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ABSTRACT

The unprecedented rate of metro construction has led to a highly complex network of metro lines.
Tunnels are being overlapped to an ever-increasing degree. This paper investigates the deformation
response of double-track overlapped tunnels in Tianjin, China using finite element analysis (FEA) and
field monitoring, considering the attributes of different tunneling forms. With respect to the upper
tunneling, the results of the FEA and field monitoring showed that the maximum vertical displacements
of the ground surface during the tail passage were 2.06 mm, 2.25 mm and 2.39 mm obtained by the FEA,
field monitoring and Peck calculation, respectively; the heaves on the vertical displacement curve were
observed at 8 m (1.25D, where D is the diameter of the tunnel) away from the center of the tunnel and
the curve at both sides was asymmetrical. Furthermore, the crown and bottom produce approximately
0.38 mm and 1.26 mm of contraction, respectively. The results of the FEA of the upper and lower sections
demonstrated that the tunneling form has an obvious influence on the deformation response of the
double-track overlapped tunnel. Compared with the upper tunneling, the lower tunneling exerted
significantly less influence on the deformation response, which manifested as a smaller displacement of
the strata and deformation of the existing tunnel. The results of this study on overlapped tunnels can
provide a reference for similar projects in the future.
© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

and 4 in China. In general, the environment surrounding over-
lapped tunnels tends to be complex and tunnel construction can

The unprecedented rate of metro construction has become a
highly complex network of metro lines. Overlapped tunnels have
progressively appeared and become ever more intensive. Examples
of overlapped tunnels include Beijing Metro Lines 2 and 4 between
Beijing and Xuanwumen stations in China, the double-track over-
lapped tunnels of the MRT North-East Line in Singapore, the tunnel
of Shenzhen Metro Shekou Line crossing right under the tunnel of
Luobao Line in China, and the four-track overlapped tunnels be-
tween Xujiahui and Stadium stations of Shanghai Metro Lines 11
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cause a great ground disturbance, thus endangering the safety of
adjacent building structures. Therefore, it is necessary to under-
stand the deformation response induced by overlapped tunneling.

The geometric arrangement of overlapped tunnels has a sig-
nificant effect on the deformation response during the tunneling
process (Chehade and Shahrour, 2008; Shahin et al., 2016; Jin et al.,
2019). Many studies have investigated the deformation response of
overlapped tunnels with different geometric arrangements. For
double-track overlapped tunnels, most research has focused on
three types of geometric arrangements: horizontally parallel
(Suwansawa and Einstein, 2007; Chen et al., 2011; Das et al., 2017;
Zhang et al., 2019), vertically parallel (Ng et al., 2015; Fang et al.,
2016), and intersecting (Marshall et al., 2013; Chen et al., 2018;
Qian et al,, 2019; Lai et al,, 2020). Many studies have focused on
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Fig. 1. Overview of the project: (a) location of M6 and (b) section of the double-track overlapped tunnel (Google Maps, annotations made by author).

horizontally parallel and intersecting arrangements, while few
have focused on vertically parallel arrangements.

Among the studies that did consider vertically parallel double-
track overlapped tunnels, Ng et al. (2015) used centrifuge tests
and numerical modeling to analyze the deformation response
during tunneling with a focus on the response of a pile group. Fang
et al. (2016) investigated the ground surface settlement due to the
tunneling process and considered the influence of different geo-
metric arrangements; however, the tunnel section had a horseshoe
shape and the shallow tunneling method was used for excavation.
Few studies have considered the deformation response of vertically
parallel double-track overlapped tunnels excavated by the shield
tunneling method and with a circular tunnel section.

The tunneling form also affects the deformation response of
double-track overlapped tunnels during the tunneling process. Ma
et al. (2018) studied a pipeline’s settlement and load-transfer
mechanism induced by double-track overlapped tunneling with
different tunneling forms. Soomro et al. (2020) employed centri-
fuge tests and numerical modeling to explore the stress-transfer
mechanisms and settlement of a pile group during double-track
overlapped tunneling with different construction sequences.
However, the above studies focused on the response of existing pile
groups and pipelines but did not evaluate the deformation
response of existing tunnels.

