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The paper proposes a new multiple-factor clustering method (NMFCM) with consideration of both box
fractal dimension (BFD) and orientation of joints. This method assumes that the BFDs of different clusters
were uneven, and clustering was performed by redistributing the joints near the boundaries of clusters
on a polar map to maximize an index for estimating the difference of the BFD (DBFD). Three main aspects
were studied to develop the NMFCM. First, procedures of the NMFCM and reasonableness of assumptions
were illustrated. Second, main factors affecting the NMFCM were investigated by numerical simulations
with disk joint models. Finally, two different sections of a rock slope were studied to verify the practi-
cability of the NMFCM. The results demonstrated that: (1) The NMFCM was practical and could effec-
tively alleviate the problem of hard boundary during clustering; (2) The DBFD tended to increase after
the improvement of clustering accuracy; (3) The improvement degree of the NMFCM clustering accuracy
was mainly influenced by three parameters, namely, the number of clusters, number of redistributed
joints, and total number of joints; and (4) The accuracy rate of clustering could be effectively improved by
the NMFCM.
� 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The mechanical and hydraulic behaviors of rock masses are
influenced by the properties of joints (Hammah and Curran, 2000).
Usually, the number of joints in the rockmass is too large to analyze
them individually (Liu et al., 2016). With similar geometric prop-
erties, different joints are grouped into the same cluster. Thus, the
joints could be analyzed by mathematical statistical methods
simultaneously, and lots of workload can be saved. The detection of
joint clusters is a main part of the statistical analysis of field data
(Esmaeilzadeh and Shahriar, 2019). The clustering of joints is an
important premise for civil engineering projects and mining ap-
plications (Hammah and Curran, 1998).

According to the incorporated amount of joint properties,
clustering methods can be divided into two main categories:
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
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single-factor clustering methods (SFCM) and multiple-factor clus-
tering methods (MFCM) (Liu et al., 2021). Orientation is the only
property taken into account in the SFCM since it is the prime
geological factor influencing the stability of rock mass (Duncan and
Christopher, 2004), whereas at least one another property is
simultaneously considered in the MFCM.

The most common SFCM is a contouring method (Klose et al.,
2005; Xu et al., 2013), in which joint clusters are judged accord-
ing to the density of joint poles. The method has been widely used
due to its convenience. However, the clustering results strongly
depend on the experience of handlers (e.g. the size of reference
circle). Therefore, many researchers have devoted themselves to
developing new clustering methods with less manual intervention
and higher clustering accuracy. Two main aspects have been
investigated, including the automatic judgments of the amount and
center positions of initial clusters (Xie and Beni, 1991; Yamaji and
Sato, 2011; Joopudi et al., 2013; Ma et al., 2015; Liu et al., 2017),
and the developments of further excellent rules for clustering
(Shanley andMahtab,1976; Hammah and Curran, 1998, 1999; Klose
et al., 2005; Jimenez-Rodriguez and Sitar, 2006; Xu et al., 2013;
Esmaeilzadeh and Shahriar, 2019). After a series of studies, the
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Diagram of calculation of membership degree value (Liu et al., 2021).
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problems of these two aspects have been solved well. However,
there is still a drawback that cannot easily be avoided for the SFCM.
Because only the orientation is taken into account, the actual
physical relationship among different properties of a joint cannot
be considered in the analysis of the distance between joint poles on
the polar map, which is often taken as an important index for
clustering. Thus, joints are assigned to the closest cluster center in
most of the SFCM, and the orientation distributions are truncated in
the overlap areas of the polar map contributing to the boundaries
between joint clusters being rigid rather than natural (Dershowitz
et al., 1996; Joopudi et al., 2013). To solve this problem of hard
boundary and make the boundaries between joint clusters more
natural, the orientation distribution of the entire or a part of a
cluster could be assumed to conform to Fisher distribution (Zhan
et al., 2017), bivariate normal distribution (Kulatilake, 1986;
Marcotte and Henry, 2002), or some other distributions (Yamajia
and Sato, 2011).

