Vol 6, No 3, Jun 2014

Previous
Next
  • Article

    Content

    2014, 6(3): 164-164.

    Abstract:

    [...]Read more.
  • Article
    Abstract: The progress of soft rock mechanics and associated technology in China is basically accompanied by the development of mining engineering and the increasing disasters of large rock deformation during construction of underground engineering. In this regard, Chinese scholars proposed various concepts and classification methods for soft rocks in terms of engineering practices. The large deformation mechanism of engineeri

    The progress of soft rock mechanics and associated technology in China is basically accompanied by the development of mining engineering and the increasing disasters of large rock deformation during construction of underground engineering. In this regard, Chinese scholars proposed various concepts and classification methods for soft rocks in terms of engineering practices. The large deformation mechanism of engineering soft rocks is to be understood through numerous experiments; and thus a coupled support theory for soft rock roadways is established, followed by the development of a new support material, i.e. the constant resistance and large deformation bolt/anchor with negative Poisson’s ratio effect, and associated control technology. Field results show that large deformation problems related to numbers of engineering cases can be well addressed with this new technology, an effective way for similar soft rock deformation control.

    [...]Read more.
  • Article
    Abstract: The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an i

    The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.

    [...]Read more.
  • Article

    Critical issues in soft rocks

    Milton Assis Kanji

    2014, 6(3): 186-195.

    Abstract: This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ground are added, with emphasis on their types of problems and solutions.

    [...]Read more.
  • Article

    China organic-rich shale geologic features and special shale gas production issues

    Yiwen Ju, Guochang Wang, Hongling Bu, Qingguang Li, Zhifeng Yan

    2014, 6(3): 196-207.

    Abstract: The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-r

    The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-rich shale, including mineral composition, organic matter richness and type, and lithology stratigraphy, were analyzed, indicating very special characteristics. Meanwhile, the more complex and active tectonic movements in China lead to strong deformation and erosion of organic-rich shale, well-development of fractures and faults, and higher thermal maturity and serious heterogeneity. Co-existence of shale gas, tight sand gas, and coal bed methane (CBM) proposes a new topic: whether it is possible to co-produce these gases to reduce cost. Based on the geologic features, the primary production issues of shale gas in China were discussed with suggestions.

    [...]Read more.
  • Article

    The coal cleat system: A new approach to its study

    C.F. Rodrigues, C. Laiginhas, M. Fernandes, M.J. Lemos de Sousa, M.A.P. Dinis

    2014, 6(3): 208-218.

    Abstract: After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM) commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1) how to define the spatial orientation

    After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM) commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1) how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2) how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS), able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.

    [...]Read more.
  • Article

    Analysis of mechanical behavior of soft rocks and stability control in deep tunnels

    Hui Zhou, Chuanqing Zhang, Zhen Li, Dawei Hu, Jing Hou

    2014, 6(3): 219-226.

    Abstract: Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried o

    Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and water-weakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deep tunnel construction in similar geological conditions.

    [...]Read more.
  • Article
    Abstract: Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geoengineering characterisation. In this regard, the paper tries to discuss the standardization of the engineering geological characteristics, the assessment of the behaviour in underground excavations, and

    Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geoengineering characterisation. In this regard, the paper tries to discuss the standardization of the engineering geological characteristics, the assessment of the behaviour in underground excavations, and the instructions–guidelines for the primary support measures for flysch layer qualitatively. In order to investigate the properties of flysch rock mass, 12 tunnels of Egnatia Highway, constructed in Northern Greece, were examined considering the data obtained from the design and construction records. Flysch formations are classified thereafter in 11 rock mass types (I–XI), according to the siltstone–sandstone proportion and their tectonic disturbance. A special geological strength index (GSI) chart for heterogeneous rock masses is used and a range of geotechnical parameters for every flysch type is presented. Standardization tunnel behaviour for every rock mass type of flysch is also presented, based on its site-specific geotechnical characteristics such as structure, intact rock strength, persistence and complexity of discontinuities. Flysch, depending on its types, can be stable even under noticeable overburden depth, and exhibit wedge sliding and wider chimney type failures or cause serious deformation even under thin cover. Squeezing can be observed under high overburden depth. The magnitude of squeezing and tunnel support requirements are also discussed for various flysch rock mass types under different overburdens. Detailed principles and guidelines for selecting immediate support measures are proposed based on the principal tunnel behaviour mode and the experiences obtained from these 12 tunnels. Finally, the cost for tunnel support from these experiences is also presented.

    [...]Read more.
  • Article

    Impact of weathering on slope stability in soft rock mass

    Predrag Miscevic, Goran Vlastelica

    2014, 6(3): 240-250.

    Abstract: Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also resul

    Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

    [...]Read more.
  • Article

    Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test

    Dongqiao Liu, Dejian Li, Fei Zhao, Chengchao Wang

    2014, 6(3): 251-256.