In this study, finite element analysis (FEA) and field monitoring
were employed to investigate the deformation response on the
ground surface and new tunnel (longitudinal and transverse) dur-
ing upper tunneling activity for the double-track overlapped tun-
nels in Tianjin, China. Moreover, the FEA of the upper and lower
tunneling was used to explore the influence of the tunneling form
on the deformation response of the double-track overlapped tun-
nels. The displacement in the strata (vertical and horizontal) and
deformation of the existing tunnel (longitudinal and transverse)
were analyzed in detail. The study of overlapped tunnels described
in this paper can provide a reference for similar projects in the
future.

2. Engineering background of the case study
2.1. Project overview

The section of double-track overlapped tunnels investigated be-
longs to the interval between Wenhuazhongxin and Leyuandao sta-
tions of Rail Transit Line 6 (M 6) in Tianjin, China. The total length of
the interval between the two stations is 776 m and that of the double-
track overlapped section of the tunnels is 392 m, as shown in Fig. 1.

An earth pressure balancing (EPB) shield machine with a
diameter of 6.4 m was used to excavate the tunnel, and its face
pressure was 0.25—0.3 MPa. The shield started from the working
shaft of Wenhuazhongxin station and reached the working shaft of
Leyuandao station. During the tunneling process, the shield passed
the adjacent existing tunnels of Tianjin Rail Transit Line Z1 (M Z1)
to form the section of the double-track overlapped tunnels. The
tunnel lining was assembled with prefabricated reinforced con-
crete segments in staggered joints, which consisted of one cap
block, two adjacent blocks, and three standard blocks. The strength
grade of the segments is C55, and the segments are connected by
bending bolts. In addition, the tunnel lining was designed to
function with an outer diameter of 6.2 m and a thickness of 0.35 m,
with the width of each ring being 1.5 m.

2.2. Geological conditions

Tianjin is located in the east of the North China Plain and
downstream of the Haihe River Basin. It is an alluvial plain with flat
terrain and extensive soft soil. Fig. 2 shows the illustration of the
ground profile in the direction of the tunnel axis. It can be seen that
the main strata of the interval between Wenhuazhongxin and
Leyuandao stations consist of soft soils (including silty clay, sandy
silt and silt), and the strata crossed by the double-track overlapped
tunnels mainly consist of silty clay and silt. In addition, the mini-
mum cover thickness of M 6 is 6.8 m, and the minimum vertical
distance between M 6 and M Z1 is 7.2 m.
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Fig. 2. Illustration of the ground profile in the direction of the tunnel axis.

Fig. 3 shows the variations of the typical geotechnical properties
of the simplified soil layers with depth. These indices include unit
weight, water content, void ratio, plasticity index, liquidity index,
constrained factor, constrained modulus, cohesion, internal friction
angle and standard penetration test (SPT) blow counts; and the
minimum, maximum and average values of each index are given.
During the construction process, the impact of unfavorable
geological sections should be fully considered and the driving pa-
rameters should be properly set to avoid engineering risks. The
groundwater table in the site is within the range of 0.8—1.9 m.

2.3. Field monitoring layout

Fig. 4 shows the field monitoring layout used in this study. The
monitoring points were only arranged in the new tunnel (M 6) and
on the ground surface to measure the deformation response of the
double-track overlapped tunnels to the upper tunneling process,
with a total of 5 monitoring points for vertical displacement of the
ground surface, 18 monitoring points for longitudinal deformations
of the tunnel, and 36 monitoring points for transverse de-
formations of the tunnel. Fig. 4a shows the top view of the field
monitoring layout, and section A-A’ in the transverse direction was
chosen to show the field monitoring layout of the new tunnel, as
shown in Fig. 4b. “GS”, “LS” and “TS” represent the monitoring
points of vertical displacement on the ground surface, the longi-
tudinal deformation of the tunnel, and the transverse deformation
of the tunnel, respectively. The automatic leveling level DS05
(Suzhou FOIF Co., Ltd., China), the total station SET1X and prisms
(Sokkia Co., Tokyo, Japan) and the hand-held laser rangefinder
DLE50 (Robert Bosch GmbH, Stuttgart, Germany) were used in this
study.