Tokhmechi et al. (2011) found that the classification accuracy
was about 49% when only the orientation was taken into account.
The finding illustrated the importance of MFCM in identifying the
joint clusters. Dershowizt et al. (1996) developed a MFCM, and
suggested some weighting factors for the concerned properties of
joints (e.g. rock type, joint coating and infilling, termination mode,
weathering, and planarity). The weighting factors quantify the
importance of each property in clustering. Considering the orien-
tation, spacing, and roughness of joints, Zhou and Maerz (2002)
developed an analytical platform that use both clustering analysis
and various visualization tools to identify joint clusters. Tokhmechi
et al. (2011) utilized different properties (orientation, continuity,
roughness, aperture, and hardness) to group joints, and they found
that the results are more accurate when more properties are
considered during clustering. Taking the orientation, trace length,
opening degree, and undulation of joints into account, Ding et al.
(2018) developed a multi-parameter joint clustering method
based on an improved iterative self-organizing data analysis (ISO-
DATA) algorithm. With the principle of the minimum cluster val-
idity index, the optimal weight configuration was determined for
every property considered in the method. Assuming that the trace
lengths of joints obey a specific distribution, Liu et al. (2021)
developed a MFCM by redistributing the joints to make their
trace lengths more closely obey a specific distribution.

Theoretically, the problem of hard boundary can be solved with
these methods. However, the methods still have limitations
because many properties cannot be easily selected and abundantly
obtained in engineering practice, such as roughness, strength, and
aperture (Pusch 1995; Liu et al., 2021). Additionally, some proper-
ties cannot be quantified objectively and readily, such as spacing
and weathering, because these values are variable for well-
developed joints. Therefore, it is necessary to develop a new
multivariate clustering method in which the considered joint
properties should be conveniently obtained and the joints are
clustered with enough physical meaning.

The geometric features of joints are widely considered to have
fractal characteristics (Kulatilake et al., 1997; Zhou and Xie, 2003; Li
et al., 2020). The characteristics can be quantified by the fractal
dimension. As a type of fractal dimensions, the box fractal dimen-
sion (BFD) of joint clusters could capture the combined changes of
density and trace length (Kulatilake et al., 1997). The density is
defined as the number of joints in unit volume of rock mass. When
joints intersect with rock surfaces, traces of these joints arise, and
the trace length can directly reflect the scale of joint (Hammah and
Curran, 1998). Both of these properties are important for the
identification of different clusters in addition to the orientation,
which is also easy to be obtained. A fracture cluster is defined as a
group of fractureswith statistically similar properties, whichmeans
that the properties (joint density and trace length) of different
clusters are different. Therefore, different clusters should have
different BFDs.

This paper proposes a new MFCM (NMFCM) with the assump-
tion that the BFDs of different clusters are uneven, with the cor-
responding algorithm code developed in MATLAB. The NMFCM
performs clustering by redistributing the joints near the bound-
aries of clusters on a polar map tomaximize an index for estimating
the difference of BFDs (DBFD). The paper is organized as follows.
First, procedures of the NMFCM and reasonableness of the
assumption are introduced. Second, the main influencing factors of
the NMFCM are investigated by numerical simulations inwhich the
joint data are synthetic and the clustering results can be clearly
captured. Finally, an engineering case of a rock slope is used to
illustrate the practicability of the NMFCM.

2. The new multi-factor clustering method

The NMFCM in this research includes three main modules:
calculation of membership degree value, judgment of optimum
number of clusters, and fractal redistribution of joints. The first two
modules constitute the fuzzy c-means method. This research
mainly focuses on the third module, and the reasonableness of the
assumption is also demonstrated in this module.

2.1. Calculation of membership degree value

The relevant upper hemispherical polar map could be plotted
after obtaining the orientation of all the joints in the studied rock
mass. Based on the polar map, the cluster number and the initial
cluster centers could be assumed. According to the assumption, the
membership degree values of the joints could be calculated. Taking
Fig. 1 as an example, there are two clusters of joints on the polar
map. The red points in the figure are the cluster centers.