    Abstract: Impact rockburst test on sandstone samples with a central hole is carried out under true triaxial static loads and vertical dynamic load conditions, and rock fragments after the test are collected. The fragments of sandstone generated from strain rockburst test and uniaxial compression test are also collected. The fragments are weighed and the length, width and thickness of each piece of fragments are measured respec

    Impact rockburst test on sandstone samples with a central hole is carried out under true triaxial static loads and vertical dynamic load conditions, and rock fragments after the test are collected. The fragments of sandstone generated from strain rockburst test and uniaxial compression test are also collected. The fragments are weighed and the length, width and thickness of each piece of fragments are measured respectively. The fragment quantities with coarse, medium, fine and micro grains in different size ranges, mass and particles distributions are also analyzed. Then, the fractal dimension of fragments is calculated by the methods of size-frequency, mass-frequency and length-to-thickness ratio-frequency. It is found that the crushing degree of impact rockburst fragments is higher, accompanied with blocky characteristics observably. The mass percentage of small grains, including fine and micro grains, in impact rockburst test is higher than those in strain rockburst test and uniaxial compression test. Energy dissipation from rockburst tests is more than that from uniaxial compression test, as the quantity of micro grains generated does.

    [...]Read more.
  • Article

    Effects of loading– unloading and wetting–drying cycles on geomechanical behaviors of mudrocks in the Colombian Andes

    Mario Camilo Torres-Suarez, Adolfo Alarcon-Guzman, Rafael Berdugo-De Moya

    2014, 6(3): 257-268.

    Abstract: The mudrocks in the Colombian Andes, particularly those exhibiting low cementation (bonding), are susceptible to degradation when the environmental conditions change, which are challenging issues for engineering works. In this paper, the changes in physico-mechanical properties of mudrocks were monitored in laboratory, and some influential factors on the mechanical competence of geomaterials were studied. The geotech

    The mudrocks in the Colombian Andes, particularly those exhibiting low cementation (bonding), are susceptible to degradation when the environmental conditions change, which are challenging issues for engineering works. In this paper, the changes in physico-mechanical properties of mudrocks were monitored in laboratory, and some influential factors on the mechanical competence of geomaterials were studied. The geotechnical characteristics and experimental designs were developed from physical, chemical, mechanical and compositional points of view. In the tests, the techniques such as vapor equilibrium technique (VET) were employed to apply wetting–drying cycles and to control relative humidity (suction-controlled) and loading–unloading cycles through ultrasonic wave velocities technique. The results show that the main failure mechanisms for the laminated mudrocks start on the microscopic scale by fissures coalescence, exhibiting physico-chemical degradation as well; the global geomechanical behavior presents a state between a ductile, like rock, and a fragile, like soil. The obtained results can provide engineering values according to monitoring laboratory set, when compared with in situ conditions.

    [...]Read more.
  • Article

    Non-harmonious deformation controlling of gob-side entry in thin coal seam under dynamic pressure

    Kegong Fan, Hongguang Liang, Chishuai Ma, Chuanwei Zang

    2014, 6(3): 269-274.

    Abstract: The behavior of gob-side entry under dynamic pressure is totally different from the one driven after the movement of overlying strata above the adjacent coalface goaf. The gob-side entry will experience severe roof lateral structural adjustments caused by adjacent coalface mining. Thus the deformation and failure characteristics of narrow coal pillar along the gob should be carefully considered. On the basis of the d

    The behavior of gob-side entry under dynamic pressure is totally different from the one driven after the movement of overlying strata above the adjacent coalface goaf. The gob-side entry will experience severe roof lateral structural adjustments caused by adjacent coalface mining. Thus the deformation and failure characteristics of narrow coal pillar along the gob should be carefully considered. On the basis of the data of the gob-side entry obtained in a thin coal seam under dynamic pressure, the measures to reinforce the narrow coal pillar are put forward. In addition, the non-harmonious controlling of the rock structures and non-equilibrium gob-side entry deformation is proposed to avoid potential failure. Field practices show that the supporting problems of the gob-side entry under dynamic pressure can be well addressed, which could be used in other similar mining cases.

    [...]Read more.
  • Article
    Abstract: Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method

    Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

    [...]Read more.
  • Article

    Frictional sliding tests on combined coal-rock samples

    Tao Wang, Yaodong Jiang, Shaojian Zhan, Chen Wang

    2014, 6(3): 280-286.

    Abstract: A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE) instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal-rock

    A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE) instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal-rock samples, sliding types under different conditions, displacement evolution law, and AE characteristics during sliding process were investigated. Several sliding types were monitored in the tests, including unstable continuous sliding, unstable discontinuous sliding, and stable sliding. The sliding types have close relation with the axial loads and loading rates. Larger axial load and smaller loading rate mean that unstable sliding is less likely to occur. The peak shear stress was positively correlated with the axial load when sliding occurred, whereas the displacement induced by unstable sliding was uncorrelated with the axial load. A large number of AE events occurred before sliding, and the AE rate decreased after stable sliding. The results show that the tests can well simulate the process of structural instability in a coal bump, and are helpful in the understanding of fault activation and the physical processes during squeezing process of roof and floor.

    [...]Read more.

Latest Issue