3. FEA of the double-track overlapped tunneling process
3.1. Finite element model

Given the engineering background of the double-track over-
lapped tunnels (upper tunneling), the three-dimensional FEA

software, ABAQUS, was used to numerically explore the distur-
bance effect of the tunneling process on the double-track over-
lapped tunnels (Sun, 2015; Zhang et al., 2016). This paper chooses
the small-strain FEA in the “Soils” step to calculate the deformation
of soil, which can improve the computational efficiency (Liu et al.,
2014).

When taking into account factors such as the burial depth and
spacing of the two tunnels, it is generally appropriate to select a
calculation range that is not less than 3D—4D along the tunnel
diameter in all directions, where D is the diameter of the tunnel (Sun,
2015). Therefore, the dimensions of the finite element model were
determined to be 63 m x 40 m x 46 m (length x width x depth), as
shown in Fig. 5. The finite element model includes five types of
components (soil part, shield part, grouting part, lining part, and an
existing tunnel part) and two pressure types (support pressure of the
shield tunneling face and grouting pressure); the dimensions of the
parts and pressures are consistent with the actual project.

In this study, the C3D8P elements (8-node trilinear displace-
ment and pore pressure) were selected to simulate soil strata
because the pore water pressure must be considered. A non-
uniform grid was used with a fine grid in the region close to the
tunnel and a coarser grid in the far field. The C3D8I elements (8-
node linear brick, incompatible mode) were employed to simulate
the shield, grouting, lining, and existing tunnels (Dong et al., 2014).
The finite element model has a total of 26,688 elements. Among
these, the dualistic interactions between the soil and grouting
parts, the soil and shield parts, the grouting and lining parts, and
the soil and existing tunnel parts were connected by the tie. In
addition, the boundary conditions of the model along the X and Y
axes separately limited “U1” and “U2” to ensure that the horizontal
displacement was constrained, whereas the vertical direction could
be spontaneously moved. In the Z direction, “U1”, “U2” and “U3” on
the base surface were limited (both the horizontal and vertical
directions are constrained).

Based on the upper tunneling activity, the finite element model
of the lower tunneling (the existing tunnel is above and the new
tunnel is below) is proposed as a basis for the discussion of the
influence of the tunneling form on the deformation response of the
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double-track overlapped tunnels. In the finite element model in the
lower tunneling process, everything apart from the tunneling form
is the same as that in the upper tunneling case.

3.2. Material properties

The material properties in this finite element model can be
divided into two categories: elastoplastic material (soil) and linear
elastic material (shield, lining, grouting, and the existing tunnel).
For the soil, the elastic part adopts the porous elastic model,
whereas the plastic part adopts the modified Cam-Clay model. As
the materials are relatively uniform and have a high degree of
stiffness, linear elastic constitutive models were used for the shield,
lining, grouting, and existing tunnel (Zhang et al., 2016). The ma-
terial parameters of the constitutive model used in the FEA are
listed in Table 1. The finite element model considers the grouting
hardening process, “soft” indicating that the grouting has just been
injected and “hard” indicating that it has hardened. Furthermore,
owing to the fact that the bolted connection between the linings in
the actual project reduces its strength (Zheng et al., 2015; Zhang
et al., 2021), the Young’s modulus of the linings was discounted

by 15% in this study (Sun, 2015). The parameters cannot be
measured for the fill, and thus silty clay was used instead.

3.3. Modeling procedure

The shield construction process is complicated, involving shield
tunneling, soil excavation, assembling lining, and shield tail
grouting. In this study, this complex process was reasonably
simplified using a “step-by-step tunneling” method (Mollon et al.,
2013). In particular, the “element death” method was adopted to
incorporate the tunneling process of the EPB shield machine, i.e. to
create the “interaction” of “mode change” in ABAQUS. Fig. 6 in-
troduces the detailed modeling procedure, which is described as
follows:

(1) Initial earth stress balance: The acceleration due to gravity
applied to the model (deactivation of the shield, grouting,
and lining) is taken as 9.8 m/s?> and then automatically
balanced; the termination condition is that the displacement
of the model is less than 1 x 10® m.