The distance between a joint pole and a cluster center can be
acquired as follows (Hammah and Curran, 1998):

d2
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�
Xi$V

n
j

�
2 (1)
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�
Xi;V
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j

�
is the distance between the joint pole i and the

cluster center j in the nth iteration, Xi is the orientation of obser-
vation, and Vn

j represents the orientation of the cluster center j in
the nth iteration. In Fig. 1, d1 and d2 represent the distances



Fig. 2. Sketch map of the disk joint model.

Fig. 3. Trace lines on the sampling window.
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between a joint pole and the two cluster centers, respectively. After
obtaining the distances, the membership degree values can be
computed as (Hammah and Curran, 1998):

uij ¼
h
d2

�
Xi;V j

�1=ð1�mÞ
i" XK

k¼1

d2ðXi;VkÞ1=ð1�mÞ
#�1

(2)

where uij is the membership degree value (measure of belonging)
of Xi in the cluster j; m represents the degree of fuzzification and
m¼ 2 is believed to be the best value for most applications; and K is
the total number of clusters (generally ranging from 2 to 4), with
each value corresponding to a different clustering result. From
Fig. 1, the joint represented by the orientation pole can be intui-
tively perceived to belong to cluster 1 because d1 is smaller than d2.
This kind of relationship can be quantified as the membership
degree value.

After determining the membership degree values, new cluster
centers can be recalculated as (Hammah and Curran, 1998):
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where N is the total number of joints required to be clustered, and
N � K; x and y signify the coordinates of V; and DV is the difference
of the cluster center vectors in two adjacent iterations. If DV is
greater than the critical value (0.01 is recommended), then the old
cluster centers are replaced by the new ones, and a new iteration
begins; otherwise, the iterations are terminated and the member-
ship degree values and the cluster centers are output. It should be
noted that different values of K have to be tested in this module to
obtain the optimal result.

2.2. Judgment of optimum number of clusters

The XieeBeni index (Xie and Beni, 1991) could estimate the ratio
of compactness to separation of the resulting fuzzy division after a
set of data has been divided into K clusters. Ma et al. (2015) pro-
posed a simplified XieeBeni index, in which acute angle is utilized
to represent the distance between fractures. The simplified index
has the advantages of simple programming, high precision and
practicability. Therefore, the simplified XieeBeni cluster validity
index was adopted in this research to judge the optimum number
of clusters, which can be determined as

SXBK ¼

PN
i¼1

PK
j¼1

Iijs2
�
Xi;V j

�
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jsl

�
s2
�
V j;V l

� 	 (5)

where SXBK is the simplified XieeBeni cluster validity index when
N joints are divided into K clusters; and Iij is a Boolean value, which
is equal to 1 if Xi belongs to the cluster j, otherwise it is equal to 0.
The simplified distance between two unit normal vectors A¼ (x1, y1,
z1) and B ¼ (x2, y2, z2) in Cartesian coordinates could be computed
as

sðA;BÞ ¼ arccos
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 ¼ arccosjx1x2 þ y1y2 þ z1z2j (6)

The value of K that minimizes SXBK was determined as the op-
timum number of clusters.
2.3. Fractal relocation of joints

To make the numerical simulations closer to the situation of real
engineering projects, the trace lines of joints used in this research
were generated by the intersection of a sampling window with a
disk joint model (Fig. 2). This method was employed due to its good
coincidence with real rock masses in the aspects of mechanical and
hydraulic behaviors (Dershowitz and Einstein, 1988; Kulatilake
et al., 1993; Liu et al., 2015; Lei et al., 2017). The disk joint model
is mainly controlled by three parameters, namely, the orientation,
radius, and density. When the model is divided by a sampling
window, the joint disks are transformed into trace lines on the
window (Fig. 3). The sizes of the joint models and the sampling
windows were kept the same in this research, as shown in Fig. 2.

To illustrate the reasonableness of using the DBFD as an addi-
tional parameter to cluster joints, two kinds of tests were executed
using the numerical simulation method introduced above. Two
joint clusters were generated in all of the models described in this
section, and correct cluster code of each joint that indicates the
cluster affiliation was clearly known.



