6
kn Kn
(a) (c)

Fig. 15. The effect of soil and superstructure inertia on corrective coefficients in the case of ¢ = 30°, ky = 0, and k; = 0—0.5: (a) e4, (b) ey for smooth footing, and (c) e, for rough
footing. 1 — Effect of soil inertia; 2 — Effect of superstructure inertia; 3 — Effect of soil and superstructure inertia.

Table 9
Comparisons of the numerical results of Ngg with solutions available in literature (¢ = 30° and k, = 0).
kn Nge €qE
Buhdu and Al-Kani Soubra Cascone and Casablanca Present Buhdu and Al-Kani Soubra Cascone and Casablanca Present
(1993) (1999) (2016) method (1993) (1999) (2016) method
0 184 18.46 184 18.63 1 1 1 1
0.1 13.17 14.34 143 14.85 0.71 0.78 0.8 0.8
0.2 853 10.67 10.65 11.17 0.46 0.58 0.58 0.6
0.3 5.27 7.54 7.53 7.84 0.28 0.41 0.41 0.42
04 3.15 4.97 4.96 5.28 0.17 0.27 0.27 0.28
0.5 1.83 2.85 2.84 3.36 0.1 0.15 0.15 0.18
those from Soubra (1999) and Cascone and Casablanca (2016) using
1 the limit equilibrium and the method of characteristics, respec-
quite = CNeg + qNge + j'\fBNyE (17) tively. It means that the seismic bearing capacity factor

where N = Neeigelt, Ny = quzEest, and Ny = Nn,eiEeisE, in
which N¢, Ng and Ny are the static bearing capacity factors.

Fig. 15 displays the variation of corrective coefficients for
¢ =30°, ky =0, and k, = 0—0.5 for three cases: (i) the effect of soil
inertia ezE (curve 1), (ii) the effect of superstructure inertia effE
(curve 2), and (iii) the combined effect of soil and superstructure
inertia egp (curve 3). The computational results indicate that the
corrective coefficients e3;, efi and eqe decrease continuously with
increasing horizontal earthquake acceleration coefficient kp. In
general, the reduction of corrective coefficient egg is mainly due to
the effect of superstructure inertia ef]SE. Furthermore, comparisons
of Nge and ege with previous studies in the case of ¢ = 30° and
ky = 0 are summarized in Table 9 and plotted in Fig. 16a and b,
respectively. The corrective coefficient eg using NS-FEM is slightly
higher than the Budhu and Al-Karni (1993) solution using the limit
equilibrium method. In addition, the results of eqr agree well with

Nge = Ngejpepy: can be estimated by the superposition of the values
of ¢ and el

Fig. 15b and ¢ shows the influence of soil inertia (curve 1), su-
perstructure inertia (curve 2) and combined effect (curve 3) on the
corrective coefficients e,r for smooth and rough foundations for
¢ = 30° ky = 0, and kn = 0—0.5. The values of e}, e and ey
decrease with an increasing horizontal earthquake acceleration
coefficient kp,.

According to Fig. 15b and c, superstructure inertia eiSE plays an
important role in reducing corrective coefficients e,r for smooth
and rough interfaces. The obtained results of N, and e, for rough
foundation are compared with solutions available in literature
(¢ = 30°, and k, = 0) in Table 10 and Fig. 16c and d. The coefficient
e,e for rough foundations agrees well with that reported by
Cascone and Casablanca (2016), and the errors are within 5%.
Moreover, most values of e, are slightly higher than those pre-
sented by Budhu and Al-Karni (1993), Soubra (1999) and Zhu
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Fig.16. Comparison of the present results with previous studies in the case of ¢ = 30°, k, = 0, and ky, = 0—0.5: (a) Ngg, (b) eqg, (c) Ny for rough footing, and (d) e, for rough footing.

Table 10

Comparisons of the numerical results of N, g with solutions available in literature (¢ = 30° and ky = 0).

kn Nyg (rough footing)

e, (rough footing)

Budhu and Al-Karni  Soubra Zhu Cascone and Casablanca Present Budhu and Al-Karni  Soubra Zhu Cascone and Casablanca Present

(1993) (1999) (2000) (2016) method (1993) (1999) (2000) (2016) method
0 23.76 21.88 2185 1523 15.67 1 1 1 1 1
0.111.62 13.59 1221 1053 10.87 0.49 0.62 0.56 0.69 0.7
0.25.13 7.67 6.38 6.56 6.71 0.21 0.35 0.29 043 043
0.32.17 3.8 3.06 3.64 3.96 0.09 0.17 0.14 0.24 0.25
0.40.89 1.51 1.31 1.74 222 0.04 0.07 0.06 0.11 0.14
0.50.36 035 0.48 0.6 0.96 0.02 0.02 0.02 0.04 0.06

(2000) using different methods of analysis. The comparison con-
firms that the present study can give accurate values of the seismic
bearing capacity factor Nyr = Nye? el using the superposition of
the values e} and ef;.

4. Conclusions

Using a pseudo-static approach, a NS-FEM was presented to
estimate the static and seismic bearing capacities of shallow strip
footings. A large number of simulations have been performed to
study the bearing capacity of shallow strip footing under both
static and seismic conditions, providing a new upper bound so-
lution to all seismic bearing capacity components. Numerical re-
sults of both static and seismic bearing capacity factors are in good
agreement with those using the slip-line method which corre-
spond to the lower bound solutions to the bearing capacity. In
addition, power dissipations obtained are identical to the slip-line
networks given by Cascone and Casablanca (2016), providing
knowledge of seismic effects on the failure mechanism of strip
footing. Based on the numerical analyses, the following conclu-
sions are made:

(1) In terms of the numerical procedure, combining the NS-FEM
into the upper bound procedure can give accurate and

reliable values of both static and seismic bearing capacity
factors of shallow strip footing. The inclusion of horizontal and
vertical seismic accelerations is presented in a straightforward
and simple manner, providing an effective limit analysis to
capture the ultimate load and the corresponding failure
pattern under both static and seismic conditions.

(2) Separate calculations of all components of static and seismic
bearing capacity factors to consider the effect of soil and su-
perstructure inertia are performed and checked against the
well-known Terzaghi’s formula, with very satisfactory results.

(3) The numerical results reveal that the seismic bearing ca-
pacity depends on the direction of seismic acceleration in a
highly complex manner. An upward vertical seismic accel-
eration results in a decrease in the magnitude of seismic
bearing capacity. On the other hand, the vertical seismic
acceleration in the downward direction causes a rise in the
bearing capacity

(4) The corrective coefficients obtained show that superstruc-
ture inertia is a major contribution to reductions in the
bearing capacity under seismic conditions compared with
soil inertia. To facility practical applications, the super-
position of both the soil inertia and the structure inertia has
been presented to give safety values of seismic terms N,
NqE and N’YE'
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(5) Variations of seismic bearing capacity with various combi-
nations of seismic accelerations ky and ky are given in design
tables and charts, providing useful knowledge of dependent
seismic bearing capacity. These values can be used as refer-
ences for engineers in the seismic design of a shallow
foundation.
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