(2) Excavation 1: Reactivate the first slice shield (shield machine
length: 10.5 m, which is equivalent to seven slices of lining),
deactivate the first slice soil, and add the first support pres-
sure from the shield tunneling face.

(3) Excavation 2: Reactivate the second slice shield (simulta-
neously deactivate the first slice shield), deactivate the sec-
ond slice soil, add the second support pressure of the shield
tunneling face (simultaneously remove the first support
pressure), reactivate the first slice lining (simultaneously add
the first slice grouting pressure), and reactivate the first slice
soft-grouting.

(4) Excavation 3: Reactivate the third slice shield (simulta-
neously deactivate the second slice shield), deactivate the
third slice soil, add the third support pressure of the shield
tunneling face (simultaneously remove the second support
pressure), reactivate the second slice lining (simultaneously
add the second slice grouting pressure), and reactivate the
second slice soft-grouting (simultaneously hardening the
first slice grouting).

(5) Repeat Steps (2)—(4) until the shield has been moved out of
the hole.

4. Results and discussion

FEA and field monitoring results were compared to investigate
the deformation response of the double-track overlapped tunnels
during the upper tunneling process. The following aspects were
primarily analyzed: (1) vertical displacement of GS-1 during
different tunneling stages, (2) vertical displacement of the ground
surface, (3) longitudinal deformation of the new tunnel, and (4)
transverse deformation of the new tunnel. Based on this, the in-
fluence of different tunneling forms on the double-track over-
lapped tunnels was evaluated via an FEA of the upper and lower
tunneling.

4.1. Vertical displacement of GS-1 during different tunneling stages

Fig. 7 shows the vertical displacement of the ground surface at
monitoring point GS-1 during different tunneling stages. Before GS-
1 was reached (face pre-arrival), the heave occurred, which was
observed in both the FEA and field monitoring. Liu et al. (2014)
stated that the face pressure (i.e. the pressure of earth acting on
the tunnel face) is the main influencing factor before the tunnel
face is reached during the tunneling process. Therefore, it can be
deduced that this heave was primarily caused by face pressure.
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When GS-1 was crossed (face arrival), the settlement was observed
by both approaches, but the field monitoring revealed greater
settlement than FEA did. According to Ji et al. (2008), at this stage,
the conicity of the shield machine (Fig. 8a) and ovalization of the
lining (Fig. 12) may have the greatest influence on the vertical
displacement. After GS-1 was passed (tail passage), the settlement

was still revealed by the two approaches, but the difference be-
tween field monitoring and FEA was greater than that for the face
arrival. The settlement at this stage may be attributed to the
grouting pressure and contraction during grouting.

In this study, the conicity of the shield machine was considered
in the field monitoring but not in the FEA. In addition, the field
monitoring indicated non-uniform contraction during grouting
(Fig. 8b), whereas the FEA revealed uniform contraction. These
explain the differences between field monitoring and FEA.
Compared with the maximum vertical displacements observed for
a single tunnel (FEA: 20 mm,; field monitoring: 7.5 mm) (Liu et al.,
2014), the maximum vertical displacements in this study were
significantly smaller (FEA: 2.5 mm; field monitoring: 1.5 mm). This
may be attributed to the effect of the existing tunnel.

4.2. Vertical displacement of the ground surface

To further explore the response to the tunnel construction, the
Peck (1969) formula was used to calculate the transverse vertical
displacement of the ground surface in the tunneling process. Based
on the geological conditions of this case, Eq. (1) was used to
calculate the width of the settlement trough i (Wei, 2009):

i= m[R+htan(45° —%)] (1)

where m is a coefficient in the range of 0.45—0.5, R is the tunnel
radius, h is the depth of the tunnel axis, and ¢ is the internal friction
angle of the soil above the tunnel.