Table 1
Parameters used in different disk joint models.

Cluster
No.

Volume density range
(m-3)

Mid-value of the volume density
range (m-3)

Orientation distribution
(Fisher distribution)

Radius distribution (gamma distribution)

Dip direction
(�)

Dip angle
(�)

KF Mean value range
(m)

Mid-value of the mean value
range (m)

Variance
(m2)

1 0.05e0.15 0.1 90 20 10 2.3e2.7 2.5 0.01
2 0.1e0.2 0.15 270 20 10 1.3e1.7 1.5 0.01

Fig. 4. Polar map of joints in each cluster of the generated model.
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The first kind of tests was executed using the parameters listed
in Table 1. It should be noted that the mid-values of the density and
the radius were adopted in the disk joint model. After the model
was generated, the polar map of the joints in the sampling window
can be easily obtained, as presented in Fig. 4. It is worth noting that
not all the joints generated in the model intersect with the sam-
pling window. Fig. 4 only shows the poles of joints that intersect
with the sampling window, and this was taken as the standard for
correct clustering. Figs. 5 and 6 show the procedures of the BFD
calculation for each joint cluster corresponding to Fig. 4.

Three main steps were required to finish the BFD calculation in
the NMFCM. First, the sampling window was discretized into small
square boxes with different sizes (denoted as r in Figs. 5 and 6). The
box sizes should be a geometric progression with a fixed ratio. In
this study, box sizes of 2 m, 1 m, 0.5 m, 0.25 m, and 0.125 m were
selected to make the number of small square boxes in the sampling
window integers in the NMFCM. Figs. 5a and 6a show the box
networks when the box size is equal to 1 m, and Figs. 5b and 6b
show the box networks when the box size takes all the values.
Second, the amount of square boxes needed to completely cover the
traces in the sampling window were counted when the box size
took different values. Finally, the amount of the square boxes (N)
was plotted versus the inverse of the box sizes (1/r) in a log-log plot,
and the slope of the fitting line obtained by the least-square
regression was determined as the BFD of the traces, as shown in
Figs. 5c and 6c.

There were 44 and 41 traces in the two clusters, and the cor-
responding BFDs were 1.46 and 1.27, respectively. Consequently,
the DBFD of the two clusters was equal to 0.19, and the accuracy
rate of clustering (defined as the number of joints grouped into the
right clusters divided by the total number of joints) was equal to
100%.
Then, some joints were randomly exchanged to another cluster
to reduce the accuracy rate. The number of exchanged joints ranged
from1 to 20. The upper limit of the rangewas themaximum integer
that is smaller than half of the number of joints in the smaller
cluster, and it was taken as 20 in this study. If the number of
exchanged joints exceeds the upper limit, a whole cluster exchange
would take place and seriously affected the accuracy rate. The box
dimension and the accuracy rate were recalculated when the
number of exchanged joints varied.

Fig. 7 shows the relationship between the box dimensions and
the accuracy rates of different clusters. Based on Fig. 7, the
following conclusions could be drawn:

(1) The BFD of clusters, BF, could capture the combined change of
density and trace length.

(2) The DBFD (denoted as DB) reached the maximum when the
accuracy rate of clustering was equal to 100%.

(3) With the decrease of the accuracy rate, the geometric fea-
tures of joints in different clusters became closer and closer,
and the DBFD decreased accordingly.

The second kind of tests was performed to eliminate the influ-
ence of discreteness. One hundred groups of parameters were
generated evenly in the ranges of Table 1 and 100 models were
established based on these parameters. The statistical relationship
between the DBFD and the accuracy rate is drawn in Fig. 8. The
greater the difference, the higher the accuracy rate of clustering.
The trace lengths and densities of different clusters were different
in most cases. As a consequence, the BFDs were also different. The
worse the clustering result, the more random the joint distribution
in different clusters, and the smaller the difference of the fractal
dimensions. The results of the two kinds of tests meant that using
the DBFD as an auxiliary clustering index could improve the accu-
racy rate.

