Vol 10, No 3, Jun 2018

Previous
Next
  • Article

    V10 N3 JRMGE (OA Journal)

    JRMGE

    2018, 10(3): 0-0.

    Abstract:

    [...]Read more.
  • Article
    Abstract: With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs) play an important and multi-faceted role in the development of HLW repositories. This paper

    With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs) play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET), which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ), and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned.

    [...]Read more.
  • Article

    Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study

    I. Vazaios, K. Farahmand, N. Vlachopoulos, M.S. Diederichs

    2018, 10(3): 436-456.

    Abstract: The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling (SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by

    The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling (SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM)-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN) modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD), joint spacing, areal fracture intensity (P21), and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI). The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness.

    [...]Read more.
  • Article

    A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect

    Z. Liu, C.Y. Zhou, B.T. Li, Y.Q. Lu, X. Yang

    2018, 10(3): 457-467.

    Abstract: The deformation and failure of soft rock affected by hydro-mechanical (HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics,

    The deformation and failure of soft rock affected by hydro-mechanical (HM) effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect.

    [...]Read more.
  • Article

    Lessons learnt from a deep excavation for future application of the observational method

    Raul Fuentes, Anton Pillai, Pedro Ferreira

    2018, 10(3): 468-485.

    Abstract: This paper draws lessons learnt from a comprehensive case study in overconsolidated clay. Apart from the introduction of the case study, including field measurements, the paper draws on the observations and a three-dimensional (3D) numerical analysis to discuss the implications of observations in the application of the observational method (OM) in the context of the requirements of EUROCODE 7 (EC7). In particular, we

    This paper draws lessons learnt from a comprehensive case study in overconsolidated clay. Apart from the introduction of the case study, including field measurements, the paper draws on the observations and a three-dimensional (3D) numerical analysis to discuss the implications of observations in the application of the observational method (OM) in the context of the requirements of EUROCODE 7 (EC7). In particular, we focus on corner effects and time-dependent movements and provide initial guidance on how these could be considered. Additionally, we present the validation of a new set of parameters to check that it provides a satisfactory compliance with EC7 as a set of design parameters. All these findings and recommendations are particularly important for those who want to use the OM in similar future projects.

    [...]Read more.
  • Article

    Analysis of unlined pressure shafts and tunnels of selected Norwegian hydropower projects

    Chhatra Bahadur Basnet, Krishna Kanta Panthi

    2018, 10(3): 486-512.

    Abstract: Norwegian hydropower industry has more than 100 years of experiences in constructing more than 4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m (equivalent to almost 10.5 MPa) reached at unlined pressure tunnel of Nye Tyin project. Experiences gained from construction and operation of these unlined pressure shafts and tunnels were the foundation to develop design criteria and princ

    Norwegian hydropower industry has more than 100 years of experiences in constructing more than 4000 km-long unlined pressure shafts and tunnels with maximum static head of 1047 m (equivalent to almost 10.5 MPa) reached at unlined pressure tunnel of Nye Tyin project. Experiences gained from construction and operation of these unlined pressure shafts and tunnels were the foundation to develop design criteria and principles applied in Norway and some other countries. In addition to the confinement criteria, Norwegian state-of-the-art design principle for unlined pressure shaft and tunnel is that the minor principal stress at the location of unlined pressure shaft or tunnel should be more than the water pressure in the shaft or tunnel. This condition of the minor principal stress is prerequisite for the hydraulic jacking/splitting not to occur through joints and fractures in rock mass. Another common problem in unlined pressure shafts and tunnels is water leakage through hydraulically splitted joints or pre-existing open joints. This article reviews some of the first attempts of the use of unlined pressure shaft and tunnel concepts in Norway, highlights major failure cases and two successful cases of significance, applies Norwegian criteria to the cases and reviews and evaluates triggering factors for failure. This article further evaluates detailed engineering geology of failure cases and also assesses common geological features that could have aggravated the failure. The minor principal stress is investigated and quantified along unlined shaft and tunnel alignment of six selected project cases by using three-dimensional numerical model. Furthermore, conditions of failure through pre-existing open joints by hydraulic jacking and leakage are assessed by using two-dimensional fluid flow analysis. Finally, both favorable and unfavorable ground conditions required for the applicability of Norwegian confinement criteria in locating the unlined pressure shafts and tunnels for geotectonic environment different from that of Norway are highlighted.

    [...]Read more.
  • Article

    An integrated multiscale approach for characterization of rock masses subjected to tunnel excavation

    Gessica Umili, Sabrina Bonetto, Anna Maria Ferrero

    2018, 10(3): 513-522.