Fig. 9 compares the transverse vertical displacement of the
ground surface in the tunneling process (i.e. excavated to a distance
of 31.5 m) for the FEA with the field monitoring and Peck calculation.
Fig. 9a presents the tunneling face arrival stage, while Fig. 9b shows
the shield tail passage stage. It can be seen that except for the
maximum vertical displacement, the trend of the vertical displace-
ment from the center of the tunnel to the two sides is similar for the
face arrival and tail passage stages. The maximum vertical
displacement during the tail passage (FEA: 2.06 mm) is significantly
greater than that of the face arrival (FEA: 1.02 mm). Therefore, we
take the tail passage (Fig. 9b) as an example for analysis.

As shown in Fig. 9b, the trend of the vertical displacement ob-
tained by the FEA is similar to both the field monitoring and Peck
calculation, all of which have a settlement trough. Compared with
the field monitoring (2.25 mm) and Peck calculation (2.39 mm),
FEA (2.06 mm) tends to provide a smaller maximum vertical
displacement under the tail passage stage. This may be because the
conicity of the shield machine and non-uniform contraction during
grouting are not taken into account in the FEA (Fig. 8). Furthermore,

Table 1

Material constitutive parameters used in the finite element analysis.
Soil layers Thickness (m) Unit weight (kN/m?) M A K v k (m/d) eo
Silty Clay 25 184 0.86 0.058 0.0072 0.32 0.00018 0.776
Sandy Silt 3 179 1.03 0.031 0.0039 0.35 0.00050 0.742
Silty Clay 103 18.1 0.89 0.055 0.0069 0.35 0.00031 0.764
Silt 12.2 19.8 1.37 0.020 0.0025 0.3 0.00020 0.595
Silty Clay 18 18.6 0.90 0.047 0.0059 0.35 0.00485 0.683
Materials Thickness (m) Unit weight (kN/m?) E (MPa) v
Existing tunnel 0.45 20 2x10% 0.3
Shield 0.1 78 2.4x10° 0.2
Grouting Soft 0.1 20 5 0.4

Hard 18 0.2

Lining 0.35 25 2.93x10% (15% discount) 0.2

Note: E: Young's modulus; »: Poisson’s ratio; M: Slope of the critical state line in g—p’ space; A and «: Slopes of the normal compression and recompression lines in e—In p’

space; eq: Initial void ratio; k: Permeability coefficient.
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in the FEA and field monitoring, the vertical displacement curve is
uplifted at 8 m (1.25D) away from the center of the tunnel, but this
is not seen in the Peck calculation. The reason for this heave is the
upward movement of the existing tunnel due to buoyancy (Zheng
et al,, 2019), which requires that the release of water pressure
during metro tunnel construction should be regulated.

Zheng et al. (2019) conducted field monitoring on the over-
lapped tunnel to study the vertical displacement of the ground
surface. The construction sequence was as follows: the down-line
tunneling followed by the up-line tunneling one year later. Fig. 10
shows a comparison of the results between Zheng et al. (2019)
and this study during the tail passage. Clearly, the four trends of
the vertical displacement are similar, with a heave on the vertical
displacement curve at the left and right sides of the tunnel (in this
study, field monitoring is only performed on the left of the tunnel).
In addition, apart from the field monitoring in this study, the ver-
tical displacements on the left and right sides of the tunnel are
asymmetrical and their uplift values are different.

4.3. Longitudinal deformation of the new tunnel

Fig. 11 indicates the longitudinal deformation of the new tunnel
after tunneling (i.e. excavated to a distance of 63 m) in the FEA and
field monitoring. The deformation AD can be calculated from the
difference in the longitudinal deformation between the bottom and
crown after tunneling:

AD — Dbottomz_ Dcrown (2)

where Dpottom and Derown are the longitudinal deformations of the
tunnel at the bottom and crown, respectively. The positive values at

the crown and bottom of the tunnel mean that they underwent
expansion and contraction, respectively. Furthermore, the positive
value of the difference between the bottom and crown means that
the tunnel collectively moved upward.