Based on the above conclusions, a newmethod was proposed in
this paper and used to perform clustering by redistributing the
joints near the boundaries of clusters on the polar map tomaximize
the index for estimating the DBFD. The joints required to be
redistributed could be determined by

umax
i �umin

i � Du (7)

where umax
i and umin

i represent the maximum and minimum
membership degree values of joint i, respectively (it should be
noted that one joint has K membership degree values); and Du is a
threshold required to be specified, and its advised values are given
in Section 3. The smaller the value of Du, the closer the location to
the boundary of joint i.

The full permutations can be obtained by redistributing all of
the joints selected by Eq. (7). The BFD of the clusters in the full
permutations is then calculated, and the permutation that maxi-
mizes Eq. (8) is selected, where Fobj is the index for estimating the
DBFD. Fig. 9 shows the flowchart of main steps of NMFCM.



Fig. 5. Procedures of BFD calculation for cluster 1: (a) The box network when r ¼ 1 m; (b) The box networks when r takes different values; and (c) The relationship between the
number of boxes needed to completely cover the traces in cluster 1 and the corresponding box sizes (BFD1 ¼ 1.46).
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Fobj ¼
XK�1

i¼1

XK
j¼ iþ1

jBFðiÞ�BFðjÞj (8)

It is worth noting that if the number of joints selected by Eq.
(7) was quite large, too many permutations (Kn, where n is the
number of the selected joints) would be required to be tested and
cause a very long execution time. This problem could be solved
by determining the number of joints that could be redistributed
simultaneously. This number denoted as No could be selected
from the range of 7e15 according to the computation capacity.
Based on the number, joints were selected randomly within the
range determined by Eq. (7). Then, the process of selection was
repeated to ensure that each joint had the opportunity to be
selected. Taking 0.01 as the interval length, the calculation results
were classified according to Eq. (8). The clustering results were
averaged at the maximum of the intervals to obtain the final
result.

3. Analysis of the new multiple-factor clustering method
with synthetic data

Because the clustering results in real rock masses are difficult to
be verified, a series of numerical simulations using disk joint
models was designed to characterize the NMFCM. This section
analyzes the main influencing factors of NMFCM and demonstrates
the executing processes of NMFCM.
3.1. Analysis of main influencing factors

As described in Section 2, three parameters directly affected the
running efficiency and the precision of the NMFCM, namely, Du, No,
and K. Du controlled the redistribution range of joints. The greater
the value, the wider the range. No governed the computation time
when the full permutations determined by Du could not be
completely tested due to the limitations of the computation ca-
pacity. The greater the value is, the more time the computation
costs; and the greater the number of clusters is, the more compli-
cated the clustering results are.

Effects of Du and No on the accuracy rate were studied firstly.
According to the parameter range listed in Table 1, 100 disk joint
models were generated. The number of clusters in all the models
remained the same of 2. The values of Du ranged from 0.1 to 0.9 at
regular intervals of 0.1, and No ranged from 7 to 12 with an interval
length of 1. Fig.10 shows the influence of the two parameters on the
promotion of the accuracy rate. The promotion rate was equal to
the accuracy rate of the NMFCM minus that of the fuzzy c-means
method, and this was the contribution made by the module of the
fractal relocation of the joints.

From Fig. 10, the following findings could be obtained:

(1) The promotion of the accuracy rate increases with the in-
crease of No.

(2) The promotion presents a trend of increasing firstly and then
decreasing as Du increases.



Fig. 6. Procedures of BFD calculation for cluster 2: (a) The box network when r ¼ 1 m; (b) The box networks when r takes different values; and (c) The relationship between the
number of boxes needed to completely cover the traces in cluster 2 and the corresponding box sizes (BFD2 ¼ 1.27).

Fig. 7. The relationship between the difference of box fractal dimension (DB) and the
accuracy rate. BF denotes the box fractal dimension of clusters.

Fig. 8. The statistical relationship between DB and accuracy rate (100 samples).
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(3) The influence degree of No on the promotion rises with the
increase of Du when Du is smaller than 0.4.