    Abstract: The design of tunnels must be conducted based on the knowledge of the territory. The longer the structure, the larger the area to be investigated, and the greater the number of surveys and tests to be performed in order to thoroughly examine all the relevant features. Therefore, optimization of the investigation process is strongly required to obtain complete and reliable data for the design of the infrastructure. Th

    The design of tunnels must be conducted based on the knowledge of the territory. The longer the structure, the larger the area to be investigated, and the greater the number of surveys and tests to be performed in order to thoroughly examine all the relevant features. Therefore, optimization of the investigation process is strongly required to obtain complete and reliable data for the design of the infrastructure. The fast development of remote sensing technologies and the affordability of their products have contributed to proving their benefits as supports for investigation, encouraging the spreading of automatic or semi-automatic methods for regional scale surveys. Similarly, considering the scale of the rock outcrop, photogrammetric and laser scanner techniques are well-established techniques for representing geometrical features of rock masses, and the benefits of non-contact surveys in terms of safety and time consumption are acknowledged. Unfortunately, in most cases, data obtained at different scales of investigations are only partially integrated or compared, probably due to the missing exchange of knowledge among experts of different fields (e.g. geologists and geotechnical engineers). The authors, after experiencing such a lack of connection among the results of different surveys concerning tunnels, propose a multiscale approach for the optimization of the investigation process, starting from the regional scale, to obtain the data that can be useful not only for planning more detailed surveys in a preliminary phase, but also for making previsions on the discontinuity sets that are present in the rock masses subjected to excavations. A methodological process is proposed and illustrated by means of a case study. Preliminary results are discussed to highlight the potentiality of this method and its limitations.

    [...]Read more.
  • Article
    Abstract: In holes, the measurement of the velocity of detonation (VOD) helps in comparing and evaluating relative performance of explosives. In this paper a blast performance assessment was conducted based on the results obtained from the steady state VOD measurement of emulsion explosives HEF100 and degree of blast fragmentation conducted on an open pit blast. The aim of this study was to compare the steady state VOD measure

    In holes, the measurement of the velocity of detonation (VOD) helps in comparing and evaluating relative performance of explosives. In this paper a blast performance assessment was conducted based on the results obtained from the steady state VOD measurement of emulsion explosives HEF100 and degree of blast fragmentation conducted on an open pit blast. The aim of this study was to compare the steady state VOD measured in the field and the published VOD of HEF100 under ideal laboratory conditions and ascertain its efficacy. In the trial, a resistance wire continuous VOD measurement system connected to a SpeedVOD was employed to measure and record the steady state VOD values from five different blast holes. Furthermore, a post fragmentation analysis was conducted using the existing fragmentation models and an image processing software. The steady state VOD values recorded from the field ranged between 4981 m/s to 5387 m/s consistent with the published VOD subjected to ideal laboratory conditions and the analyzed fragmentation size distribution indicates that 90% of the blasted muck pile was within the allowable and optimal 700 mm passing size.

    [...]Read more.
  • Article
    Abstract: The use of terrestrial laser scanning (TLS) in the caves has been growing drastically over the last decade. However, TLS application to cave stability assessment has not received much attention of researchers. This study attempted to utilize rock surface orientations obtained from TLS point cloud collected along cave passages to (1) investigate the influence of rock geostructure on cave passage development, and (2) a

    The use of terrestrial laser scanning (TLS) in the caves has been growing drastically over the last decade. However, TLS application to cave stability assessment has not received much attention of researchers. This study attempted to utilize rock surface orientations obtained from TLS point cloud collected along cave passages to (1) investigate the influence of rock geostructure on cave passage development, and (2) assess cave stability by determining areas susceptible to different failure types. The TLS point cloud was divided into six parts (Entry hall, Chamber, Main hall, Shaft 1, Shaft 2 and Shaft 3), each representing different segments of the cave passages. Furthermore, the surface orientation information was extracted and grouped into surface discontinuity joint sets. The computed global mean and best–fit planes of the entire cave show that the outcrop dips 290° with a major north-south strike. But at individual level, the passages with dip angle between 26° and 80° are featured with dip direction of 75°–322°. Kinematic tests reveal the potential for various failure modes of rock slope. Our findings show that toppling is the dominant failure type accounting for high-risk rockfall in the cave, with probabilities of 75.26%, 43.07% and 24.82% in the Entry hall, Main hall and Shaft 2, respectively. Unlike Shaft 2 characterized by high risk of the three failure types (32.49%, 24.82% and 50%), the chamber and Shaft 3 passages are not suffering from slope failure. The results also show that the characteristics of rock geostructure considerably influence the development of the cave passages, and four sections of the cave are susceptible to different slope failure types, at varying degrees of risk.

    [...]Read more.
  • Article

    Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied

    Pei-Yun Shu, Hung-Hui Li, Tai-Tien Wang, Tzuu-Hsing Ueng

    2018, 10(3): 545-554.

    Abstract: Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of

    Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB) testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding. Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing failure.

    [...]Read more.
  • Article

    Optimization of dewatering schemes for a deep foundation pit near the Yangtze River, China

    Yang You, Changhong Yan, Baotian Xu, Shi Liu, Canhui Che

    2018, 10(3): 555-566.

    Abstract: A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aq

    A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation (horizontal hydraulic conductivity KH = 16 m/d and vertical hydraulic conductivity KV = 8 m/d). The difference between KH and KV indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be 94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme, in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of −28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.