It can be seen from Fig. 11 that the longitudinal deformation
trends of the FEA and field monitoring after tunneling are almost
identical. The trend can be divided into three stages: Stage I: the
longitudinal deformation increases and reaches the maximum
(positive) at 42.5 m (3.2D) away from the end of tunnel; Stage II: the
longitudinal deformation drops sharply and reaches the minimum
(negative) at 56.5 m (1D) away from the end of tunnel; and Stage III:
the longitudinal deformation has a slight increase. This indicates
that the tunnel deformation changed from upward movement to
downward movement at 1D—3.2D away from the end of the tunnel.
Attention should be given to the tunnel deformation at 3.2D away
from the end of the tunnel for the construction of double-track
overlapped tunnels. The difference between the FEA and field
monitoring may be attributed to the difference in connections be-
tween the linings. In other words, the FEA adopted the equivalent
stiffness method, while bolted connections were used in the actual
engineering project.

4.4. Transverse deformation of the new tunnel

Fig. 12 shows the transverse deformation of the new tunnel in
the upper tunneling process. The transverse deformations obtained
by the FEA and field monitoring are essentially the same. Compared
with the pre- and post-tunneling stages, the left and right sides of
the new tunnel produce a non-uniform expansion (0.68 mm at the
left and 0.49 mm at the right), whereas the crown and bottom
produce 0.38 mm and 1.26 mm of contraction, respectively. Clearly,
there is a greater deformation at the bottom of the tunnel than at
the crown. The reasons for this are the excavation of soil causing a
stress release and the thin overburden of the soil (6.8 m = 1.06D),
which lead to the center of the new tunnel moving upwards after
tunneling compared with the case prior to tunneling. This also
explains the heave of ground surface at both sides of the tunnel
described in Section 4.2 (Fig. 9).

4.5. Influence of tunneling form on the deformation response

A comparison of the FEA results between upper and lower
tunneling was performed to discuss the influence of the tunneling
form on the deformation response of the double-track overlapped
tunnels. The following aspects were analyzed: (1) vertical
displacement of the strata, (2) horizontal displacement of the
strata, (3) longitudinal deformation of the existing tunnel, and (4)
transverse deformation of the existing tunnel.

4.5.1. Vertical displacement of the strata

Fig. 13 shows the vertical displacement of the ground surface
and monitoring point MD (between the new and existing tunnel, at
a depth of 16.8 m) in accordance with different tunneling forms.
Fig. 13a shows the longitudinal direction after tunneling. On the
ground surface, the vertical displacement due to different
tunneling forms (upper and lower) gradually increases with
tunneling. However, the increase is relatively large in the upper
tunneling process and its value ranges from -0.66 mm
to —2.78 mm, whereas the increased range is relatively small dur-
ing the lower tunneling and its value ranges from —0.66 mm
to —111 mm. The difference between the upper and lower
tunneling is 0 mm and 1.67 mm at O m and 63 m away from the
starting position of tunneling, respectively. At the monitoring point
MD, the vertical displacement fluctuates by 3 mm in the upper
tunneling process, but it increases with small fluctuations arising
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from lower tunneling and its value ranges from -0.39 mm
to —1.02 mm. The difference between the upper and lower
tunneling is 3.41 mm and 3.99 mm at 0 m and 63 m away from the
starting position of tunneling, respectively.

Fig. 13b shows the transverse direction in the upper and lower
tunneling processes (i.e. excavated to a distance of 31.5 m). On the
ground surface, the trends of vertical displacement in the upper
and lower tunneling processes are essentially the same, with both
being settled. However, the settlement of the strata induced by the
upper tunneling (maximum value of —2.06 mm) is obviously
greater than that by the lower tunneling (maximum value
of —0.37 mm). At the monitoring point MD, the trends of vertical
displacement in accordance with two tunneling forms are reversed,
i.e. the upper tunneling shows a heave (maximum value of 2.5 mm)
and the lower tunneling shows a settlement (maximum value
of —0.11 mm).