When Du is small, the number of redistributed joints deter-
mined by Du is less than No, thus the changes of No do not affect the
clustering results. With the increase of Du, the number of redis-
tributed joints rises quickly, and the promotion of accuracy rate
increases with the increase of No. With the further increase of Du,
more and more joints far from the boundary are selected, and the
promotion of accuracy rate begins to decrease. Consequently, a
larger value of Dumay not generate a better result. Considering the
calculation efficiency and accuracy, the optimal value of Du was
considered as 0.4 when K ¼ 2.
Subsequently, the effect of K on the promotion of accuracy rate
was studied. Two kinds of disk joint models were generated (50
models were built for each model), and the amount of clusters in
the models was K ¼ 3 and K ¼ 4, respectively. The parameters of
clusters 1e3 were used, as listed in Table 2. Fig. 11 shows the effect
of K on the promotion of accuracy rate at different values of No and
Du. Fig. 12 presents the running time required to finish the nu-
merical simulations. The CPU of the computer was an Intel(R)
Core(TM) i7-9700 with 3.00 GHz.

From Figs. 11 and 12, the following conclusions could be drawn:

(1) The promotion of accuracy rate linearly rises with the in-
crease of No.



Fig. 9. Flowchart of the main steps for the NMCM.

Fig. 10. Effect of Du on the promotion of accuracy rate when No takes different values.

Table 2
Parameters used in different models.

Cluster
No.

Volume density
range (m-3)

Orientation distribution
(Fisher distribution)

Radius distribution
(gamma distribution)

Dip
direction
(�)

Dip
angle (�)

KF Mean value
range (m)

Variance
(m2)

1 0.1e0.14 0 20 10 0.3e0.7 0.01
2 0.08e0.12 90 (120) 20 10 0.8e1.2 0.01
3 0.06e0.1 180 (240) 20 10 1.3e1.7 0.01
4 0.04e0.08 270 20 10 2.3e2.7 0.01

Note: Data in and out of the brackets are used for cases of K ¼ 3 and K ¼ 4,
respectively.

Fig. 11. The effect of K on the promotion of accuracy rate when No takes different
values.

Fig. 12. The running time of the newmultiple-factor clustering method when No and K
take different values.

Fig. 13. The estimation goodness of Eq. (9) for the promotion of the accuracy rate.
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(2) For K ¼ 3, the promotion reaches the peak at Du ¼ 0.3,
whereas this occurs at Du ¼ 0.2 for the case of K ¼ 4.

(3) The optimum value of Du has a descending trend with the
increase of K. The optimum values of Du were suggested as
0.4, 0.3, and 0.2 when Kwas equal to 2, 3 and 4, respectively.
(4) The running time exponentially rises with the increase of No
and K, and the effect of K is more significant.

Considering the effect of K and No on the promotion of accuracy
rate, Eq. (9) was used to estimate the value of the promotion when
Duwas equal to the optimum values. The data points satisfying the
conditions of Du in Figs. 10 and 11 are plotted and displayed as the
blue marks in Fig. 13. The corresponding fitting data points ob-
tained by Eq. (9) are displayed by the dark marks. From Fig. 13, it is
easy to find that the precision of the equation is good. The corre-
lation coefficient of two sets of variables is a measure of their linear
dependence, as defined in Eq. (10). The correlation coefficient of the
fitting equation and numerical simulation for the promotion of
accuracy rate reaches 0.85, revealing that there is a strong corre-
lation between them. The relatively large error is attributed to two
reasons when K ¼ 2. First, two more data points are required to be
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fitted when K ¼ 2. Second, the number of joints when K ¼ 2 is less
than that when K ¼ 4, which increases the volatility of the data.

