JRMGE / Vol 10 / Issue 5

Review

An extended J-integral for evaluating fluid-driven cracks in hydraulic fracturing

Huifang Song, Sheik S. Rahman


2018, 10(5): 832-843.


Received: 1900-01-01 / Revised: 1900-01-01 / Accepted: 1970-01-01 / Available online: 2018-10-15

2018, 10(5): 832-843.


Received: 1900-01-01

Revised: 1900-01-01

Accepted: 1970-01-01

Available online: 2018-10-15


Abstract: J-integral has served as a powerful tool in characterizing crack tip status. The main feature, i.e. path-independence, makes it one of the foremost fracture parameters. In order to remain the path-independence for fluid-driven cracks, J-integral is revised. In this paper, we present an extended J-integral explicitly for fluid-driven cracks, e.g. hydraulically induced fractures in petroleum reservoirs, for three-dimensional (3D) problems. Particularly, point-wise 3D extended J-integral is proposed to characterize the state of a point along crack front. Besides, applications of the extended J-integral to porous media and thermally induced stress conditions are explored. Numerical results show that the extended J-integral is indeed path-independent, and they are in good agreement with those of equivalent domain integral under linear elastic and elastoplastic conditions. In addition, two distance-independent circular integrals in the K-dominance zone are established, which can be used to calculate the stress intensity factor (SIF).

Download PDF:


Keywords: Extended J-integral, Three-dimensional (3D) point-wise J-integral, Crack tip behavior, Hydraulic fracturing, Path-independence

Share and Cite

Huifang Song, Sheik S. Rahman, 2018. An extended J-integral for evaluating fluid-driven cracks in hydraulic fracturing. J. Rock Mech. Geotech. Eng. 10 (5), 832-843.