The above analysis shows that the effects of different tunneling
forms on the vertical displacement of the strata are completely
different. The upper tunneling causes the strata to settle on the
ground surface and to heave at the monitoring point MD, whereas
the lower tunneling has little influence on the ground surface and
induces settlement in the monitoring point MD. This indicates that
during lower tunneling activity, the existing tunnel has an inhibi-
tory effect on the vertical displacement of the ground surface.

4.5.2. Horizontal displacement of the strata

Fig. 14 illustrates the transverse horizontal displacement of the
strata in the upper and lower tunneling processes under different
tunneling forms and at different stages. The trends of the transverse
horizontal displacement at two stages (face arrival and tail passage)
are similar, and the difference in the magnitude, i.e. the horizontal
displacement value of the tail passage, is greater than that during
the face arrival. Thus, only the tail passage was selected for analysis
in this study.

The result of the tail passage indicates that under upper and
lower tunneling, the differences among the horizontal
displacement-depth responses mainly occur at the location of the
new tunnel (upper tunneling at a depth of 10 m and lower
tunneling at a depth of 23.6 m). Compared with the lower
tunneling (144 mm), the maximum value of the horizontal
displacement during upper tunneling (2.63 mm) is larger. Accord-
ing to previous research, the cover thickness of a new tunnel
(Zhang et al., 2016), ovalization of the tunnel lining (Liu et al., 2014),

and geometric arrangement between overlapped tunnels (Fang
et al, 2016) are critical factors influencing the horizontal
displacement of the strata during the tunneling process. We can
infer that this difference between the maximum horizontal dis-
placements in the upper and lower tunneling processes can be
attributed to the factors such as the buried depth of the new tunnel,
its deformation, and the position of the existing tunnel.

The direction of horizontal displacement was outward from the
tunnel, which is consistent with the results of Dias and Kastner
(2013). However, this can change depending on the situation. For
example, Zhang et al. (2016) observed inward movement, and
Standing and Selemetas (2013) observed both inward and outward
movements. The direction of horizontal displacement may be
related to the new tunnel deformation. In this study, the expansion
on both sides of the new tunnel (Fig. 12) led to an outward move-
ment. Furthermore, the position of the maximum horizontal
displacement has a slight upward deviation from the original po-
sition of the tunnel’s center and that upward shift is greater during
upper tunneling activity. This was due to the discrepancy in the
cover thickness of the new tunnel. The lower tunnel had a cover
thickness of 20.4 m, while the upper tunnel had a cover thickness of
only 6.8 m.

4.5.3. Longitudinal deformation of the existing tunnel

Fig. 15 shows the longitudinal deformation of the existing tunnel
after upper and lower tunneling. Upward deformation is defined as
positive, whereas downward deformation is defined as negative. In
the upper tunneling process, the variations of the longitudinal
deformation at the crown and bottom are roughly the same, but the
longitudinal deformation of the former is significantly larger than
that of the latter. The deformation values range from 2.26 mm to
2.38 mm at the crown and from 1.56 mm to 1.67 mm at the bottom.
In the lower tunneling process, the variations of the longitudinal
deformation at the crown and bottom are essentially the same,
with a difference of only 0.05 mm. In addition, compared with the
upper tunneling process, the longitudinal deformation and differ-
ence between the crown and bottom in the lower tunneling process
are significantly smaller. The longitudinal deformation of the
existing tunnel is caused by the strata displacement, especially the
vertical displacement. This is consistent with the large difference
between the two tunneling forms in terms of the vertical
displacement of the strata.