EðpÞ ¼ ðK � 1ÞNo

KN
(9)

rðA; BÞ ¼ 1
M � 1

XM
i¼1

Ai � mA
sA

Bi � mB
sB

(10)

where E(p) represents the expectation of the promotion of accuracy
rate; M is the number of variables in each set; mA and sA are the
mean and the standard deviation of A, respectively; and mB and sB
are the mean and the standard deviation of B, respectively.
3.2. Demonstration of executing processes

The generated joint data described in Section 2.3 were analyzed
to demonstrate the executing processes of NMFCM. The informa-
tion of orientations and traces of the joints required to be clustered
is shown in Figs. 4e6, but the correct cluster codes of the joints
were assumed to be unknown in this part.

According to Fig. 9, different numbers of clusters were tested to
find the optimal number. The simplified XieeBeni cluster validity
index was calculated based on Eqs. (5) and (6). The values of the
index when the number of clusters ranged from 2 to 8 are given in
Fig. 14. It was easy to determine that the optimal number is 2. Then
Fig. 15. The polar map of the clustering result according to the membership degree
values of the fuzzy c-means method (Du ¼ 0.4).

Fig. 14. The simplified XieeBeni cluster validity index corresponding to different
numbers of clusters.
the corresponding cluster centers and membership degree values
could be determined with Eqs. (1)e(4).

Based on the suggestion provided in Section 3.1, Du takes the
value of 0.4. Fig. 15 shows the polar map of the clustering result
according to only the membership degree values. There was a hard
boundary dividing the joints into two clusters that was almost in
the middle of the poles. The poles located at the upper half of the
boundary fell into cluster 1, and those located at the lower half
belonged to cluster 2. Joints near the boundary required to be
redistributed were selected based on Eq. (7). Seventeen joints
satisfied the conditions. These joints are displayed as the blue circle
marks in Fig. 15.

When there were two clusters, the number of calculations
(217¼ 1.3�105) was acceptable. However, as the number of clusters
became larger, the computation became very large (taking 4 for
example, it was 417¼ 1.7� 1010). To demonstrate that the executing
processes of the NMFCM is more effective, the reductive method
introduced in Section 2.3 was adopted. No was selected as 10,
therefore, 10 of the 17 joints were randomly selected and assigned
to the two clusters. The processes were repeated to ensure that
each joint had the opportunity to be selected. In this study, the
processes were repeated ten times, and the DBFD of each combi-
nation of joints was calculated according to Eq. (8).

Taking 0.01 as the interval length, the calculation results were
classified with the DBFD (see Fig. 16). The clustering results were
averaged at the maximum of the intervals to get the final result.
Fig. 17 shows the polar map of the final clustering result.

The following data were obtained during the execution. The
DBFD was equal to 0.18 when the accuracy rate was 100%. The
difference and the accuracy rate obtained with the fuzzy c-means
method were equal to 0.11 and 83.53%, respectively. They increased
to 0.17 and 88.24% after execution of the fractal redistribution of
joints, respectively. The real promotion of accuracy rate was 4.71%,
and the expectation of the promotion based on Eq. (9) was 5.88%.
Based on the above data and Figs. 16 and 17, the following results
could be concluded:

(1) With the increase of the DBFD, the accuracy rate rises. The
correlation coefficient is 0.97, which suggests a strong cor-
relation between the DBFD and the accuracy rate.

(2) The problem of the hard boundary that appears in the fuzzy
c-means method can be effectively solved by the NMFCM.

(3) The reductive method introduced in Section 2.3 is practical.
(4) The accuracy rate of clustering can be improved by the

NMFCM.
4. Case study

The Changhe dam hydropower station is a rockfill dam located
in Sichuan Province, southwestern China (Fig. 18). Two different
Fig. 16. The relationship between the DBFD and the accuracy rate.



Fig. 17. The polar map of the final clustering result.

Fig. 19. A view of the two different sections of t

Fig. 18. Regional map of Chang
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slope sections of its #3 spillway tunnel were studied (namely, cases
1 and 2, respectively, as shown in Fig. 19). According to field
investigation, the studied sections of the slope mainly consist of
two types of lithological rocks: mediumecoarse grained granite
and quartz diorite. Both types of rock masses are complete, hard,
and developed notably well (Liu et al., 2016).