    [...]Read more.
  • Article

    Numerical simulation of the behaviors of test square for prehistoric earthen sites during archaeological excavation

    Xudong Wang, Zongren Yu, Jingke Zhang, Qinglin Guo, Shanlong Yang, Manli Sun

    2018, 10(3): 567-578.

    Abstract: During the process of archaeological excavation in the regions of Southeast China, collapse of test square usually occurs due to poor site-specific conditions. In this paper, the fast Lagrangian analysis of continua in three dimensions (FLAC3D) is employed to reveal the behaviors of test square. Taking the archaeological works in Liangzhu prehistoric earthen sites as the research background, the paper first introduce

    During the process of archaeological excavation in the regions of Southeast China, collapse of test square usually occurs due to poor site-specific conditions. In this paper, the fast Lagrangian analysis of continua in three dimensions (FLAC3D) is employed to reveal the behaviors of test square. Taking the archaeological works in Liangzhu prehistoric earthen sites as the research background, the paper first introduces the geological setting, excavation procedure and monitoring scheme of the studied test square. Then, the deformation of four sides of the test square is modeled using FLAC3D. By comparison, it shows that the numerical results are consistent with the results from field monitoring. The result suggests that the numerical simulation can be effectively applied to representing the actual behaviors of the test square, which is helpful for determination of excavation scheme and stability evaluation of the test square during archaeological excavation.

    [...]Read more.
  • Article
    Abstract: A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameter

    A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameters. The at-rest earth pressure coefficient, as well as bearing capacity factor and rigidity index related to the cone penetration test, is also acquired from the analyses. Comparisons are presented between the measured clay parameters and the results of corresponding analyses in five different case studies. It is demonstrated that the presented approach can provide acceptable estimates of saturated clay stiffness and strength parameters. One of the main privileges of the presented methodology is the site-specific procedure developed based on the relationships between clay strength and stiffness parameters, rather than adopting direct correlations. Despite of the utilized iterative processes, the presented approach can be easily implemented using a simple spreadsheet, benefiting both geotechnical researchers and practitioners.

    [...]Read more.
  • Technical Note
    Abstract: Physico-mechanical properties are critically important parameters for rocks. This study aims to examine some of the rock properties of quartz-mica schist (QMS) rocks in a cost-effective manner by establishing correlations between non-destructive and destructive tests. Using simple regression analysis, good correlations were obtained between the pulse wave velocities and the properties of QMS rocks. The results were f

    Physico-mechanical properties are critically important parameters for rocks. This study aims to examine some of the rock properties of quartz-mica schist (QMS) rocks in a cost-effective manner by establishing correlations between non-destructive and destructive tests. Using simple regression analysis, good correlations were obtained between the pulse wave velocities and the properties of QMS rocks. The results were further improved by using multiple regression analysis as compared to those obtained by the simple linear regression analysis. The results were also compared to the ones obtained by other empirical equations available. The general equations encompassing all types of rocks did not give reliable results of rock properties and showed large relative errors, ranging from 23% to 1146%. It is suggested that empirical correlations must be investigated separately for different types of rocks. The general empirical equations should not be used for the design and planning purposes before they are verified at least on one rock sample from the project site, as they may contain large unacceptable errors.

    [...]Read more.
  • Discussion
    Abstract: A new comprehensive set of data (n = 178) is compiled by adding a data set (n = 72) collected by Arioglu et al. (2007) to the data set (n = 106) presented in Rezazadeh and Eslami (2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength (UCS) (0.15 MPa < σrc < 156 MPa

    A new comprehensive set of data (n = 178) is compiled by adding a data set (n = 72) collected by Arioglu et al. (2007) to the data set (n = 106) presented in Rezazadeh and Eslami (2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength (UCS) (0.15 MPa < σrc < 156 MPa) and various rock types. Rock mass cuttability index (RMCI) is correlated with shaft resistance (rs) to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus rs equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami (2017). Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations.

    [...]Read more.
  • Discussion
    Abstract: Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high bearing capacity. In this study, the unconfined compressive strength (UCS) and rock mass cuttability index (RMCI) have been applied to investigating the shaft bearing capacity. For this purpose, a compr

    Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high bearing capacity. In this study, the unconfined compressive strength (UCS) and rock mass cuttability index (RMCI) have been applied to investigating the shaft bearing capacity. For this purpose, a comprehensive database of 178 full-scale load tests is compiled by adding a data set (n = 72) collected by Arioglu et al. (2007) to the data set (n = 106) presented in Rezazadeh and Eslami (2017). Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS/RMCI. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data (series 3 in Rezazadeh and Eslami (2017)). Since rock-socketed shafts are supported by rock mass (not intact rock), a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, based upon RMR and RQD to consider the effect of the rock mass properties.

    [...]Read more.
  • Erratum
    Abstract:

    [...]Read more.
  • Article

    Book review

    E.T. Brown

    2018, 10(3): 611-612.

    Abstract:

    [...]Read more.

Latest Issue