4.5.4. Transverse deformation of the existing tunnel

Fig. 16 shows the transverse deformation of the existing tunnel
in the upper and lower tunneling processes. The deformation of the
existing tunnel in the transverse direction is more intuitive. In the
upper tunneling process, compared with pre- and post-tunneling,
the left and right sides of the existing tunnel present a contrac-
tion of approximately 1.56 mm, whereas the crown and bottom
have upward deformations of about 1.78 mm and 149 mm,
respectively. This indicates that the existing tunnel collectively
moves up. The reason for this is that the stress release caused by the
excavation of the new tunnel results in the upward displacement of
the strata, thus affecting the existing tunnel. In the lower tunneling
process, the deformation of the existing tunnel prior to and after
tunneling is very small, i.e. only 0.25 mm. Therefore, compared
with upper tunneling, the transverse deformation of the existing
tunnel in the lower tunneling process is significantly smaller. This
also explains the upward deviation of the position of the maximum
horizontal displacement described in Section 4.5.2 (Fig. 14). Clearly,
the tunneling form has a great influence on the deformation
response of the existing tunnel.

The above analysis shows that compared with the lower
tunneling, the upper tunneling had a greater influence on the
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deformation response of the double-track overlapped tunnels. This
manifested as a greater displacement of the strata and deformation
of the existing tunnel. This may be because there was no existing
tunnel on the top during the upper tunneling and the cover
thickness was very small (6.4 m = 1.06D). By contrast, there was an

existing tunnel on the top during the lower tunneling, which
inhibited the deformation response of the strata and existing tun-
nel. Based on this, some suggestions for similar engineering pro-
jects in the future are given. Compared with the lower tunneling,
the upper tunneling should be given attention when the cover
thickness is only about 1D. The strata should be reinforced in the
vertical and horizontal directions to reduce the displacement. The
left and right sides of the existing tunnel should be reinforced to
mitigate the contraction, and its crown and bottom should be
reinforced to reduce the upward deformation.

5. Conclusions

A case study was conducted on double-track overlapped tunnels
in Tianjin, China using FEA and field monitoring to explore the
deformation response during upper tunneling and the influence of
the tunneling form. The main conclusions are drawn as follows:

(1) Similar results were obtained by FEA and field monitoring in
this case study. The vertical displacement at the monitoring
point GS-1 showed uplift before it was reached and settle-
ment after it was passed. The Peck formula was used to
calculate the vertical displacement of the ground surface; the
maximum vertical displacements for tail passage (FEA:
2.06 mm, field monitoring: 2.25 mm, and Peck: 2.39 mm)
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were significantly greater than those for face arrival (FEA:
1.02 mm, field monitoring: 1.16 mm, and Peck: 1.25 mm).
Furthermore, a heave on the vertical displacement curve was
observed at 8 m (1.25D) away from the center of the tunnel,
and the curve at both sides was asymmetrical. The results
were compared for verification. The longitudinal deforma-
tion of the new tunnel changed from upward to downward
between 1D and 3.2D from the end of the tunnel. The
transverse deformation of the new tunnel showed expansion
at the left (0.68 mm) and right (0.49 mm) sides, whereas an
upward movement was generated at the center and
contraction was produced at the crown (0.38 mm) and bot-
tom (1.26 mm).

(2) FEA of the upper and lower tunneling was implemented to
explore the influence of the tunneling form on the defor-
mation response of the strata and existing tunnel. The
tunneling form significantly influenced the deformation
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response during the tunneling of the double-track over-
lapped tunnels. Regarding the vertical displacement, the
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Fig. 16. Transverse deformation of the existing tunnel in the middle of tunneling (unit:
mm). The numbers around the circle are in degree.

upper tunneling caused the strata to settle on the ground
surface and to heave at the monitoring point MD, whereas

the lower tunneling had little influence on the ground sur-
face and induced settlement at the monitoring point MD.
Regarding the horizontal displacement, the upper tunneling
caused a greater maximum displacement (2.63 mm) than the
lower tunneling (1.44 mm). In addition, the position of the
maximum displacement deviated slightly upward from the
original position at the tunnel center. For the existing tunnel,
the longitudinal deformation and difference at the crown
and bottom during the lower tunneling were significantly
smaller than that during the upper tunneling. The lower
tunneling had a significantly smaller transverse deformation
(upward deformation of 0.25 mm) than the upper tunneling
(1.56 mm contraction at the left and right sides, 1.78 mm
upward deformation at the crown, and 1.49 mm upward
deformation at the bottom).
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