The indispensable input information for the NMFCM includes
the data of orientations and traces of joints. Close-range digital
photogrammetry was used as themapping tool to obtain these data
of the slope. The method of joint extraction and its accuracy have
been extensively introduced by Liu et al. (2016). The accuracy could
meet the requirements of engineering applications. All the joint
traces are displayed in Fig. 20, and 64 and 51 joints with trace
lengths greater than 2 m were analyzed for the two cases,
respectively.

The validity indices of simplified XieeBeni cluster were calcu-
lated for the two cases, and the optimal numbers of the clusters
were determined as 2 and 3 for the two cases, respectively. Then
the corresponding cluster centers and the membership degree
he slope surface: (a) Case 1 and (b) case 2.

he dam (Liu et al., 2016).



Fig. 20. The joint traces of the study area: (a) Case 1 and (b) case 2.

Fig. 21. The polar map of the clustering result according to the membership degree
values of the fuzzy c-means method: (a) Case 1 and (b) case 2.

Fig. 22. The polar map of the clustering result obtained by the new multiple-factor
clustering method: (a) Case 1 and (b) case 2.
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values were determined. Fig. 21 shows the polar map of the clus-
tering result according to only the membership degree values. The
joints were divided into 2 and 3 clusters. The red dotted lines in the
figure represent the hard boundaries of different clusters. The
boundaries were basically perpendicular bisectors of the lines be-
tween the cluster centers.
For case1,DuandNo took thevaluesof0.4and12, respectively, and
the DBFDwas equal to 0.08 before execution of the fractal relocation.
The expectation of the promotion based on Eq. (9)was 9.38%, and the
DBFDof the twoclusters increased to0.16afterexecutionof the fractal
relocation. For case 2,Du andNo took values of 0.3 and 8, respectively,
and the DBFD was equal to 0.09 before execution of the fractal relo-
cation. The expectation of the promotion based on Eq. (9)was 10.46%,
and the DBFD of the two clusters increased to 0.11 after execution of
the fractal relocation. The running times for the two cases were 7.8 s
and 14.7 s, respectively. Fig. 22 presents the polar map of the clus-
tering result obtained with the NMFCM.

According to the case study, it can be found that: (1) The
problem of hard boundary that appears in the fuzzy c-means
method can be relieved effectively by the NMFCM; (2) The NMFCM
could make the DBFD of the clusters increase; and (c) The NMFCM
is practicable for engineering projects.
5. Discussion and conclusions

The number of clusters (K) had a significant effect on the pro-
motion of accuracy rate and computation time. The effect was
studied in detail when K had the values of 2, 3, and 4. However,
situations where K is greater than 4 might be occasionally
encountered in some engineering projects. The NMFCM was also
applicable, but the data of joints had to be preprocessed before
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execution of joint redistribution. The joints were selected in
batches by cluster by judging whether the clusters have the same
boundary. Then the selected joints could be clustered using the
NMFCM. The process was repeated until all the boundaries were
analyzed.

The development of NMFCM was described in this paper. The
method accounted for the BFDs and orientations of joints simul-
taneously. This meant that the density, trace length, and orientation
were considered together during clustering in the NMFCM. In this
method, it was assumed that the BFDs of different clusters were
uneven, and clustering was performed by redistributing the joints
near the boundaries of clusters to maximize the DBFD. The
reasonableness of the assumption and the main influencing factors
were demonstrated with synthetic data. An equationwas proposed
to estimate the promotion of accuracy rate of clustering. An engi-
neering case was studied to verify the practicability of the NMFCM.
The results clearly demonstrated that:

(1) The assumption was reasonable, and with the improvement
of the clustering accuracy, the DBFD tended to increase.

(2) The improvement degree of the clustering accuracy of the
NMFCMwas mainly controlled by three parameters, namely,
the number of clusters, the number of redistributed joints,
and the total number of joints.

(3) The promotion of accuracy rate was positively correlated
with the number of redistributed joints, but negatively
correlated with the number of clusters and the total number
of joints.

(4) The method was practical and it could effectively alleviate
the problem of hard boundary.

(5) The accuracy rate of clustering could be improved by using
the NMFCM.
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